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Abstract— This paper proposed a novel method to select
the effective Electroencephalography (EEG) channels for the
motor imagery tasks based on the inconsistencies from multiple
classifiers. The inconsistency criterion for channel selection
was designed based on the fluctuation of the classification
accuracies among different classifiers when the noisy channels
were included. These noisy channels were then identified and
removed till a required number of channels was selected or a
predefined classification accuracy with reference to baseline was
obtained. Experiments conducted on a data set of 13 healthy
subjects performing hand grasping and idle revealed that the
EEG channels from the motor area were most frequently
selected. Furthermore, the mean increases of 4.07%, 3.10%
and 1.77% of the averaged accuracies in comparison with the
four existing channel selection methods were achieved for the
non-feedback, feedback and calibration sessions, respectively,
by selecting as low as seven channels. These results further
validated the effectiveness of our proposed method.

I. INTRODUCTION

How to select the subject-specific, most effective EEG
channels for the classification of motor imagery EEG signals
is an important topic due to the noisiness of some channels.
Channel selection could be an effective way to improve
EEG signal quality by removing those noisy, irrelevant
channels. Two obvious advantages of channel selection can
be visualized. Firstly, selecting a smaller number of channels
will lower down the system cost due to the expensiveness of
electrodes, especially for dry electrodes. Secondly, selecting
the subject-specific, informative channels will help identify
the motor cortex that are correlated well with the performed
motor imagery tasks. This is especially important for the
stroke patients [1], who generally have lesions at a particular
side of the brain, and the lesion locations are unknown before
the experiments. The activation or motor imagery-related
sites could be different from that of healthy subjects.

Selection of EEG channels could be treated as a feature
selection problem [2], [3], e.g., wrapper-based or filter-
based approaches. Feature selection using wrapper-based
approaches was usually coupled with a specific classifier
such as support vector machines (SVMs) [4], [5]. Its perfor-
mance depended to a large extent on the applied classifier.
Further, the wrapper-based approaches generally incurred
high computational load due to multiple iterations of training
and classifying processes. On the other hand, filter-based ap-
proaches were classifier-independent and less computational-
intensive. For example, the mutual information (MI)-based
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method selected the channels by computing the MI between
the features and class labels [6]. However, the filter-based
approaches could suffer the non-optimal selection problem
for a subset of features, even though each individual feature
was the best [5].

The spatial pattern coefficients in the Common Spatial
Pattern (CSP)-based method [7], [8] were used to select
the channels, which were known to be sensitive to noise
or artifacts. While regularized CSP selected the channel by
sparsifying the representation of CSP [9], [10]. Along the
similar lines, the sparse CSP-based channel selection selected
the channels by sparsifying the CSP projection matrix [3].
In this paper, we proposed a novel channel selection method
by measuring the inconsistencies from the outputs of the
multiple classifiers (CS-IMC), such that an optimal set of
channels for the classification of motor imagery of hand
grasping EEG signals from background idling state can be
selected. Comparisons with existing channel selection meth-
ods demonstrated the advantages of our proposed method,
e.g., no prior knowledge on the activation region was re-
quired, lower computational complexity, better classification
accuracy by selecting the same number of channels.

II. OVERALL SCHEME AND FEATURE EXTRACTION

Typically, channel selection could work towards two op-
posite directions based on predefined criteria: a) to select
the most effective channels one by one; b) to eliminate those
noisy channels one by one, the final selected channels would
be those leftovers. The selecting or eliminating process
would be iterated till a predefined stopping criterion was
satisfied, e.g., the required number of channels was selected,
or a predefined classification accuracy was reached compared
with the baseline accuracy by using all channels. Our pro-
posed method fell into the second category, i.e., those noisy
channels were identified based on the inconsistencies of the
outputs from multiple classifiers, which were then removed
one by one until the required number of selected channels
was obtained. An overall schematic diagram illustrating our
proposed channel selection method was shown in Fig. 1. The
performance was evaluated by an n×k fold cross-validation
(CV) using LibSVM [11] as the classifier. Observed from
the figure, our proposed channel selection method consisted
of: a) best frequency bands selection module; b) refilter and
generate covariance features module; c) channel selection
module; and d) performance evaluation module. In what
follows, each module would be described in more details.
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Fig. 1. An overall schematic illustration of the proposed channel
selection by measuring the inconsistencies from multiple classifiers.

1) Best frequency bands selection module. The best fre-
quency bands were selected based on the MI between the
CSP features and class labels [12]. Both training and testing
EEG data were filtered by Chebyshev filters for the frequency
bands varying from 4Hz to 40Hz, with the bandwidth of
each frequency band of 4Hz. The CSP projection matrix
was obtained by maximizing the variance of the filtered
signal under one condition while minimizing it for another
condition [7], [13]. The spatial filter was formed by the
first and last two columns from the projection matrix, which
was then used to filter the signal. The log variance of the
spatially filtered signal was used as the CSP features. The
most discriminant frequency band was finally selected by
maximizing the MI between the CSP features and class labels
[12].

2) Refilter and covariance features generation module.
The train and test set of EEG signals were refiltered based
on the selected frequency bands using the nth order digital
elliptic filter, with the resultant signal being denoted as Srt

and Srs, respectively. Subsequently, the covariance features
consisting of the variances for each column of the covariance
matrices for refiltered train and test data were generated by

F c
tr = diag(SrtS

T
rt) (1)

F c
te = diag(SrsS

T
rs) (2)

where diag(X) and XT denoted the diagonals, and transpose
of matrix X , respectively.

3) Channel selection module. a) Each channel was elimi-
nated based on our proposed “channel selection based on the
inconsistencies from multiple classifiers (CS-IMC)” criterion
using the features of F c

tr and F c
te for training and testing

data. The details of CS-IMC will be described in the next
section. b) Updated the eliminated (ce) and remaining (cr)
sets of channels for next iteration by ce=ce∪ci and cr=cr\ci,

where ci was the current eliminated channel, “∪” and “\”
represented “set union” and “set minus”, respectively. c)
Iterated steps a) to b) till the stopping criterion was satisfied.

4) Performance evaluation module. The performance was
evaluated based on the remaining channels for current itera-
tion. The CSP features were recomputed based on remaining
channels cr, i.e., Fcsp(cr), which were then used in classifi-
cation to obtain: Ca(cr) = Hs(Fcsp(cr), Lb), where Hs and
Lb denoted the classifier such as SVM, and class labels.

III. CHANNEL SELECTION

Our idea was motivated by the observations that the
features from the noisy channels did not correlate well with
the corresponding motor imagery tasks. Hence, the outputs
from multiple classifiers would appear to be unstable by
classifying the features computed with the inclusion of these
noisy channels. This motivated us to design the proposed
channel selection method by eliminating one channel at
a time based on the inconsistencies of the outputs from
multiple classifiers, which was detailed in Table I. The inputs
to the channel selection module were the refiltered training
and testing EEG data for current fold. The classifiers em-
ployed were: SVM, naive bayes classifier, linear discriminant
analysis and decision trees, which were denoted as Hs, Hb,
Hl and Hd, respectively. It should be noted that the finally
eliminated and kept channels were based on the distribution
analysis, e.g., computing histogram for each channel for
a total of n×k fold. Similarly, the averaged classification
accuracies for the elimination of each channel was obtained
by averaging the accuracies for the n×k fold.

IV. EXPERIMENTAL RESULTS

A. Data sets and data acquisition

EEG data were collected from 13 healthy subjects. Ethics
approval was obtained from the institutional review board
and informed consents were obtained from all the subjects.
The experimental protocol was designed as follows. Each
trial consisted of 12 s with 2 s of preparation, 4 s of action
and 6 s of rest. Each subject underwent three sessions,
i.e., calibration, feedback and non-feedback. A “smiley”
or “poker” face image was shown based on the subject’s
performance for the feedback session, whereas no feedback
was provided for non-feedback session. The models were
trained based on the calibration data collected from previous
sessions. Each session consisted 40 trials of actions and 40
trials of idle. In the experiments, the subjects were instructed
to perform kinesthetic motor imagery of hand grasping
or mental counting followed a visual cue shown in the
computer screen, for motor imagery and idle, respectively.
Body movements and eye blinks were constrained. EEG
signals were recorded by NuAmps EEG acquisition hard-
ware (http://www.neuroscan.com) with unipolar Ag/AgCl
electrodes. Placements of the electrodes followed the interna-
tional 10-20 system standard. The EEG signal was digitally
sampled at 250 Hz with a resolution of 22 bits, and the
voltages fell in the range of ±130 mV. The EEG signals
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TABLE I

CHANNEL SELECTION BASED ON INCONSISTENCIES FROM MULTIPLE

CLASSIFIERS (CS-IMC)

Inputs: the re-filtered training and testing EEG data for current fold
(n×k fold CV).

Outputs: the eliminated channel (ĉi) and CV accuracy (Ca(ĉi)).
1) Computed covariance features of the refiltered training and testing

sets for the currently remaining channels (cr), denoted the obtained
features as F c

tr(cr) and F c
te(cr).

2) Trained the models based on F c
tr(cr) for multiple classifiers Hi,

where i∈{s, b,l, d}, e.g., Ms=Hs(F c
tr(cr)), which were then used

to classify F c
te(cr) to obtain the classification accuracies for the

training (Ptr(cr, i)) and testing (Pte(cr, i)) data for the ith classi-
fier.

3) Computed the inconsistencies of the training (Itr(ci)) and testing
(Ite(ci)) classification accuracies between any two classifiers by
removing channel ci, which were given by

Itr(ci) =
1

np

np
∑

i,j=1,i ̸=j

|Ptr(cr, i)− Ptr(cr, j)| (3)

Ite(ci) =
1

np

np
∑

i,j=1,i ̸=j

|Pte(cr, i)− Pte(cr, j)| (4)

where the remaining channel by removing ci was: cr=cr\ci; the
total pair of classifiers for a total of nr classifiers was: np=

(nr

2

)

;
|x| denoted the absolute values of x.

4) Obtained the overall inconsistencies (Ic(ci) by fusing the inconsis-
tencies for training (Itr(ci)) and testing (Ite(ci)) data, which was
given by

Ic(ci) = w1 ∗ Itr(ci) + w2 ∗ Ite(ci) (5)

where the pair of weights (w1, w2)=(0.4, 0.6) was used.
5) Eliminated the channel where the overall inconsistency of the outputs

from multiple classifiers was the maximum (see Eq. (5)).

ĉi = argmin
ci∈{cr}

(1− Ic(ci)) (6)

6) Recomputed the CSP features of training and testing data for cur-
rently remaining channels (ĉr), obtained the CV accuracy Ca(ĉi).

were recorded for 27 channels, which were bandpass filtered
from 0.05 Hz to 40 Hz by the acquisition hardware.

B. Performance of the proposed method

Experiments were conducted to test the CV classification
accuracies by eliminating each channel at a time with the
10×10 fold CV results being reported in Fig. 2. The results
demonstrated that the averaged classification accuracies in-
creased with the elimination of the noisy channels, e.g., from
1 to 15 channels, which was obvious for calibration session.
The accuracies decreased significantly when the number of
eliminated channels reached certain values, e.g., 20, reaching
the stopping criterion. Furthermore, the performance of feed-
back session was superior to that of non-feedback session
as expected. To further demonstrate the effectiveness of the
proposed channel selection method, the distributions of the
selected channels, e.g., selecting 16 channels in 10×10 fold
CV, for non-feedback session were visualized in Fig. 3.
The visualization results revealed that the most frequently
selected channels were located at the motor area such as
‘C4’, and somatosensory association cortex such as ‘CP4’.
The high frequency that the channels such as ‘PO1’ and
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Fig. 2. CV classification accuracies by eliminating each channel at
a time for (a) all subjects at the calibration session, and (b) group
averaged across subjects for all three sessions. The vertical black
line indicated the cut-off number of channels selected: 7.
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Fig. 3. Visualization of the selected channels for the non-feedback
session. The channels that were colored in ‘red’ were the most
frequently selected area.

‘PO2’ at visual cortex area was selected may be due to
the involvements of too much visual imaging during motor
imagery.

C. Comparisons

Comparisons were made between our proposed CS-IMC
method and that of other channel selection methods such as
CSP (cs-csp) [8], mutual information (cs-mi) [6], fisher cri-
terion (cs-fisher) and SVM-distance (cs-svm)-based methods
[4]. The averaged accuracy increases of proposed CS-IMC
compared with other methods were summarized in Table II.
The comparison of CV accuracies of different methods for
the non-feedback and feedback sessions were shown in
Fig. 4. The results revealed that the averaged accuracies of
our proposed CS-IMC by selecting 7 channels were 1.23%,
2.60% (significant with p-value: 0.045), 1.78% and 6.61%
(significant with p-value: 0.007); and 1.97%, 2.40%, 2.62%
and 5.39% (significant, with p-vaue: 0.021) higher than that
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(a) non-feedback session
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(b) feedback session
Fig. 4. Comparison of CV accuracies for different methods by
selecting 7 channels. Those subjects circled in “purple” represented
superior performance of our method. The last group of bar was
averaged accuracies across subjects.

of cs-svm, cs-mi, cs-csp and cs-fisher methods for non-
feedback and feedback sessions, respectively. The averaged
accuracy of CS-IMC for the calibration session was 2.77%,
0.50% and 4.01% higher than that of cs-mi, cs-csp and cs-
fisher, respectively. However, it was 0.21% lower than that of
cs-svm. These results led to the means of averaged accuracy
increases across methods of 4.07%, 3.10% and 1.77%, in
comparison with the four existing methods for non-feedback,
feedback and calibration sessions, respectively. In particular,
our proposed method performed extremely good for those
low-accuracy performers, e.g., those subjects whose CV
accuracies were below 70%, as can be seen from Fig. 4. It is
noted that the performance of the low-accuracy performers
can be very low, hence, proper motor imagery strategies
should be enforced to improve the performance, which may
be coupled with the motor observation.

TABLE II

COMPARISON OF CV ACCURACIES WITH EXISTING METHODS

CS-IMC vs. Avg. Acc. increase (%) for sessions
methods non-feedback feedback calibration
cs-svm 1.23 1.97 -0.21
cs-mi 2.60∗ 2.40 2.77
cs-csp 1.78 2.62 0.50

cs-fisher 6.61∗ 5.39∗ 4.01
MAR. 4.07 3.10 1.77

Note: ∗ significant at 5% significance level. MAR.: means of the averaged
accuracy increases across different methods.

V. CONCLUSIONS

In this paper, we presented a novel channel selection
method to select the most effective EEG channels based on
the inconsistencies of the outputs from multiple classifiers,
measured for both training and testing data. Our idea was
motivated by the fluctuations from the outputs of the multiple
classifiers by the inclusions of those noisy channels. These
noisy channels were eliminated one by one till the stopping
criterion was satisfied. Experiments were conducted on an
EEG data set consisted of 13 healthy subjects performing
motor imagery of hand grasping for three sessions. The
results showed that the mean increases of 4.07%, 3.10% and
1.77% of the averaged accuracies were achieved in compar-
ison with that of the SVM, mutual information, CSP, and
fisher criterion-based channel selection methods for the non-
feedback, feedback and calibration sessions, respectively.
The performance decreased significantly when the number of
channels dropped to certain value, e.g., less than 10 channels.
Furthermore, the selected channels were located mainly on
the motor cortex and somatosensory association cortex areas.
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