
Quality Assessment of EEG Signals based on
Statistics of Signal Fluctuations

Huijuan Yang, Cuntai Guan, Kai Keng Ang, Kok Soon Phua and Chuanchu Wang
Institute for Infocomm Research,

Agency for Science, Technology and Research (A∗STAR), Singapore 138632.
Email: {hjyang, ctguan, kkang, ksphua and ccwang}@i2r.a-star.edu.sg

Abstract—The quality of the non-invasive EEG signals was
always affected by the changes in the contact impedances and the
artifacts from eye blinking, eye movements and body movements.
An effective quality assessment method is needed to assess the
qualities of the EEG signals. This paper proposed a novel method
to assess the signal quality of EEG signals based on block-
based measurements of the fluctuations of the second-order power
amplitudes of the EEG signals. The initial signal quality scores
were generated by fusion of the mean power amplitudes and the
signal fluctuations of the motor imagery state with reference to
background idling state. These scores were subsequently mapped
to different quality levels by using fuzzy-c means clustering.
Experimental results were conducted on the basis of 3 data
sets of 15 healthy subjects performing motor imagery of hand
movements and idle, for both gel-based and gel-less electrodes.
The results obtained demonstrated that the proposed method
was capable of evaluating the quality of the EEG signals, as
supported by the clear separation of the assigned quality levels
between gel-based and gel-less electrodes. This further validated
the assumption that generally the quality of the EEG signals
acquired based on the gel-based electrodes was better than that
of the gel-less electrodes.

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive technique
to monitor the electrical activity of the brain. Successfully
decoding of the EEG signals has established an effective way
to translate the intention of the paralyzed patients to drive
external assistive devices. However, many factors affect the
quality of the EEG signals. Firstly, the contact impedances
between the skin and electrodes should be sufficiently low to
obtain EEG signals of high qualities, which can be achieved
with the use of conductive gel. Nevertheless, the signal would
get noisier with the gel getting dried up after several hours of
use. How the quality of the EEG signals was affected by the
electrodes of low and high impedances under different record-
ing environments was investigated in [1], where the EEG signal
was recorded during an oddball task. The results revealed that
the low-frequency noise was increased at the high-impedance
electrode site when P3 amplitude was measured, especially
at the warm and humid recording conditions. Recently, some
dry electrodes were used which did not require gel or skin
preparation. This makes both a home-based and ambulatory
brain computer interface (BCI) application possible since a fast
setup can be expected [2]. However, the presence of motion
artifacts formed a major obstacle for such systems, which
were mainly caused by the contact changes between the skin
and electrodes. Monitoring the changes of the electrode-tissue
contact impedance can thus facilitate detection and reduction
of the motion artifacts, e.g., to improve the prediction of the

motion artifacts with the use of the in-phase and quadrature
components of the contact impedance [2].

Eye blinking and eye movements, and other body move-
ments related artifacts complicated the interpretation of EEG
signals [3], [4]. A quantitative investigation on the signal qual-
ity (e.g., in terms of artifacts contamination) of simultaneously
recorded invasive and non-invasive EEG signals was carried
out [4]. Comparisons of the blink-related artifacts in prefrontal
and motor cortical regions indicated that significant blink-
related artifacts were found in invasive recordings in the pre-
frontal region. A simple way to remove the ocular artifacts was
to visually inspect the EEG data and set a threshold to reject
the contaminated trials or channels [3], which would result in
the loss of data. Regression-based method generally require
a reference channel not containing any brain activity, which
was not the case in real applications. Independent component
analysis-based eye movements and eye blinks artifacts removal
firstly decomposed the EEG signals into independent compo-
nents [3]. The topographies and power spectral density features
of those components were then extracted. Eventually a peak
detection algorithm was applied to identify the components of
eye blinking and a SVM classifier was trained to identify the
components of eye movements.

Improving the signal-to-noise ratio by soft thresholding
for better interpretation of the event-related potential was
investigated in [5]. The denoising-based methods were gener-
ally sensitive to the robustness of the threshold. Furthermore,
it was difficult to differentiate the instrumental noise from
that of the background brain activity and movement noise.
Denoising the nonlinear time series by adaptive filtering based
on weighted polynomial fitting demonstrated the superior per-
formance compared with that of the wavelet shrinkage-based
denoising [6]. The degree of variability detected by the second-
order difference plot of the EEG time series, between eye
closing and eye opening, was used as a switching mechanism
to control the assistive devices [7].

It is noted that a proper method to assess the qualities
of the EEG signals is needed. In this paper, we proposed a
novel quality assessment measure to assess the qualities of
the EEG signals. The idea of the proposed method was to
measure the irregularity that arises from the short time noisy
fluctuations of the EEG signals. Existing quality measures
for images can be classified into three categories [8], [9]:
full-reference, no-reference and reduced-reference, whereby a
complete reference, no reference, and partial reference were
available for the assessment. In our problem, the ground-truth
values of EEG quality were not available, hence, the proposed

2014 IEEE International Conference on Systems, Man, and Cybernetics 
October 5-8, 2014, San Diego, CA, USA

978-1-4799-3840-7/14/$31.00 ©2014 IEEE 1853



method was a no-reference or reduced reference approach. To
evaluate the quality of the EEG signals, a data set consisting
of three groups of EEG data collected using the gel-based
(two groups) and gel-less (one group) EEG electrodes were
used. Furthermore, we assume that the signal quality of the
EEG data acquired by the gel-based electrodes was better than
that acquired by the gel-less electrodes, as confirmed by the
impedances of the data of these two types of electrodes. This
assumption would be validated by the signal quality levels
assigned to the EEG signals acquired by the two types of
electrodes by our proposed signal quality assessment method.
The idea was motivated by the facts that the EEG signals
tend to fluctuate a lot due to the noisiness caused by the
high impedances between the electrodes and scalp. Hence, we
proposed to measure the signal quality of the EEG signals by
employing the statistics of the higher-order power amplitude
fluctuations at a particular frequency of the motor imagery
state with reference to background idling state.

II. PROPOSED METHOD

We now describe our proposed scheme for the quality
assessment of EEG signals based on statistics of signal
fluctuations (QS-EEG-SSF), which was illustrated in Fig. 1.
The proposed EEG signal quality assessment scheme consisted
of several components, as can be seen from Fig. 1: EEG
signal pre-processing, score generation and finally the score
mapping. These three components would be described in
further details in the followings.

1. EEG signal preprocessing (shown in the blue dashed box
in Fig. 1). Preprocessing the acquired EEG signals was firstly
performed before the score generation and mapping process.
Different frequency bands were studied to filter the EEG
signal, which were: mu (8-13Hz), low-beta (13-16Hz), middle-
beta (16-20Hz), high-beta (20-28Hz), wide-beta (16-28Hz)
and whole band (4-40Hz). The signal was firstly filtered at the
selected frequency band based on the butterworth filter of !th
order, where !=5 was selected in the experiments. Secondly,
removing the baseline (i.e., signals before onset of the cue)
was carried out to cancel out the baseline activities, the so-
obtained EEG signal was denoted as "!". The second-order
power amplitude of the EEG signal for channel # and class $
(denoted as %#(#, $)) was calculated by

%#(#, $) =
√

'2(#, $, () + '2(#, $, (+ 1) (1)

where '(#, $, () was given by

'(#, $, () = "!"(#, $, )((+ 1))− "!"(#, $, )(()) (2)

where $∈{1,2} denoted class 1 and 2. The sample index )(()
was given by )(()=(:*$−(!$−(), where !$ and ( were the
studied time lag and (th lag ((≤!$), respectively, !$=3 was
selected in the implementation; *$ was the signal length for
channel # and class $. In this way, )(1)=1:*$-2, )(2)=2:*$-1
and )(3)=3:*$.

2. Score generation (shown in the green dashed box in Fig. 1).
It was noted that our proposed method was block-based. After
obtaining the second-order power amplitude of the EEG signal,
i.e., %#(#, $), it was then divided into blocks. The total number

of blocks was given by !%=⌊(*$-(!$-1))/*"⌋, where *" was the
block length. The signal at ,(ℎ block (denoted as %#(#, $, ,, )))
was given by

%#(#, $, ,, )) = %#(#, $)()(,)) (3)

where the index of the block )(,) was given by )(,)=(, −
1)×*"+1:,×*". The score generation consisted of the following
steps.

∙ Calculated the maximum fluctuation of second-order
power amplitude of the EEG signal (denoted as .&)
for the ,(ℎ block of channel # and class $, which were
given by

.&(#, $, ,) = ∣/01(%#(#, $, ,))−/,!(%#(#, $, ,))∣
(4)

where /01(1) and /,!(1) gave the maximum and
minimum of elements in 1, respectively; ∣1∣ gave the
absolute value of 1.

Further, calculated the mean and variance of the
second-order power amplitude of the EEG signal for
the ,(ℎ block of channel # and class $ (denoted as
%'(#, $, ,) and 2"(#, $, ,)), which were given by

%'(#, $, ,) =
1

*"

(!∑

%=1

%#(#, $, )̃(,, 3)) (5)

2"(#, $, ,) =
1

*"

(!∑

%=1

(%#(#, $, )̃(,, 3))− %'(#, $, ,)))

(6)
where )̃(,, 3) denoted 3th index of sample index of
block ,.

∙ Normalization. .& and %' were then normalized by
the variance of the second-order power amplitude of
the EEG signal, which were given by

.̃&(#, $, ,) = .&(#, $, ,)/2"(#, $, ,) (7)
%̃'(#, $, ,) = %'(#, $, ,)/2"(#, $, ,) (8)

∙ Generated the quality assessment score (4)). The score
was finally generated by fusion of the changes of
the mean and fluctuation of the second-order power
amplitude of the EEG signal for the motor imagery
state with relative to the background idling state,
which was given by

4)(#) =
1

!%

*"∑

%=1

(51 ∗6'(#, 3) + 52 ∗6&(#, 3))

(9)
where

6'(#, 3) = ∣%̃'(#, 1, 3)− %̃'(#, 2, 3)∣ (10)
6&(#, 3) = ∣.̃&(#, 1, 3)− .̃&(#, 2, 3)∣ (11)

where 51 and 52 (51,52∈{0, 1}) were the weights
provided by the user for the fusion. In the experiments,
51=52=0.5 was used.

3. Score mapping (shown in the red dashed box of Fig. 1).
The generated quality assessment scores were mapped to
different quality levels for the convenience of assessment. For
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Fig. 1. A schematic illustration of the proposed quality assessment of EEG signals based on statistics of signal fluctuations (QS-EEG-SSF).

this purpose, the scores were firstly normalized based on the
minimum and maximum scores for all the training data, e.g.,
!̃!= ("!−"")

"#
, where !# and !$ denoted the minimum and

maximum of the quality scores, respectively. It should be noted
that the training data should contain the data that were both
of good quality (e.g., gel-based EEG data) and bad quality
(e.g., gel-less EEG data). The normalized quality scores were
subsequently mapped to different quality levels based on the
predefined quality levels (!%) to obtain the so-called “initially
mapped quality levels”, which was given by !#%=!̃!!%. The
initially mapped quality levels were post-clustered based on
Fuzzy-C means clustering [10], [11] to again group the quality
levels into two dominate clusters for the EEG signals of “good”
and “bad” qualities, based on the minimization of the following
objective function, which was given by

"# =
&!∑

'=1

(∑

)=1

##
') ∣∣$' − %) ∣∣2 (12)

where the fuzzy parameter & was a real number and &>1.
The default value of &=2 was used. % denoted the number of
clusters and (! denoted the number of data instances, i.e., the
initially mapped quality levels !#%; #') denoted the degree of
membership of $' belonged to cluster ); $' and *) denoted the
+th data of !#% and the )th cluster center; and ∣∣,∣∣2 denoted
the -2 norm. An iterative clustering process was carried out
with the membership #') being updated by

#') =
1

∑(
*=1 (

∣∣+$−,% ∣∣
∣∣+$−,&∣∣ )

2
"−1

(13)

The cluster center %) was given by

%) =

∑&!

'=1 #
#
') .$'∑&!

'=1 #
#
')

(14)

The iteration stopped when &/,') ∣#(-+1)
') − #(-)

') ∣≤ 0, where
0 was a termination criterion and 0<0<1, 2 was the iteration
step.

The outputs of the iterative clustering processing were the
two cluster centers (*!(+)), and variances of the two cluster

centers for all the channels (3,(+)), where +∈{1,2} denoted
the indexes of the clusters 1 and 2. Subsequently, the initially
mapped quality levels that fall into the two clusters were
further mapped to the final quality levels ($%). For example,
assume the number of quality levels, i.e., (+=5, one way to
determine the final quality levels was: $%={ *!(1)-3,(1), *!(1),
*!(2), *!(2)+3,(2), *!(2)+23,(2)}.

Once the final quality levels ($%(2), 2=1,2,...,(+) were
determined, the initially mapped quality levels ($', $'∈!#%)
were mapped to the nearest quality levels by

2̂ = argmin
-={1,2,...,&'}

∣$' − $%(2)∣ (15)

where ∣,∣ denotes the absolute value of ,. The pseudo codes
for mapping the initially mapped quality levels to the final
determined quality levels were detailed in Table I.

TABLE I. PSEUDO CODES FOR MAPPING THE INITIALLY MAPPED
QUALITY LEVELS TO THE FINAL DETERMINED QUALITY LEVELS

Inputs: initially mapped quality levels (+$, +$∈""(,'=1,2,...&!)
and the determined quality levels (+((-),-=1,2,...,&')
Outputs: the final quality levels (")()

Select quality level +((-̂) according to Eq. (15).
if +$<+((-̂)&(-̂ ∕=1)

")((')=+((-̂-1);
elseif +$<+((-̂)&(-̂=1)

")((')=+((1);
elseif +$>+((-̂)&(-̂ ∕=2)

")((')=+((-̂+1);
elseif +$>+((-̂)&(-̂=&')

")((')=+((&');
endif

III. EXPERIMENTAL RESULTS

The data set used in the experiments to validate the pro-
posed quality measure consisted of three data sets of 15 healthy
subjects performing the motor imagery of hand movements
(MI-HM) versus idle, namely DS1, DS2 and DS3. The EEG
data for a total of 6, 5 and 4 healthy subjects were collected for
the first, second and third experiments. It should be noted that
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the EEG data for the first and third data sets (DS1 and DS3)
were based on gel electrodes, and the second data sets (DS2)
were based on gel-less electrodes. The experimental protocol
consisted of: 1 s of preparation, which was shown as a fixation
at the center of the computer screen; 2 s of visual cue which
was shown as a virtual hand holding a peg (for MI-HM) or
a stop sign (for idle), 4 s of action time to perform motor
imagery of hand movements for MI-HM or do nothing for
idle; and 6 s of rest. In the experiments, the subjects were
instructed to perform motor imagery of hand movements by
holding the peg towards different directions following the peg
cue shown at the center of the computer screen; whereas a
still hand was shown for idle state to instruct the subject not
to do anything. One session consisted of two runs with each
run consisted of 40 trials of MI-HM and 40 trials of idle.
The EEG data were collected using Shanghai NCC model B
(for DS1 and DS2), and model C (for DS3) EEG system,
with the EEG cap consisting of 20 (and 32) channels. The
model was equipped with a bluetooth wireless amplifier and
the sampling rate was 256 Hz. The 16 EEG channels used in
the experiments were: F3, Fz, F4, FC3, FCz, FC4, T3, C3,
Cz, C4, T4, TP7, CP3, CPz, CP4 and TP8 for 20 channels
settings. While the 22 channels used in the experiments were:
Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, T6, Sp1, Sp2, Fz, Cz, Pz, Oz for 32 channels settings. The
locations of electrodes were consistent with the international
10-20 system for electrodes placements. In the experiments,
the impedances for the gel-data were between 5 KΩ to 30KΩ.
However, the impedances for the gel-less data at the frontal
electrodes (e.g., with little hair) were from 50 KΩ to 100 KΩ,
whereas the impedances for those electrodes lie in the middle
of brain (e.g., with thick hairs) were from 100 KΩ to 200KΩ.
Hence, there is a clear separation between the qualities of gel
and gel-less data. This served as the groundtruth or partial
information to validate the assessment scores and quality levels
generated using our proposed method.

The scatter plot of the initially generated quality assessment
scores using a wider beta frequency band for all the channels
and subjects were shown in Fig. 2. It can be observed from
Fig. 2(a)(b) that the initially generated quality assessment
scores had a good tendency to separate the “good” (DS1 or
DS3) versus the “poor” quality data (DS2), except for some
noisy channels. However, the scores for the two groups of
gel-based data appeared to be of similar quality, as can be
seen from Fig. 2(c). This was true considering the similar
impedances of the groups of gel-based data, and the much
higher impedances of the gel-less data compared with that of
gel-based data.

It is noted that the initially generated quality assessment
scores varied a lot for the EEG signals of different qualities, or
in other words, the ranges of the scores were too large. In order
to generate quality assessment levels based on the predefined
levels, these initially generated quality assessment scores were
normalized and mapped to obtain “initially mapped quality
levels”, which were plotted in Fig. 3. The results showed in
the figure further demonstrated that there was a clear separation
between the initially mapped quality levels between gel-based
data (DS1 and DS3) versus that of the gel-less data (DS2).
The variations were constrained at the predefined quality levels
after mapping.
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Fig. 2. Scatter plot of the initially generated quality assessment scores
for data set 1 (DS1) versus data set 2 (DS2) (a), data set 3 (DS3)
versus data set 2 (DS2), and data set 1 (DS1) versus data set 3 (DS3).

Finally, one quality score was generated for each subject by
mapping the median score of selected channels that contributed
mostly to the mental tasks. The final quality levels generated
for each subject using DS1, DS3 and DS2 were shown in
Table II. Note that the wider beta (16Hz to 28Hz) frequency
band was employed in the experiments. The results shown
in the table revealed that employing a wider beta frequency
band was effective in generating the quality levels based on
proposed method for the assessment of the qualities of EEG
signals, as confirmed by the quality levels which correlated
well with the overall impedances of the subjects. By closely
examining the quality levels for each individual channel, it was
found that overall 19.79%, 1.25% and 26.92% of 96 channels
for the 6 subjects of DS1, 52 channels for 4 subjects of DS3
and 80 channels of 5 subjects of DS2 produced a quality
level which was not consistent the quality level assigned for
the subject. This was not surprising since some channels
located in the frontal, occipital and temporal locations in the
brain can be quite noisy due to body movements and eye
blinkings/movements etc.

IV. CONCLUSION

In this paper, we investigated the novel problem of how to
assess the qualities of the EEG signals on the basis of the facts
that the quality of the non-invasive EEG signals was always
affected by the changes in contact impedances and the artifacts
from eye blinking, eye movements and other body movements.
To achieve this goal, we proposed a novel method to evaluate
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TABLE II. THE FINAL QUALITY SCORES/LEVELS ASSIGNED TO EACH SUBJECT FOR THE THREE DATA SETS.

Quality scores/levels generated (using all trials and beta (16-28 Hz) frequency band)
Data sets Electrodes type Subj. quality assessment initially mapped finally assigned impedance ranges

(gel/gel-less) scores (median) quality levels quality levels (KΩ)
S1 0.4922 0.5378 1 <30
S2 1.7706 1.8824 1 <30
S3 1.6423 1.7401 2 <30

DS1 gel S4 1.9564 1.9765 2 <30
S5 1.5233 1.6430 2 <30
S6 1.6681 1.6770 2 <30
F1 0.2243 0.1745 1 <30
F2 0.8792 0.9204 1 <30

DS3 gel F3 0.5244 0.5193 1 <30
F4 0.8529 1.0555 1 <30
G1 5.3857 4.6820 4 >50
G2 2.7384 3.1098 4 >50

DS2 gel-less G3 3.6807 3.3539 4 >50
G4 2.3235 2.4308 4 >50
G5 2.9392 3.1128 4 >50

Note: quality levels: 1-very good, 2-good, 3-moderate good, 4-moderate bad, 5-bad, and above 5-very bad.
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Fig. 3. Plot of the initially mapped quality levels for (a) DS1 vs.
DS2 and (b) DS3 vs. DS2. Clear separation between gel-less data
(DS2) with gel data (DS1 and DS3) can be observed except some
noisy channels.

the signal quality of EEG signals based on the measurements
of the irregularity of the block-based, second-order fluctuation
of the power amplitudes of the EEG signals. The obtained
quality assessment scores were eventually mapped to different
quality levels based on fuzzy c-means clustering and dynamic
mapping. Experimental results were conducted on three data
sets (one data set was based on gel-less electrodes and another
two were based on gel electrodes) consisting of 15 subjects

performing motor imagery of hand movements and idle. The
obtained quality assessment scores and the mapped quality
levels demonstrated that the proposed method was capable
of evaluating the quality of the EEG signals, based on the
EEG signals filtered at a wider beta frequency bands. The
separation of the quality scores and quality levels between the
gel-based and that of gel-less electrodes correlated well with
the impedances of data acquired by the two types of electrodes.
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