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Abstract—The non-stationarity inherent across sessions
recorded on different days poses a major challenge for practical
electroencephalography (EEG)-based Brain Computer Interface
(BCI) systems. To address this issue, the computational model
trained using the training data needs to adapt to the data from
the test sessions. In this paper, we propose a novel approach
to compute the variations between labelled training data and
a batch of unlabelled test data based on the geodesic-distance
of the discriminative subspaces of EEG data on the Grassmann
manifold. Subsequently, spatial filters can be updated and fea-
tures that are invariant against such variations can be obtained
using a subset of training data that is closer to the test data.
Experimental results show that the proposed adaptation method
yielded improvements in classification performance.

I. INTRODUCTION

BCI-based rehabilitation systems help patients perform
certain movements to restore their motor functions by detecting
motor imagery EEG signals. Such rehabilitation systems, inde-
pendent of voluntary muscle control, is an important alternative
to labor-intensive and expensive traditional physical therapy
[1].

Non-stationarity is one of the biggest issues that BCI-based
rehabilitation system faces. EEG patterns generated by BCI
users or patients could vary drastically due to task-unrelated
mental conditions and different experiment setups [2], [3].
Such big variations in the data can cause inaccuracies in the
computation model in detecting EEG signals. The variation can
be addressed if the computational model is calibrated for every
session. However, the calibration procedure is tedious and
time-consuming. For practical uses, especially for patients who
need continuous rehabilitation, there is little time to calibrate
the model for every rehabilitation session. In other words, only
the computation model that is obtained from the calibration
session is available for all the following rehabilitation sessions
[1].

EEG signals are often modelled as linear mixtures of inde-
pendent sources, and the spatial filter design has been widely
used to recover the ERD/ERS relevant sources [4]. Common
Spatial Pattern (CSP) is one of the most successful spatial filter
design methods in discriminating two classes of motor imagery
EEG [5], [6]. Since CSP is a supervised learning method that
is based on averaged powers of the EEG signals of different
classes, it is sensitive to inaccurate estimates of the covariance
matrices. Its generalization performance deteriorates due to the
variation of the covariance matrices across sessions.

Efforts have been made to adapt the detection model
to address the variations across sessions. Among a number
of adaptation models, one category considered the shifts in
the CSP feature space [2], [7], [8]. Studies in [2] showed
that the two-class motor imagery EEG classification accuracy
could increase significantly by using simple bias adaptation of
the classifier in the CSP feature space. Another category of
adaptation methods investigates the feature extraction model.
Since the solution of the spatial filter in CSP is based on
the joint diagonalization of the average covariance matrices
of the two classes, variations of covariance matrices of EEG
data across sessions have been taken into consideration by
incorporating data from test sessions to update the feature
extraction model [9], [10].

The spatial filter design is equivalent to dimension reduc-
tion that seeks the subspaces where the differences between
two classes are maximized. However, due to cross-session
non-stationarity, the discriminative subspaces vary from the
training data to the test data. There exist a number of studies
on learning algorithms that are robust to the mismatch between
training data and test data, which is deemed as the domain
adaptation problem [11], [12], [13]. From the perspective of
domain adaptation, adaptive approaches that seek data space
adaptation have been applied to BCI. In [14], a linear mapping
matrix is estimated to project the test data space to the training
data space. With this space adaptation, spatial filter obtained
from the training data could be more effective for the projected
test data. Similarly, another studied paradigm assumes that
there is a domain-invariant subspace, where the classifier
trained by training data could be equally effective for test
data. In [15], this domain-invariant subspace is assumed to be
the whitened subspace, where the whitened source and target
domains have the same (or similar) marginal distributions, and
the posterior distributions of the labels are the same across
domains too. Therefore, the whitening part in the spatial filter
is updated based on test data, which is equivalent to projecting
both training data and test data to the whitened space, and this
adaptation method is referred to as a normalization approach.

As pointed in [15], this domain-invariant assumption on
the whitened space holds only when the linear transformation
between the two domains is symmetric. The space adaptation
problem for the asymmetric transformation case has not been
addressed sufficiently. To enable the domain adaptation for
this more general case, how the source domain (training data)
and target domain (test data) are related to each other needs

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE ����



to be investigated. In this work, we construct a distance
map of the discriminative subspaces between training data
and the test data. Based on this map, most desirable trials
to facilitate adaptation are exploited, which are noted as
landmarks [12]. In particular, landmarks are defined as a subset
of labelled instances/trials from the source domain. These
trials are distributed similarly to the target domain. Thus,
they are expected to function as a conduit connecting the
source and target domains to facilitate adaptation. For the map
construction, there exist many measurements to evaluate the
distances between EEG trials, ranging from KL-divergence to
distance in the CSP feature space. In this work, we adopt
the geodisc-distance on a Grassmann manifold. Geodesic flow
on a Grassmann manifold has been widely used in domain
adaptation problems [16]. For instance, geodesic flow is used
to capture the changing of low-dimensional subspaces from
the source domain to the target domain for visual data [12],
[13], [17], [18].

To this end, we develop an adaptation method by selecting
the connection trials from the training data that are closer to the
test data based on the geodisc-distance on a Grassmann man-
ifold. The performance of the proposed adaptation method is
evaluated on a recorded data set from 16 subjects in performing
motor imagery tasks on different days. Experimental results
show the effectiveness of the proposed method. Moreover,
we discuss the relationship between the variation of features
and the discriminative subspaces of the covariance matrices,
and investigate the shift of the discriminative subspaces on
Grassmann manifold.

This paper is organized as follows. In Section II, prelim-
inaries on spatial filter design and adaptation are presented.
In Section III, an investigation of the relationship between the
variation of features and the discriminative subspaces of the
covariance matrices is given, followed by the introduction of
the proposed adaptation method. In Section IV, the validity
of the proposed method is verified by experimental studies
on two-class motor imagery classification. Concluding remarks
are given in Section V.

II. PROBLEM FORMULATION

A. Preliminaries: Common Spatial Pattern Analysis

CSP is introduced here to make this work self-contained.
CSP filters will maximize the variance of the spatially filtered
signal under one condition while minimizing it for the other
condition [5], [6], [4].

Let !(+) ∈ ℝ!×! and !(−) ∈ ℝ!×! be the estimates of
the covariance matrices of the band-pass filtered EEG signal
in two conditions (+) and (−), i.e.,

!(+/−) =
1

∣$(+/−)∣
∑

#∈$(+/−)

!#

=
1

∣$(+/−)∣
∑

#∈$(+/−)

"#("#)$

trace["#("#)$ ]
(1)

where # is the number of EEG channels, "# is the data
matrix of a short segment of the band-pass filtered EEG signal
for trial $, and $(+/−) is trial set from different classes. The

above expression gives a pooled estimate of covariance in each
condition because each " is centred and scaled. Let

! = !(+) +!(−) (2)

Then, CSP analysis is given by the simultaneous diagonal-
ization of these two covariance matrices by using the whitening
matrix % :

& = (%$')$ (3)

where ' are the eigenvectors of the following whitened
covariance matrices

((+/−) = %!(+/−)%$

= 'Λ(+/−)'$ (4)

Λ(+) and Λ(−) are the diagonal matrices containing eigen-
values of ((+) and ((−), respectively. The significance of this
transformation lies in the fact that Λ(+) + Λ(−) = ) . Let w%
be the *-th row of & and +(+/−)% is the *-th element of the
diagonal elements of Λ(+/−). Given that +(+)

% + +(−)% = 1,
if w% yields signals of class (+) with high variances, signals
of class (-) would have low variances in the surrogate space,
and vice versa. Therefore, if we pick w% corresponding to the
largest and the smallest +(+/−)% , we can extract features of
variance that keep the strongest discriminative information.

B. Spatial Filter Adaptation Based on Normalization

In order to address the non-stationarity of EEG data from
different sessions, let !&' be the average covariance matrix of
the training data and !&( be that of test data as computed in
(2). Assuming that the prior probability of the two classes are
equal, !&'/&( can be obtained as

!&'/&( =
1

∣$&'/&(∣
∑

#∈$"#/"$

!# (5)

where $&'/&( denotes the training/test set. Given the composi-
tion of & as in (3), we denote the projection matrix obtained
based on the training set as

&&' = (%$&''&')
$ (6)

where %&' and '&' are the whitening part and the orthogonal
part based on the training set, respectively. In [15], it has
been established that the projection matrix can be adapted by
replacing the whitening part %&' = !

− 1
2

&' with %&( = !
− 1

2
&( so

that the updated projection matrix becomes

&&( = (%$&('&')
$

= %&(%
−1
&' &&'

= !
− 1

2
&( !

1
2
&'&&' (7)

where &&( denotes the adapted projection matrix. The adap-
tation in (7) is usually referred to as normalization based
adaptation. By only updating the whitening part, the orthogonal
part '&' in &&' is maintained. It is also pointed out in [15]
that the orthogonal part '&' is kept constant across sessions if
and only if

"&( = ,!
− 1

2
&' "&' (8)
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where ! is an arbitrary symmetric positive definite matrix,
and "!" and "!# correspond to EEG data of test session and
training session, respectively. The reason for adapting # by
normalization lies in the fact that the estimation of $!# can be
assessed without the labels of the data of the test session.

III. SPATIAL FILTER ADAPTATION

A. Spatial Filter as Discriminative Subspace
Given # in (3), the variance feature can be rewritten as

Λ$ = #"$("$)%#%

= (%%&)%"$("$)%%%&

= &%%"$("$)%%%& (9)

Define

'$ = %"$("$)%% (10)

Apply eigenvalue decomposition to '$ so that

'$ = & $( $& $
% (11)

where & $ is a matrix containing the eigenvectors of '$ as
columns, and ( $ is a diagonal matrix containing the eigenval-
ues of '$ as diagonal elements. Thus, the variance matrix after
projection can be rewritten as

Λ$ = &%& $( $& $
%
& (12)

Let )!",' be the *-th column of &!" and )$( be the +-th column
of & $, and the *-th feature of trial , using #!" in (6) can be
written as

- $' =
)∑

(

.()
%
!",')

$
()
$
(
%
)!",' (13)

Suppose trial , belongs to class (+). Let /(+)
' be the mean of

the *-th feature of class (+)

/(+)
' =

)∑

(

0()
%
!",')!",(

= 0')
%
!",')!",')

%
!",')!",' (14)

The distance between - $' and /(+)
' is

- $' − /
(+)
' = )%!",'(0')!",')

%
!",' −

)∑

(

.()
$
()
$
(
%
))!",' (15)

After the whitening, the range of eigenvalues 0' and .( , + =
1, ...,3, should be between 0 and 1, and subsequently the
differences between 0' and .( , + = 1, ...,3, should be very
small, which means

- $' − /
(+)
' ≈ )%!",'(

)∑

(

.(()
$
( + )!",')()

$
( − )!",')% ))!",'

∝
)∑

(

.( < )!",', )
$
( > (16)

From (16), we can see that the non-stationarity of features
is related to the non-stationrity of & . To be specific, the
larger the angle between )0,' and )$( , + = 1, ...,3, the larger
the variance of the feature distribution. For test data from a

different session, & $ could be very different from &!" which
means that the adaptation of only the whitening part % is not
enough. Based on this motivation, the objective of this paper
is to find a systematic attempt to update the orthogonal part
& in the projection matrix # so that the angle between the
updated & and the & $, , ∈ %!", becomes smaller.

B. Spatial Filter Adaptation based on Connection Trials

In this section, we aim to develop a new spatial filtering
adaptation method by investigating the orthogonal part & . As
shown by (11), & $ is the matrix containing eigenvectors of
'$, the covariance matrix of trial , after whitening. Only a
few of major components of & $ are enough to capture the
discriminative information of '$, which is similar to principal
component analysis (PCA). We denote & $* as the discriminative
subspace of trial ,, which contains the first 6 eigenvectors of
'$. As we have established that the change of the discrim-
inative subspace & $* leads to the increased feature distances,
we employ the geodesic-distance on Grassmann manifold to
quantify the distance between discriminative subspaces of trials
from different sessions. For convenience, we will follow the
conventional notations and definitions in the area of statistical
analysis on Grassmann Manifold [16].

A Grassmann manifold is the set of all 6-dimensional
subspaces of ℝ+, which is denoted by &+,* [16]. A Lie group
is a differentiable manifold with a group structure. '7(8)
is the Lie group of 8 × 8 real-valued rotation matrices, i.e.,
orthogonal matrices with determinant as 1. For any two points
70, 71 ∈ '7(8), one can define a distance between them as
the infinitum of the lengths of all smooth paths on '7(8)
which start at 70 and end at 71. A path which achieves
the minimum, if it exists, is a geodesic between 70 and
71 on '7(8). It is well know that the geodesic paths on
'7(8) are given by one-parameter exponential flows, i.e.,
Ψ(9) = : exp(9;)< , where : ∈ '7(8) such that :%70 = <
and

< =

(
=*

0+−*,*

)
(17)

The skew-symmetric matrix ; is further restricted to be the
form

; =

(
0 >
−> 0

)
, > ∈ ℝ(+−*)×* (18)

Given the geodesic flow from the 6-dimensional subspaces
& $* to & (* on Grassmann manifold as exp(9;) in the form of
(18), the geodesic-distance between these two 6-dimensional
subspaces can be formed as

6(,, +) = ∣ exp−1,! &( ∣
2

= trace(;;% ) (19)

Based on the geodesic-distance in (19), we can calculate the
geodesic-distance map across all available trials, including
training set %0 and test set %1. Our objective is to learn the
updated projection matrix # = %& , where the orthogonal
part & is closer to that of the test set. More importantly,
this learning process needs to be performed without the test
labels. To address the problem of semi-supervised learning, we
combine our proposed geodesic-distance map with the covari-
ance adaptation methods used in [9], [10]. In particular, first
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we apply the normalization procedure to obtain the whitened
covariance matrices !!, # ∈ {#"# ∪ #"$} with the updated
whitening matrix $ . Based on the geodesic-distance map of
% !%, we select those training trials closer to the test set to form
a new training set #∗ to perform CSP. With % !%, # ∈ {#∗}
closer to % !%, # ∈ {#"$}, the orthogonal part % in the updated
projection matrix & would be closer to the discriminative
subspaces of the test set. Similarly, we select those test trials
closer to the training set and add them into the new training
set because the predicted labels of the test trials with smaller
geodesic distances to the training set are more reliable. In this
way, the distance between the test features and the average
features of the same class could be reduced, which means
reduced within-class dissimilarities. The proposed method is
summarized in Algorithm 1.

Algorithm 1: Update training trials based on geodesic-
distance map

Input: Training set #"# and adaptation data #"$;
Output: Updated training set #∗.
begin

Initiate #∗ = {#"# ∪ #"$};
Calculate the average covariance matrix ' as

'∗ =
1

∣#∗∣
∑

!∈#∗
'!

Calculate the average covariance matrix
$ ∗ = ('∗)−

1
2

Calculate the subspaces %% for both training data
and adaptation data;
Compute the geodesic-distance squares map (
across all available trials;
for ) = 1 : *"# do

for # = 1 : *"$ do

((#, )) = ∣ exp−1&!,# %%,( ∣
2 (20)

end
end
Compute the geodesic-distance cost for training set
as

+!∣!∈#$% =
∑

!∈#$%

∣ exp−1&!,# %%,( ∣
2

Sort all the training trials in an ascending order of
geodesic-distance cost function and select first
,"#∣#"#∣ trials;
Compute the geodesic-distance cost for test set as

+( ∣(∈#$& =
∑

!∈#$&

∣ exp−1&!,# %%,( ∣
2

Sort all the adaptation trials in an ascending order
of geodesic-distance cost function and select first
,"$∣#"$∣ trials;
Combine the selected training trials and adaptation
trials as the updated training set #∗.

end

After we perform the trial selection based on Algorithm 1,
we apply CSP on the updated training set #∗, where ∣#∗∣ =

,"#∣#"#∣ + ,"$∣#"$∣ and ,"#/"$ is the the percentage of the
training/test set used. The discussion of choosing ,"#/"$ can
be found in Section IV.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

EEGs from the full 27 channels were obtained using
Nuamps EEG acquisition hardware with unipolar Ag/AgCl
electrodes channels. The sampling rate was 250 Hz with a
resolution of 22 bits for the voltage range of ± 130 mV. A
bandpass filter of 0.05 to 40 Hz was set in the acquisition
hardware.

In the experiment, the training and test sessions were
recorded on different days with the subjects performing motor
imagery. During the EEG recording process, the subjects were
asked to avoid physical movement and eye blinking. Addi-
tionally, they were instructed to perform kinaesthetic motor
imagery of the chosen hand in two runs. During the rest state,
they did mental counting to make the resting EEG signal more
consistent. Each run lasted for approximately 16 minutes and
comprised 40 trials of motor imagery and 40 trials of rest state.
Each training session consisted of 2 runs while the test session
consisted of 2-3 runs. Details of the experimental setup can be
found in [19].

B. Data Processing and Feature Extraction

First, we train a CSP model and the Naive Bayesian Parzen
Window (NBPW) classifier with the training data as in [20],
[21]. Then, as described in Section III, with the predicted
labels of a batch of the test data from the new session,
the training set is updated as in Algorithm 1 and projection
matrix & is adapted by using the updated training set #∗.
Finally, the updated projection matrix and classifier are used
to classify new test data. For convenience of presentation,
we refer the batch of test data used to update the training
set as the adaptation batch and the rest of test data as the
evaluation batch. In this work, we use first 1/5 of the test data
as adaptation batch and the remaining 4/5 as the evaluation
batch.

C. Geodesic Flow of Discriminative Subspace

To illustrate the necessity of adapting the orthogonal part
% , Figure 1 shows the change of discriminative subspace %
across sessions. To visualize the discriminative subspace, we
select only 3 channels, C3, Cz, and C4, which have been
known as the 3 most discriminative channels for motor imagery
EEG classification. Then, we calculate the whitening matrix
$"#, %"# and %"$. By listing the diagonal elements of Λ(+)

in a descending order, the first column, -1"#/"$, and the last
column, -3"#/"$, of %"#/"$ correspond to the subspaces where
the variance of the EEG signals of class (+) is maximized
and minimized, respectively. Moreover, we calculate the two
geodesic flows .% = exp−1

*!$&
-%"$, / = {1, 3}, and visualize

the two flows from training subspace to the test subspace
Ψ(0) = exp(0.%)∣"=0,0.1,0.2,...,1, / = {1, 3}. In Figure 1,
the two subspaces -1"#/"$ and -3"#/"$ are presented by circle
and triangles, respectively. The subspaces for training and
test sets are represented by red and blue, respectively. The
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TABLE I. SESSION-TO-SESSION TRANSFER TEST RESULTS (%)

Subject Baseline !0 !1 GDA
1 64.06 0.70 1.00 68.23
2 49.48 0.70 0.00 55.20
3 57.81 0.70 0.30 59.89
4 73.43 0.70 0.30 81.25
5 66.41 0.90 0.30 68.29
6 63.02 0.70 1.00 65.10
7 70.31 0.80 0.00 76.56
8 96.88 0.80 1.00 97.39
9 68.75 0.80 0.70 76.04
10 58.33 0.80 0.50 61.45
11 48.43 0.50 0.00 53.64
12 77.08 0.70 0.00 80.20
13 50.00 0.60 0.00 54.17
14 75.52 0.70 0.00 76.04
15 64.58 0.70 0.30 65.63
16 73.95 0.80 1.00 75.52

mean 66.11 - - 69.66

geodesic flows Ψ(!) = exp(!"")∣#=0,0.1,0.2,...,1, $ = {1, 3},
are shown by the intermediate colors. As shown in Figure
1, the direction of the two subspaces of training set and test
set vary to a certain extent, which will induce the shift of
the test features if applying the projection matrix % with &0

maintained. Moreover, by spanning the parameter ! from 0 to 1,
subspaces parameterized by "", $ = {1, 3} between subspaces
of training set and test set are found. It can be shown that by
using geodesic distance as a measure of the distance between
trials, we can select those training trials with subspaces closer
to that of the test set.
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Fig. 1. The change of discriminative subspace ! across sessions

D. Classification Results

Table I summarizes the best results of the proposed adap-
tation method compared with CSP without any adaptation
as the baseline, where the proposed method is referred to
as geodesic-distance-based adaptation (GDA) method. The
parameters used to obtain the best results for different subjects
are also included. Note that all classification accuracies are
based on the evaluation batch. As shown in Table I, the best
choice of '#& is around 0.70 while '#' varies across subjects.
Interestingly, for subjects 2, 7, 11, 12, 13 and 14, '#' = 0 yields
the best classification results, which means no adaptation data

is needed but only a subset of training data for generating
a better result. Since this work is a preliminary study of
the adaptation based on the geodesic flow, we will focus on
optimizing these two parameters in our further studies.

The changes in the feature distribution between sessions
are illustrated in Figure 2. Feature distribution based on the
projection matrix without adaptation (%0) and with adaptation
(%(')) are plotted respectively in subfigures (a) and (b). The
2D CSP features corresponding to the first and last spatial
filters in the projection matrix are denoted as )1 and )2,
respectively, while that corresponding to the second and last
second spatial filters are denoted as )3 and )4, respectively.
Features of the adaptation batch are plotted in the left two
figures while that of the evaluation batch plotted in the right
two figures. Acc* and Acc' correspond to accuracies of the
adaptation batch and evaluation batch, respectively. In the
left two figures with adaptation batch features, the NBPW
classifier with different probability scales are presented, while
in the right two figures with evaluation batch features only the
classification boundaries are presented for the convenience of
observation. Comparing the feature distributions and NBPW,
we observe that without any adaptation, more test features fall
in one side of the classifier, while with adaptation the new
classification boundary is across the test features in a more
balanced manner.

V. CONCLUSION

For practical BCI based rehabilitation systems, training
data from calibration session is often very limited. A computa-
tional model obtained from calibration session is usually used
to classify EEG data recorded on different day, but variation
between sessions often results in the poor performance of
the computational model. By computing the geodesic-distance
between the discriminative subspaces of training data and
test data, a subset of training data and adaptation data is
selected to construct a new projection matrix. In this study,
the shift of the discriminative subspace across sessions is
investigated. The results show that by using training trials that
are closer to test trials the adapted spatial filters can generate
more discriminative test features. In our future work, we will
improve the adaptation method by optimizing the parameters
automatically and implementing it in a sequential mode.
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