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Abstract— Sleep has been shown to be imperative for the
health and well-being of an individual. To design intelligent
sleep management tools, such as the music-induce sleep-aid
device, automatic detection of sleep onset is critical. In this
work, we propose a simple yet accurate method for sleep
onset prediction, which merely relies on Electroencephalogram
(EEG) signal acquired from a single frontal electrode in a
wireless headband. The proposed method first extracts energy
power ratio of theta (4-8Hz) and alpha (8-12Hz) bands along
a 3-second shifting window, then calculates the slow wave of
each frequency band along the time domain. The resulting
slow waves are then fed to a rule-based engine for sleep
onset detection. To evaluate the effectiveness of the approach,
polysomnographic (PSG) and headband EEG signals were
obtained from 20 healthy adults, each of which underwent 2
sessions of sleep events. In total, data from 40 sleep events
were collected. Each recording was then analyzed offline by
a PSG technologist via visual observation of PSG waveforms,
who annotated sleep stages N1 and N2 by using the American
Academy of Sleep Medicine (AASM) scoring rules. Using this as
the gold standard, our approach achieved a 87.5% accuracy for
sleep onset detection. The result is better or at least comparable
to the other state of the art methods which use either multi-
or single- channel based data. The approach has laid down the
foundations for our future work on developing intelligent sleep
aid devices.

I. INTRODUCTION

Studies have shown that soothing music can help improve
the quality of sleep in different age groups [1], [2], [3].
However, if music is left playing after the onset of sleep,
it may interfere with sleep by increasing the probability of
arousal. An ideal sleep aid tool, e.g. a music-induced sleep-
aid device, should be able to stop playing the music when
sleep onset has been detected automatically.

Sleep onset is a complex process, which can be identified
by several kinds of markers: behavioral features such as de-
crease of attention; physiological features such as changes in
electrical resistance and temperature of skin; and changes in
Electroencephalogram (EEG) [4]. Traditionally, sleep moni-
toring have been only conducted in professional sleep labs,
using polysomnographic (PSG) equipments recording EEG,
electrooculograms (EOG) and elecromyograms (EMGs); and
a trained specialist who manually annotates the sleep stage
according to the American Academy of Sleep Medicine
(AASM) scoring [13]. The high cost of PSG setup and
trained experts have restricted the applications of sleep
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research. The advancement of light weight EEG sensors, as
well as automatic sleep scoring / staging systems, have made
home-based sleep monitoring possible.

Various approaches have been reported on automatic sleep
staging based on single EEG channel data. Huang et. al. [14]
detects the arousal states of human using mean frequencies
of a single EEG for autoregressive Hidden Markov Models
(HMM), the approach achieves a wake-drowsiness detection
rate of 70%. Novak et. al [15] employed the use of more fea-
tures, including spectral entropy, autoregressive parameters,
and complexity stochastic measure to build a HMM model
for sleep staging. This approach works for predicting sleep
stage N3 and N4 but it was not able to distinguish well
among wake-N1-N2 stages. Rossow et. al. [16] described
an approach using a single-channel EEG modeling by use
of kalman filter and HMM, and the agreement rate in the
testing set was reported to be 60.14%. Griessenberger et.
al evaluated the sleep staging accuracy of a home sleep
scoring system and discovered that the system showed a big
deviance from the standard measure, especially in the wake-
N1 transition stage. It concludes that reliable home based
sleep scoring systems are still awaited [20]. Flexer et. al.
[21] proposed a Gaussian Observation HMM to detect sleep
stages, and achieved a accuracy of 86% for wake but only
22% for stage N1.

Unlike most sleep staging systems which analyze the
recordings of whole night’s sleep data and categorize epochs
into five stages (including N1-4, REM), the objective of
this study focuses on detecting the transition between wake
and (N1-N2), which can provide a control mechanism for
applications such as sleep aid devices.

Spectral analysis has been applied on EEG data during
wake-sleep transition by several studies. Germain et. al. [12]
reported that during the sleep onset power decreased in
all frequency bands except delta (0-4Hz), and the decrease
was observed most significantly in the frontal area of the
brain. Tichy et al [18] found that during good concentration
and attention the dominant power was in alpha band (8-
12Hz), and that during micro sleep, the prominent peak was
shifted to lower frequencies to the delta band. Although
many features can be extracted from EEG signals for sleep
staging, some show little correlation with sleep onset, some
are redundant; some require high order computational power,
the latter of which is inapplicable to real-time processing.

In this study, we propose a simple rule-based approach for
sleep onset prediction, which is based on the trend detection
of alpha and theta slow waves. This approach has minimum
computational cost, yet displays high accuracy. We describe
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the method and experiment results in the following sessions.

II. METHOD

A. Data Acquisition and Annotation

Polysomnographic (PSG) and wireless headband EEG data
were obtained from 20 healthy male adults ranging from 20
to 45 years of age (mean=29.7±7.5 year) after obtaining the
approval from a local Institutional Review Board (National
University of Singapore). The subjects have signed informed
consent forms for the experiments, which were conducted
in the afternoon at the sleep laboratory of the Institute for
Infocomm Research, Singapore. All subjects had at least 7
hours of sleep the night before the experiment and did not
consume any alcoholic or caffeinated drinks on the day of
experiment. Also no medications were used to induce sleep.
Each subject underwent 2 sleep sessions on 2 different days.
40 sessions of sleep data were collected. The recordings
were then analyzed offline by a PSG technologist via visual
observation of PSG waveforms, and sleep stages N1 and N2
were annotated by using the AASM scoring rules based on
30 second (30s) epoch. The time labels of N1 and N2 are
used as the gold standard to evaluate our algorithm.

B. Processing of EEG data

The sample rate of headband EEG signals used in this
study is 256 samples/second. The continuous data is first
processed with a notch filter followed by a Butterworth band
pass filter with a cutoff frequency of 0.3-64Hz. The filters
normalize the EEG data with zero-mean and remove motion
artifacts which resulted from the occasionally poor contact
of EEG electrodes.

Temporal shifting windows of 3s with 50% overlap are
used to compare consecutive temporal segments, which rep-
resent data of current instant of time under analysis, with
relation to its past and future data. The spectral features are
extracted along the 3s shifting window using fast Fourier
transformation (FFT). It is known that EEG properties, par-
ticularly amplitude, vary among different subjects [10]. We
calculate the energy power ratio instead of absolute energy
power in order to produce robust and subject-independent
quantity measurement of the spectrum power.

The total power spectrum is calculated by summing up the
power spectrum among the cutoff frequency bands:

Ptotal =
Fmax
∑

f=Fmin

P (f) (1)

where P (f) is the power of frequency f . The power ratio
for each frequency band is defined as:

PR(f) =

∑fhigh

f=flow
P (f)

Ptotal
(2)

where flow and fhigh indicate the ranges of the respective
spectral power band. Association of various spectral bands
with the sleep stage have been analyzed ; to simplify the
sleep onset detection rule we are only interested in the Alpha

band (PRα, flow=8Hz, fhigh=12Hz) and the Theta band
(PRθ, flow=4Hz, fhigh=8Hz).

In order to obtain a reliable trend of changes in a par-
ticular spectrum band, a carefully designed 4th-order type
II Chebyshev filter is applied to the power ratio data along
the shifting 3s windows. The Chebychev filter requires less
computational load as it obtains a steeper roll-off than other
filters, such as a Butterworth filter of the same order. It has
the property that minimizes the error between the idealized
and the actual filter characteristic over the range of the filter,
yielding a smoother response in the passband [11], which is
preferred for our approach. The slow waves are noted as Sα

and Sθ, respectively. Figure 1 illustrates the proposed EEG
signal processing approach for sleep onset detection.

Fig. 1. Flowchart of proposed approach

C. Rule-based Sleep Onset Detection

Slow waves which resulted from the above process, noted
as Sα and Sθ, are then send to a rule-based engine for
sleep onset prediction. The engine examines whether the
energy ratio difference Sθ − Sα is persistently higher than
a certain threshold V for a particular duration of time λ.
If so, the sleep onset is detected, otherwise it carries on
searching for next time point. The thresholds, V and λ are
critical parameters for the prediction performance. We search
for optimal V and λ by defining the following objective
function:

min
n
∑

j=1

∥tjpred − (N j
1
+N j

2
)/2)∥2

s.t. Sign(Sj
θ − Sj

α −V) ∗H(tjpred − λ) > 0

where n is the number of sleep sessions and the sign function
is defined as:

Sign(x) =

⎧

⎨

⎩

1 for x > 0
0 for x = 0
−1 for x < 0

and the step function:

H(x) =

{

1 for x > 0
0 for x ≤ 0

The search algorithm is illustrated in following pseudocode:
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Data: Si
θ(t), S

i
α(t), N

i
1, N

i
2, i = 1, 2, ...n

Result: V,λ
Err0←∞ ;
for λj in (λmin : λmax) do

for Vk in (Vmin : Vmax) do
for i in (1 : n) do

f1 = Sign(Si
θ(t)− Si

α(t)− Vk) ;
f2 = H(t− λj) ;
tipred = argmin

t
(f1 ∗ f2) > 0;

end
err =

∑n
i=1
∥tipred − (N i

1 +N i
2)/2)∥

2;
if err < Err0 then

V = Vk ;
λ = λj ;
Err0 = err ;

end
end

end
return V,λ;

Algorithm 1: Grid Search for optimal V and λ

D. Analysis method

To evaluate the proposed method, we use the N1 and
N2 timings marked by PSG technologist to formulate the
durations of real sleep onset. The correct detection of sleep
onset should fall in the range between N1 and N2. How-
ever, when taking into consideration the inter-expert rating
variability [9] and the inter-subject variability, we extend a 1
epoch (30s) buffer on both sides. In this paper, we define the
true prediction of a session as epochN1 − 1 < epochpred <
epochN2 + 1. Finally, accuracy is defined as the number of
sessions with correctly predicted sleep onset divided by total
experiment sessions.

III. EXPERIMENT AND RESULT

A. Experiment Data Annotated by Sleep Expert

Table I lists the sleep stages N1 and N2 annotated offline
by PSG technologist according to ASSM rules, based on
visual observation of PSG signals.

In the sleep experiment we conducted, the set up of PSG
electrodes took around 40 minutes. Such a duration of setup
time, along with the complexity of physical set up, may
have induced sleepiness. Consequently, all subjects fell sleep
within 20 minutes after lying down. The time in table I is
noted in [mm]:[ss] format, e.g., 03:20 stands for 3 minutes
20 seconds from the point where data acquisition started. On
average, it took 03:18 for a subject to transit to sleep stage
N1, and 06:02 to start N2, starting from the time when data
acquisition started. The mean transition time from N1 to N2
was 02:44.

B. EEG Signal Processing for Sleep Onset Prediction

Figure 2 illustrates the overall procedure of the proposed
method. 2.(a) shows a fragment of raw EEG signal; (b) repre-
sents the corresponding EEG signal that has been cleaned by

TABLE I

TIME OF SLEEP STAGE N1 & N2 ANNOTATED MANUALLY

Session N1 N2 Session N1 N2
1 09:06 14:10 21 01:36 02:36
2 11:34 15:08 22 01:39 03:00
3 01:43 04:01 23 00:36 02:00
4 02:32 05:00 24 01:03 02:32
5 01:42 02:30 25 02:05 03:06
6 01:41 02:04 26 02:00 02:39
7 11:07 18:03 27 03:00 04:30
8 10:01 14:07 28 03:42 06:00
9 04:41 08:37 29 05:37 10:01
10 02:30 04:36 30 00:34 03:30
11 02:03 05:01 31 02:35 06:38
12 05:00 07:36 32 03:03 07:32
13 03:11 10:30 33 02:32 03:37
14 00:30 02:31 34 04:13 04:34
15 01:31 11:05 35 01:39 03:30
16 01:05 03:34 36 00:34 04:00
17 00:31 01:07 37 01:33 05:09
18 01:30 05:07 38 04:37 06:04
19 10:00 11:00 39 01:07 03:38
20 01:14 01:30 40 00:30 02:30

artifacts removal and normalized with zero-mean; (c) shows
the alpha and theta power ratio extracted by FFT and in (d)
the slow waves of alpha and theta bands are generated for
rule-based sleep onset detection.

(a) Raw EEG Signal
 

 
Raw EEG

(b) Cleaned EEG Signal
 

 
Filtered EEG

(c) Alpha & Theta band power ratio along temporal shifting windows
 

 
Theta
Alpha

(d) Sleep onset Prediction via Slow wave of Alpha & Theta Bands
 

 
Sleep Onset(Predict)
S1−S2

Fig. 2. EEG signal processing

From 2.(d) we can observe a clear trend of decline of alpha
and uplifting of theta power, which can be associated with
sleep onset [12], [18].

C. Accuracy of the Sleep Onset Prediction

Figure 3 shows the prediction results across all sleep
events. Each gray bar represents the duration of N1-N2 ±
1-epoch in a sleep event. The blue star markers are the
sleep onset time points detected by the proposed method.
If a marker falls inside the gray bar, the onset is predicted
correctly for that event, as explained in section II-D. Overall
accuracy is 87.5% (35 out of 40 onsets detected). Among the
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5 misses, 3 are very close to the N1-N2 period, if we relax the
buffer to ±2 epochs, there are only 2 misses, corresponding
to an accuracy of 95%.
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Fig. 3. Sleep onset predicted for all experiment events

IV. DISCUSSION AND FUTURE WORK

In this work we describe a rule-based algorithm for sleep
onset detection, which uses EEG data from a single electrode.
We conducted sleep experiments with sleep stages, which
were manually annotated to assess the performance of our
approach. With the criteria of N1-N2 ± 1 epoch setting, our
approach can predict sleep onset with an accuracy of 87.5%.

A number of research articles reported the implementation
of Artificial Neural Network (ANN) or Hidden Markov
Model (HMM) for automatic sleep staging [14], [15], [19].
However, sophisticated learning algorithms such as HMM
require a large set of training data and the preprocessed data
from a set of manually crafted features. Such models may
not work satisfactory in another conditions, such as across
different sleep labs [22]. Furthermore, there are no clear
physical meanings inferred from such prediction results due
to their black-box manner. ANN or HMM methods are more
suitable for a multi-staging purpose. This study does not
attempt to detect the standard multi-stages of sleep. Instead,
it focuses on sleep onset detection using a single channel
EEG, and it can be used in applications such as music-
induce sleep-aid devices. The proposed rule-based algorithm
has several advantages. It is simple, yet accurate. It is fast
enough for effortless online deployment. The mechanism is
obvious, and the parameters can be easily calibrated upon
change of conditions.

The accrate detection of sleep onset provides a control
signal to sleep-aid devices we are currently developing. We
have been continuously collecting sleep experiment data, and
to further improve the proposed algorithm, we plan to do so
in a different sleep lab and in different conditions, such as
with background music.
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