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Abstract— This paper presents an asynchronously intracor-
tical brain-computer interface (BCI) which allows the subject
to continuously drive a mobile robot. This system has a
great implication for disabled patients to move around. By
carefully designing a multiclass support vector machine (SVM),
the subject’s self-paced instantaneous movement intents are
continuously decoded to control the mobile robot. In particular,
we studied the stability of the neural representation of the
movement directions. Experimental results on the nonhuman
primate showed that the overt movement directions were stably
represented in ensemble of recorded units, and our SVM
classifier could successfully decode such movements continu-
ously along the desired movement path. However, the neural
representation of the stop state for the self-paced control was
not stably represented and could drift.

Index Terms— Brain-computer interface, maximal a poste-
rior, motor cortex, neural decoding, support vector machine.

I. INTRODUCTION

Brain-computer interface (BCI) directly reads the neural
signals from the brain and translates them as commands to
an external device to help the disabled patients who have a
broken neural pathway from brain to limbs [1], [2]. One of
the core parts in BCI is the neural signal processing which
provides such translation. During the last decade, several
groups have demonstrated the capability of extracting cortical
neuronal activity from motor areas of brain for controlling
computer cursor or robotic arm through experiments on both
non-human primates [3]–[8] and humans patients [9], [10].
These experiments showed great promise of BCI for the help
of patients with broken neural pathway. However all these
demonstrations required the subjects sit still in a chair during
controlling external devices.

In this work, we built a brain-controlled mobile robot
which allows a subject himself to drive the mobile robot in
a two dimensional planar space. We employed asynchronous
(self-paced) BCI to control the mobile robot using a novel
feedback to the subject. This is more realistic to the real
world scenario where a disabled patient sits on a wheelchair.
The issue arises on how the feedback would influence the
cortical neuronal activity which serves as the source of
control commands. The previous work showed the motor
cortex can form a stable cortical map [11] when the subject
sat still to control computer cursor. Similarly we studied
whether or not a stable cortical representation of movement
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parameters like directions can be formed under the movement
feedback and tested it within the closed-loop online control.
This paper presents our initial finding to study the neural
representation of the different movement directions and the
stop state used in our continuous control.

II. MATERIALS AND METHODS

All procedures and experiments described here were ap-
proved by the Institutional Animal Care and Use Committee
of ASTAR and conformed to the Guidelines for the Care and
Use of Laboratory Animals.
A. Behavior Task

One male rhesus macaque was seated in a primate chair
which was put on top of the mobile robot while his forearm
was abducted 90 degree and supported by the primate chair.
The monkey was trained to use a joystick to perform three
movement directions (right, forward, left) in two-dimensional
space from his wrist movement to drive a mobile robot
moving with constant speed. In addition, the monkey also
learned to stop the movement by holding the joystick at the
origin position. The stop state is the fourth brain state in
addition to the three directional movements. This is different
from the previous computer cursor tasks [4]–[7] where the
feedback about the movement was immediately available and
shown on the computer screen. In this case, the feedback of
self-movement along with the mobile robot was considerably
delayed due to the physically limited acceleration time of
the motor engine of the mobile robot. Our behavioral task is
similar to the pursuit tracking task [12] where the monkey
was triggered to track a visual target (the monkey trainer)
by operant conditioning. At the start of each trial, a monkey
trainer visually cued the monkey where to move by using
a liquid reward and the monkey was allowed to move
on his own pace (asynchronously) by continuously control
the joystick to reach the target to get the reward. After
successfully acquiring the target, the monkey trainer moved
randomly to a new place in the working space (∼ 6× 4 m2)
and the monkey was cued to move accordingly.

B. Neural and Kinematics Recordings

Four floating microelectrode arrays (MicroProbes,
Gaithersburg, MD, United States) were implanted anterior
to the central sulcus in the arm area of the contralateral
primary motor cortex (MI) to the trained (right) arm.
Total 96 single-electrode were available (two arrays of
32 electrodes and two arrays of 16 electrodes) with tip
impedance of ∼ 0.5 MΩ. Neuronal spiking activity from
all arrays were simultaneously recorded with a Plexon data
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acquisition system (Plexon Inc. Texas, TX, United States)
during each experimental session. Spike waveforms were
sampled at 40kHz. Spike sorting was performed manually
at the beginning (a few minutes) of neural recording using
manually set threshold and spike waveform matching by
Plexon online sorter and fixed thereafter in each day.
Normally between 30 and 40 units (including possible
multiunits) can be identified and recorded. Units averaged
firing rate below 1Hz were discarded for further analysis.

Simultaneously with neural recordings, analog joystick
signals (two channels for x- and y-axis) accompanying
the overt wrist movement were also recorded from Plexon
system by using external analog input channels and synchro-
nized with neural recordings. After manual calibration on
these joystick signals, we further define the four different
classes representing right/left/forward movement and stop
with an appropriate voltage range. During offline processing
and neural decoder construction, the four different classes
were extracted along each session by the joystick signals and
the corresponding neuronal spiking activity were segmented
as inputs for the decoder.

C. Classifier Design

We employed the support vector machine (SVM) to clas-
sify the neuronal spike data. SVM uses a hyperplane f to
separate different classes of input data x in a feature space
φ induced by the chosen kernel function K , [13], [14]

f(x) = wTφ(x) + b (1)
where w and b are the normal vector and intercept of
the hyperplane, respectively. The binary classification was
done by checking sign(f) for two different classes, i.e.,
f(x) > 0 for the decision of x belonging to one class
and f(x) < 0 otherwise. The hyperplane f optimized by
SVM is the one that maximizes the margin which is defined
as the distance from the nearest training samples to the
hyperplane. Maximizing the margin is known to increase the
generalization capacity [13], [14]. In addition, one advantage
of SVM is its robustness to outliers by carefully searching
support vectors and using regularization to minimize the
effects of outliers. These outliers usually greatly distort the
decision boundary of the conventional linear classifier [14].

Classical SVM only deals with binary classification and it
was necessary to extend to multiclass scenario for this study.
A popular strategy is to reduce the multiclass problem into
multiple binary classification problems and then combined
the outputs from each binary classifiers [15], including one-
vs-all and one-vs-one approaches. However, these conven-
tional strategies only used each binary classification decision
to yield the decision for the multiclass decision using some
rule like majority voting and thus completely overlooked the
estimated posterior class probabilities. As pointed in [16],
conventional methods can be improved by pairwise coupling
those estimated probabilities. In this work, we adopted the
LIBSVM software for implementing the binary SVMs [17]
and used the sigmoid function [18] for estimating the binary
class posterior probability pbi,kl of classes k-vs-l for the
training dataset {xi, yi},

pbi,kl = Pr(yi,k = 1|xi, yi,k = 1 or yi,l = 1)

= 1/(1 + exp(Aklfi,kl +Bkl)) (2)

where fi = wT
klφ(xi) + bkl is the signed margin of a

binary SVM. The parameters Akl and Bkl can be learned
logistic regression using Newton’s method with backtrack-
ing [19]. Furthermore, we employed the improved pairwise
coupling for estimating the multiclass probabilities Pm

i,k(k =
1, · · · ,M) from all pairwise pbi,kl for input data xi [20]. The
final classification decision ŷi for the data sample xi is based
on the maximal a posterior probability over all M classes.

ŷi = arg max
1≤k≤M

Pm
i,k (3)

Both linear
(
Kl(x,y) = xTy

)
and Gaussian(

Kg(x,y) = exp(−γ∥x− y∥2)
)

kernels were tested,
and we only reported the results of the linear kernel in
this paper (results of Gaussian kernel are similar). The
classifier performance only depended on the single tuning
parameter C, i.e., the regularizer, and we employed 5-fold
cross-validation to optimize it using only the training data.

III. RESULTS AND DISCUSSION

We have applied our designed classifier presented in Sec.
II-C to the neuronal data recorded in vivo from a rhesus
monkey performing the pursuit tracking task presented in
Sec. II-A. The input vector x to the SVM classifier was the
spike counts of the online sorted units calculated in a time bin
of ∆t = 500 ms. For continuous control, the classifier was
operated in 10 Hz (i.e., every 100 ms) on the time bin just
before that time instant. Thus the time bin overlapped 400
ms in time with adjacent time bin for a smooth continuous
control. Here, we reported the results of two different days of
experiments across two weeks. On each day, the monkey first
used his right hand to control the joystick to drive the mobile
robot (i.e., hand control) and the corresponding recorded data
was chosen for training SVM (i.e., training session). After
training, the control of the mobile robot was taken over by
the trained SVM (i.e., brain control), while the monkey was
still allowed to use his hand to move the joystick but the
joystick signal was disconnected from the mobile robot. In
this way, it was easy to cue the monkey to do the task
and to keep his attention. Under brain control, the joystick
signal was still recorded to provide the monkey’s intended
movement when evaluating the performance of our classifier
(i.e., test session). The number of training samples (n =
1400) was kept fixed for both days and evenly distributed
in all four classes by random resampling. However, the
number of test samples (separate from training) is usually
different from each day depending on the test session. We
adopted the correct estimation accuracy, kappa coefficient
and the confusion matrix as the performance measure for
our classifier, as suggested and commonly used in BCI [21].

A. Classification performance

Fig. 1 shows the visualization of neural representation of
movements for both training (left panel) and test (right panel)
sessions of one data set, in terms of a low dimensional space
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Fig. 1. The first two principle component projections of SVM signed
distances of spike count vectors for our define four classes of movements.
Analysis was performed on data set C20140211.
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Fig. 2. Comparison of the confusion matrices of both training and test
sessions from data set C20140211.

which was defined during the training session by the first two
principle components of the signed distance vector fi of each
spike count vector xi where the vector fi was composed of
all pairwise binary SVM (6 binary SVMs for four classes). In
this projection space, it can be seen clearly the colored points
for each class of data clustered into groups corresponding to
the our defined movement states. In particular, the clusters
for the three movement directions stay relatively more stable
than the state of stop which tends to disperse more when
changed from hand control session to brain control session.
In addition, the confusion matrices were visualized in Fig.
2 for both training and test sessions of the same data set
as shown in Fig. 1. The total classification accuracy and the
kappa coefficient (± standard error) for the training session
are 87.93% and 0.839(±0.032), respectively, whereas they
are 82.56% and 0.762(±0.019), respectively, for the test
session. It can be seen clearly the performance drop of the
stop state compared to the others due to the its spread and
thus overlap with others.

B. Nonstationary brain state of ’stop’

We show the result for a later day experiment (one week
after the previous one) in Fig. 3 using the same way of
visualization as shown in Sec. III-A. Although the features
in the projection space is similar to that of Fig. 3 during the
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Fig. 3. Same way of visualization as in Fig. 1. Analysis was performed
on data set C20140219
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Fig. 4. Comparison of the confusion matrices of both training and test
sessions from data set C20140219.

training session, it can be seen clearly the difference of the
state of stop between these two days of recordings. Other
than only spread in Fig. 1, the features of stop state also
showed drift between training and test sessions. Such drift
resulted in the classification performance drop during the
test session for the stop state as shown in Fig. 4(b) when
compared to the training session shown in Fig. 4(a). Such
performance drop yielded increased false positive for the
detection between intending to move and staying stopped.
Other than the drift of the stop state, the other three classes
of movements showed relatively stationary feature distribu-
tions and thus relatively stable classification performance
came along with. The overall classification accuracy and the
kappa coefficient for the training session are 87.86% and
0.838(±0.032), respectively, whereas they are 85.18% and
0.784(±0.025), respectively, for the test session. Although
the overall performance looked similar, the behavior of the
monkey changed to combat the misclassification of the stop
state. For example, when he was trying to stop to acquire the
juice reward during brain control and the classifier issued a
wrong decision of turning right, he would try to correct the
error by counter turning to the other direction (i.e., left).

C. Discussion

It was reported [22] the possible intra-day signal instability
in terms of changes in unit firing rate and spike waveform
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amplitude and suggested most of the rate changes likely
emerged from neurophysiological mechanisms. In particular,
they have found some directional bias in the decoded cur-
sor movements, which were consistent with the pioneering
works [4], [6]. This may explain the possibly nonstationary
stop state of our data. In contrast, the relatively stable
representation of three movement directions were consistent
with the existing works using spikes [23] and MEG [24].
They have also shown similar representation of movement
directions in different low dimensional spaces. These works
altogether suggested the neuronal spikes are more correlated
with movement kinematics than the cognitive states of brain,
which was clearly reflected in terms of neural representation
and class-specific classification accuracy as presented in Sec.
III-B. What characteristics of the cognitive state of brain for
stop in terms of neuronal spikes is still an open question.

Such nonstationarity of neural signals was also discussed
in [25] for EEG-based BCI. In addition, it was reported [26]
that the local field potential (LFP) spectrum and amplitude
changes were well time-locked to the movement onset in
self-paced reaches. A recent work [27] further compared the
spike-based and LFP-based state decoder and showed the
superior performance of LFP for the state transition into
the reaction and movement. These works suggested field
potentials, especially LFP, might correlate better with the
cognitive state of brain than the neuronal spikes. How to
efficiently integrate the LFP for more reliably decoding the
stop state is an issue to address in our future work.

IV. CONCLUSION

This work showed the monkey can operate our asyn-
chronous BCI to continuously drive a mobile robot through
closed-loop online experiments, which has great implica-
tion for disabled patients. We have shown the neuronal
representation of the movement directions is stable across
one week, and our SVM classifier can successfully decode
such movements for continuous control along the desired
movement trajectory. However, the representation of the stop
state could drift even across sessions of one day, which
could decrease the efficiency of the system. This posed the
challenge for stable and efficient asynchronous control using
brain signals. It remains to be understood the neurophysi-
ological mechanism and representation of the stop state in
terms of either LFP or spiking activity. This study presented
our initial attempt to study the stop state of brain using spikes
within the context of BCI. Further investigations have to be
done on tracking and adaptation of the nonstationarity of the
stop state in either LFP or spiking activity, and on how to
successfully incorporate into the BCI framework.
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