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Abstract— The subjects’ performance in using a brain-
computer interface (BCI) system controlled by motor imagery
(MI) varies considerably. Poor subjects’ performance, known
as BCI deficiency, can be due to the subjects’ inability to
modulate their sensorimotor rhythms (SMRs). In this work, we
investigated the feasibility of improving the BCI performance
through neurofeedback (NF) training of the resting state alpha
rhythm (8–13 Hz). Thirteen healthy subjects were recruited and
randomly assigned to the experimental or the control group.
The experimental group participated in a MI-BCI session,
followed by 12 NF sessions, and a final MI-BCI sessions. The
control group performed a MI-BCI session followed by a final
MI-BCI session. The results showed that the performances of
the experimental group after 12 sessions of NF significantly
improved upon the initial MI-BCI performance (p=0.02) but
not the control group (p=0.14). Moreover, the resting state
alpha of the experimental group significantly improved after 12
sessions of NF (p=0.04). In conclusion, the proposed approach
is promising to address BCI deficiency.

I. INTRODUCTION

Motor imagery (MI) or imagination of movement is one of
the mental activities for controlling an electroencephalogram
(EEG)-based brain-computer interface (BCI) system [1]–[3].
Performing MI results in event-related desynchronization
(ERD) and event-related synchronization (ERS) of EEG
rhythms [4]. In other words, stronger ERD/ ERS indicates
how well a subject performs MI task and subsequently con-
trols an EEG-based MI-BCI. However, there is a large varia-
tion in MI-BCI performance of the subjects [5], and the rea-
son why some subjects cannot use MI-BCI to achieve even
moderate performance is not well studied. BCI deficiency,
the subjects’ inability to modulate their brain rhythms, is
one of the main reasons of poor MI-BCI performance [6],
which limits the applicability of BCI technology.

Several performance predictors have been proposed to
predict the BCI performance of the subjects and also de-
tect those subjects with BCI deficiency. Having some prior
knowledge about the performance of the subjects may lead
us to investigate other possible reasons of performance
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variation in different subjects and also yield in designing
a novel experiment, which aimed to help users with BCI
deficiency. The Resting state sensorimotor rhythm (SMR)
over sensorimotor area has been proposed as a neurophysio-
logical performance predictor for a MI-BCI system [7]. They
showed that higher resting state SMR in relax with eyes-
open condition positively correlated to MI-BCI performance
of the subjects. Therefore, the subjects with poor BCI per-
formance can be detected through a short resting state EEG
recording. Gamma band power was introduced as another
neurophysiological performance predictors for MI-BCI [8].
Psychological predictors [9], [10] have also been proposed
for subjects’ performance prediction. However, none of the
above mentioned predictors has been used in practice to help
subjects improve their BCI performance.

The applicability of BCI technology can be broaden
through helping subjects with BCI deficiency improve their
performance. Operant conditioning is one of the methods
through which the subjects can learn to modulate their brain
rhythms [11], [12] and thus enhance their BCI performance.
Machine learning algorithms such as adaptive classifica-
tion algorithms have been proposed to enhance the BCI
performance of the subjects [13], [14]. However, there is
not enough evidence to show these adaptive methods can
help subjects modulate their brain rhythms. In contrary, co-
adaptation is a promising method proposed to address BCI
deficiency [15] [16], it adapts both user and the algorithms
of the BCI system. It has shown by using the co-adaptive
method [15], only half of the subjects with BCI deficiency
achieved BCI performance above 70% which is an acceptable
threshold in the BCI control [11]. Therefore, finding a
method to address BCI deficiency and thus help subjects
improve their performance is still highly valuable.

In this work, we sought to investigate the feasibility of
improving the BCI performance of the subjects by enhancing
their resting state alpha rhythm. To the best of our knowledge
the impact of improving the resting state SMR on the MI-
BCI performance has not been studied so far. Neurofeedback
(NF) is one of the plausible methods used for regulating the
brain rhythms such as alpha rhythm [17]. During several NF
training sessions, a subject may explore distinctive strategies
to figure out how to regulate his brain rhythms. NF has been
previously used for regulating SMRs [18]–[20]. In light of
the positive effects of NF on regulating the brain rhythms,
we aimed to a design a novel experiment to enhance the
resting state alpha rhythms using NF training and investigate
its impacts on MI-BCI performance of the subjects with BCI
deficiency.
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II. METHODS

A. Experimental setup

We conducted an experiment to enhance the resting state
alpha rhythm (8–13 Hz) of the subjects using NF training.
Thirteen healthy subjects (6 female, 7 male; mean=26.46
years, SD=3.28) were randomly assigned to either (1) ex-
perimental group (N=6) or to (2) control group (N=7) and
written consent was sought. Only two of the subjects from
the experimental group had prior BCI experiences and the
rest of the participants were BCI novices and all of them had
not performed NF experiment before.

Fig. 1(a) and (b) shows the proposed experiment flow
diagram. The experimental group participated in a MI-BCI
session followed by 12 NF sessions, and another MI-BCI
session. The control group performed a MI-BCI session
followed by a final MI-BCI session one month later. By
recruiting the control group we can validate that the per-
formance improvement of the experimental group is mainly
because of NF training and not performing several MI-BCI
sessions.

The experimental group participated in 3 NF sessions per
week in one month. Each NF session started by recording 5
min resting state EEG in relaxed with eyes-open and eyes-
closed condition. In total, 10 trials of 15 s were recorded in
each condition according to the random visual cue provided
on the screen. Subsequently, subjects played a game (See Fig.
2) for 20 min in which an avatar was moved along a path.
The speed of the avatar was controlled by the subject. The
subjects should keep being relaxed to increase their alpha
rhythm and thus speed up the avatar movement. Finally,
another 5 min resting state EEG data was recorded. In total,
each NF session took around 30 min and the subjects were
instructed to minimize their body limb movement during the
whole experiment.

Each MI-BCI session comprised 2 non-feedback calibra-
tion runs and 2 feedback runs. During calibration runs, EEG

(a)

(b)

Fig. 1: The proposed experiment flow diagram for: (a) experimental
group and (b) control group. The whole experiment took around 4
weeks for both groups.

Fig. 2: Experimental setup to collect EEG data during NF training
sessions. Subjects should modulate their brain signals to move the
avatar on the screen.

data were collected from subjects who performed right versus
left hand kinesthetic MI. Each run contained 40 trials of each
class, for a total of 160 trials, and a 2 min break was given
after each run. Each trial of calibration run lasted about 12
s and contained a preparatory time segment of 2 s, followed
by a visual cue for 4 s, and a 6 s rest period. Thus, each
calibration run lasted about 16 min. The EEG data collected
during calibration runs were used to train a model to detect
MI in the two subsequent feedback runs.

During feedback runs, subjects performed MI of right
versus left hand while receiving online visual feedback. Each
feedback run consisted of 40 trials, and there was a 2 min
break between the feedback runs. Each trial lasted about 16
to 18 s, a preparatory time segment of 2 s, followed by a
visual cue for 4 s. After 1 s of online processing the type of
MI task was then detected and a visual feedback was shown
accordingly for about 3 to 5 s. Each feedback run lasted
about 26 min. Similar to NF sessions, the subjects were
instructed to minimize their body limb movement in BCI
sessions. In order to reduce the effect of inter-session non-
stationarity, each BCI session used different model trained
based on calibration data collected on the same session.

B. EEG Signal Processing

In this experiment, EEG data from 25 channels were
recorded using the Nuamps EEG acquisition hardware with
unipolar Ag/AgCl electrodes, digitally sampled at 250 Hz
with a resolution of 22 bits for voltage ranges of ± 130 mV
and band-pass filtered from 0.05 to 40 Hz by the acquisition
hardware.

The 2 min resting state EEG data in eyes-open condition
collected prior each NF session was used to derive a spatial
filter using spatio-spectral decomposition (SSD) [21]. The
derived filter was subsequently used in an online NF training
session. In fact, the SSD method extracted alpha rhythm with
a more peaky spectral profile. In online NF sessions, every
200 ms the recently recorded 4 s of EEG measurements were
spatially and then spectrally filtered over alpha band (8–13
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Hz). The power of extracted alpha-SSD components was then
calculated and scaled between 0 to 100 and shown as a brain
score on the screen. The derived brain score determined the
speed of the avatar.

In BCI sessions, the collected EEG data from calibration
runs were processed using filter bank common spatial pattern
(FBCSP) algorithm [22] to construct a subject-specific MI
detection model. FBCSP band-pass filtered the EEG signal
in 9 different bands between 4 Hz to 40 Hz. CSP was applied
on the second stage to spatially filter the signal. Two pairs of
features from each band were selected. Subsequently, the best
4 discriminative pairs of features were selected using mutual
information and then fed into a linear discriminant analysis
(LDA) classifier. The trained model was then used in online
feedback runs. The output of the trained LDA classifier
was continuously computed and shown as a feedback to the
subjects. A happy (neutral) face was shown on the screen if
the MI action was correctly (wrongly) detected.

III. RESULTS

A. BCI performance results

Fig. 3(a) summarizes the feedback accuracies of 6 subjects
from the experimental group before and after the 12 NF
training sessions. As shown, the average feedback perfor-
mance of the subjects in the first MI-BCI session was
56.77%±15.57 and the performance of the subjects varied
from 46.25% to 87.5%. Only subject ‘ab’ that had prior BCI
experience had high accuracy 87.5% in the first BCI session
and the rest of the subjects had performance below 70%,
thus they were considered as poor performance subjects. The
average feedback performances of the experimental group
in the last MI-BCI session after 12 sessions of NF were
considerably increased to 71.14%±16.62. We conducted a
paired sample t-test to compare the feedback performances
of the experimental group in the first and the last sessions.
The results showed the performances in the last session were
significantly higher upon the initial session p=0.02.

In order to evaluate the feasibility of our proposed design
in addressing BCI deficiency, we excluded subject ‘ab’
from our analysis and only compared the performance of
the subjects with BCI deficiency. The results showed the
average feedback performance of the 5 subjects with BCI
deficiency improved from 50.63% to 67.75%. The results of
paired sample t-test revealed the improvement was statisti-
cally significant p=0.018. Therefore, we can conclude that
our proposed design successfully helped subjects with BCI
deficiency.

Fig. 4 shows the EEG spatial patterns of subject ‘gc’ who
had significant performance improvement from the first to the
last BCI session. The patterns corresponded to ERD and ERS
for performing right and left hand MI. As shown, there was
clear ERD/ ERS patterns in the last BCI session. This showed
how well a subject with BCI deficiency learned to modulate
his brain rhythms after several NF training sessions.

Fig. 3(b) shows the feedback performance of the control
group in two BCI sessions. Two out of seven subjects had
high feedback performance, while the rest had accuracy
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Fig. 3: The feedback performance (%) of (a) experimental group,
and (b) control group in the first and the last MI-BCI sessions.
(Paired sample t-test: * p<0.05; n.s. p>0.05).
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Fig. 4: The CSP patterns of subject gc in the first and the last
MI-BCI session.

below 70% in their first BCI session. Similar to the ex-
perimental group, the control group also performed their
final BCI session around one month after their first session.
The average feedback performance of the control group
showed slightly improvement, which was not statistically
significant. The feedback performances of two high perfor-
mance subjects ‘sj’ and ‘fr’ slightly deceased in the last
BCI session but their performances were still above 89%.
Although the average performance of the 5 subjects with
BCI deficiency from the control group was increased from
56.75% to 62.05%, the improvement was not statistically
significant p=0.14.

B. Neurofeedback results

The resting state alpha of subjects with BCI deficiency
from experimental group over 12 training sessions is shown
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Fig. 5: (a) Average relative resting state alpha power of subjects
with BCI deficiency over 12 sessions. (b) Boxplot of relative
alpha power in first and last training sessions. (Paired sample t-
test *p<0.05).

in Fig. 5(a). Each dot represents the average relative resting
state alpha activity in each NF session. The relative alpha
power was calculated by dividing the alpha band power in
the range 8–13 Hz by the broad-band power in the range
4–30 Hz. As can be seen, the resting state alpha activity
increased over time. Fig. 5(b) revealed the results of paired
sample t-test between the alpha power in the first and last
training session. The alpha power in the 12th training session
was significantly higher than the first training session p=0.04.

IV. CONCLUSION

In this paper, we proposed an approach to address BCI
deficiency, which is one of the challenges in BCI applica-
tions. We hypothesized that by enhancing the resting state
alpha rhythm, the MI-BCI performance can be improved.
Therefore, we conducted an experiment to train the subjects
increase their alpha rhythm in 12 NF sessions. Relaxation
was a successful mental strategy to enhance the resting state
alpha in NF sessions. The results showed the NF helped
subjects to significantly improve their resting state alpha
rhythms over the sensorimotor area, and helped subjects with
BCI deficiency. This shows that the MI-BCI performance
of the subjects can be improved by enhancing their resting
state alpha rhythm. In conclusion, NF can be considered as a
promising method to alleviate BCI deficiency of the subjects.
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S. Kleih, K.-R. Müller, and A. Kübler, “Psychological predictors of
SMR-BCI performance,” Biol. Psychol., vol. 89, no. 1, pp. 80–86,
2012.

[10] E. M. Hammer, T. Kaufmann, S. C. Kleih, B. Blankertz, and A. Kübler,
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