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Abstract— Learning the deep structures and unknown cor-
relations is important for the detection of motor imagery of
EEG signals (MI-EEG). This study investigates the use of
convolutional neural networks (CNNs) for the classification
of multi-class MI-EEG signals. Augmented common spatial
pattern (ACSP) features are generated based on pair-wise
projection matrices, which covers various frequency ranges.
We propose a frequency complementary feature map selection
(FCMS) scheme by constraining the dependency among fre-
quency bands. Experiments are conducted on BCI competition
IV dataset IIa with 9 subjects. Averaged cross-validation ac-
curacy of 68.45% and 69.27% is achieved for FCMS and all
feature maps, respectively, which is significantly higher (4.53%
and 5.34%) than random map selection and higher (1.44% and
2.26%) than filter-bank CSP (FBCSP). The results demonstrate
that the CNNs are capable of learning discriminant, deep
structure features for EEG classification without relying on the
handcrafted features.

Index Terms— multi-class motor imagery of EEG, deep
learning, convolutional neural network, augmented CSP.

I. INTRODUCTION

Learning layered, deep structures of high-dimensional data
has generated great interest in the past decades. A deep
neural network (DNN) with multiple learning layers is a
powerful modeling tool in various applications [1], [2], [3],
[4]. Recently, using DNNs to discover the unknown correla-
tions in the EEG signals have been investigated [5], [6], [7].
These works include: stacked autoencoder-based emotion
recognition using hierarchical power spectra density features
[6]; deep belief net (DBN)-based classification of target and
non-target images using uncorrelated features constructed by
clustering, in an image rapid serial visual presentation task
[5]; and unsupervised paradigm of DBNs-based classification
and anomaly detection for EEG waveforms modeling [7].
Typically, the DBNs are generated by training each layer as a
restricted boltzmann machine (RBM) in an unsupervised way
(pre-training), these trained RBMs are then stacked together.
The inferred states of hidden nodes from current layer are
used as inputs to the next layer. To improve the generalization
of the models, drop-out of certain amount of hidden nodes
or sparse coding have been proposed [4]. Convolutional
neural networks (CNNs) have found wide applications due to
its regularization structure, good spatial locality and certain
degree of translation invariance [1], [8]. The CNNs are
widely used for two-dimensional data processing such as
handwritten digit recognition [1], feature extraction based
on stacked convolutional autoencoder [9].
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Common spatial pattern (CSP) is introduced for EEG anal-
ysis and classification, which intends to find the directions
in the pattern space to optimally distinguish the two classes
[10], [11], [12]. Let’s denote Σ1 and Σ2 as the covariance
matrices of the band-pass filtered EEG signal Se (with the
number of channels and trials being denoted as nc and nt,
respectively) for the respective motor imagery action in a
binary classification task, we have

WTΣ1W = ̟1 and WTΣ2W = ̟2 (1)

where ̟ denote the diagonal elements of the matrix, WT

denote the transpose of the projection matrix W . Scaling W

such that ̟1+̟2=I , which can be achieved by solving the
generalized eigenvalue problem by

Σ1w = λΣ2w (2)

The large λj corresponded to the spatial filter wj that yields
high variance in one motor imagery action and low variance
in another action. The ith CSP features (F i

c ) are obtained by

F i
c(wjj , Se) = log(

var(Zi
p)∑2m

i=1(var(Z
i
p))

) (3)

where the first and last m (e.g., m=1) rows of the projected
EEG signals (denoted as Z̃) are employed. Here Z̃ is ob-
tained by projecting Se to the characteristic patterns obtained
from Eq. (2), which is given by Z̃=wT

jjS
nc×nt
e . In this paper,

we investigate the classification of multi-class motor imagery
of EEG signals (MI-EEG) based on the CNNs. For this
purpose, the augmented CSP features (ACSP) are employed.
We hypothesize that the CNNs are capable of learning the
deep structures from the augmented CSP features without
employing the hand-crafted feature selection algorithms.

II. OUR PROPOSED METHOD

A schematic diagram illustrating our proposed method,
namely, classification of multi-class motor imagery of EEG
signal based on augmented CSP features and convolutional
neural networks (CMI-ACSP-CNNs), is presented in Fig. 1.
In what follows, the ACSP feature extraction and classifica-
tion of MI-EEG based on CNNs will be elaborated in more
details.

A. Extraction of Augmented CSP (ACSP) Features

The proposed augmented CSP (ACSP) features can be
considered as extraction of the CSP features from a multi-
level decomposition of the frequency ranges. The motivation
of proposing the augmented CSP features is based on the
observation that the fixed partition of the frequency in both
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Fig. 1. Schematic illustration of the proposed CMI-ACSP-CNNs
scheme.

the wide-band CSP [10] (e.g., computing CSP in a wide band
of [4 30]Hz) and filter-bank CSP [13] (e.g, computing CSP in
each small frequency band of width of 4 Hz, varying from
4Hz to 30Hz) may lose important frequency information.
Hence, we propose to generate the ACSP features based
on a varying partition of the frequency bands with different
bandwidth to cover as many bands as possible. The following
steps are carried out to generate the ACSP features.

1) Define the overall starting and ending frequency (fs and
fe), width of each band (fw), and width of each window shift
(fws), with the constraint that different frequency bands with
varying bandwidth should be included, e.g., fs, fe=[4 40]Hz,
fw=[4 7 7 13] and fws=[2 4 5 4] for a 4-level ACSP.

2) Filter the EEG signals for all the frequency bands with a
band-pass filter such as butterworth filter to obtain the filtered
EEG signal, denoted as Se.

3) Generate the pair-wise projection matrix (denoted as
Pw(i, j)) by solving Eq. (2) for a pair of classes of i and j

(i6=j, and i, j=1,2,...,ns, ns denotes the number of classes)
based on Se. Each projection matrix is generated to satisfy
that the variance of the projected signal is maximized for the
class under one condition and minimized for the class under
another condition [10], [11], [12].

4) Generate the ACSP features based on the pair-wise
projection matrices, which is detailed in Algorithm 1.

Data: Pw(i, j), Se(i, j), i, j = 1, 2, ..., ns

Result: Ft

Ft=Φ (empty set);
for i in(1, 2, ..., ns) do

for j in(1, 2, ..., ns) do
if i 6= j then

Fc(i, j) = Fc(Pw(i, j), Se(i, j)) ;
Ft = [Ft;Fc(i, j)] ;

end
end

end
return Ft;

Algorithm 1: Generation of ACSP features

It is obvious that the features are of dimension of nf×nv ,
where nf and nv denote the number of frequency bands and

number of features obtained from nm pair-wise projection
matrices, respectively; nv=nm×nfs, and nfs is the number
of features for each frequency band.

III. FEATURES LEARNING BASED ON CNNS

A. Architecture of the CNNs

The backpropagation algorithm is generally employed to
train the parameters of the CNNs. The hierarchical structure
of the CNNs is the key to the successful learning and
analysis. Typical architecture of CNNs are consisted of
convolution (filtering) layers and subsampling layers which
are alternated. The last several layers are usually consisted of
fully-connected multi-layer networks. The features learned
from the CNNs are concatenated and eventually fed to
the network to obtain the classification results. The loss
function employed is the mean square error (MSE) function.
Let’s name our proposed CNNs network for EEG signal
classification as “CNNs-eegNet” with the architecture of
the network being shown in Fig. 2. The CNNs-eegNet is

Fig. 2. Architecture of proposed CNNs-eegNet, each plane is a
feature map, whose weights are to be identical.

consisted of 5 layers, where the first layer is the input layer
of the ACSP features for the selected time segment. The input
features are of dimension of nf×nv×ntr, where nf , nv and
ntr denote the number of frequency bands, number of ACSP
features and number of trials, respectively. The second and
fourth layers are the convolution layers (denoted as “C2” and
“C4”) which are consisted of different numbers of output
maps. Each feature map is connected to a k×k learnable
kernel (e.g., 5×5). In a convolution layer, the feature maps
from previous layer are convolved with the learnable kernels
and fed to the activation function to generate the output
feature map [8], which is given by

xl
j = f(

∑

i∈F l
p(j)

xl−1
i ∗ klij + blj) (4)

where xl
j and xl−1

i , and F l
p(j) denote the output feature

maps at levels l and l-1, and the set of selected feature
maps for output map j at level l, respectively; klij and blj
are the kernel and bias at level l. The third and fifth layers
are the subsampling layers (denoted as “S3” and “S5”) by
subsampling the feature maps at layers C2 and C4 by a factor
of 2 in each dimension, i.e., each unit of a feature map at
layers S3 and S5 is connected to a 2×2 neighborhood in the
corresponding feature maps at layers C2 and C4 [8], which
is given by

xl
j = f(βl

jDs(x
l−1
j ) + blj) (5)
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where Ds() is the subsampling function, which will sum
over a 2×2 block to give one output; βl

j and blj are the
multiplicative bias and additive bias, respectively.

B. Feature Map Selection

We observe that the classification performance is affected
by how the feature map has been selected from the subsam-
pling layer. Hence, we investigate the connection scheme
between the convolutional and subsampling layers, with the
aim to obtain a sparse and non-redundant representation of
the features. A non-complete connection was suggested in
[1], the objectives of which were to keep the number of
connections within a reasonable bound, break the symmetries
in the connection and finally generate the complementary
features. In this paper, we investigate three ways to select
the feature maps, namely, random map selection (RMS), our
proposed frequency complementary map selection (FCMS),
and the selection of all feature maps (SFM). Each output
feature map is generated by convolving the kernels with
a predefined number of feature maps which are randomly
selected from the previous layer in the RMS scheme. It is
noted that the randomness is not that good owing to the small
numbers of maps. The FCMS scheme is illustrated in Fig. 2,
the rationale of it is: the dependency and redundancy of
the ACSP features among different frequency bands should
be minimum in order to have good representation of the
features. Let the ith feature map in the subsampling layer

Fig. 3. Illustration of the frequency complementary map selection
(FCMS) scheme.

(l-1) be denoted as xl−1
i . The input feature map is firstly

convolved with the kernel at the current convolution layer
l for the output feature map j (denoted as klij) to obtain a
temporal map xl

ij . Averaging across trials is then carried out
to obtain x̃l

ij . Computing the inter-frequency covariance is
given by

Cl
ij = x̃l

ij ∗ x̃
lT
ij (6)

The inter-frequency dependency for the ith input feature
map, jth output feature map was then measured by

Dl
ij =

nf∑

u=1

nf∑

v=1,v 6=u

Cl
ij(u, v)− diag(Cl

ij(u, v)) (7)

where u (or: v) and nf denote the u (or: v)th frequency
band and the total number of frequency bands, respectively;

diag(X) gives the diagonals of the matrix X . Finally, the
feature maps for each output feature map j are selected by

ĩ = argmin
i,i∈U

Dl
ij (8)

where U denote the indexes of feature maps in the subsam-
pling layer. Updating U will be carried out once a feature
map ĩ is selected, which is given by U=U \̃i, where “\”
denoted the “set difference”. This process is iterated till the
number of required feature maps has been selected. Note
that the proposed scheme is an unsupervised method since
no label information has been employed in the selection
process. This is possible since the CSP features are consisted
of features from both classes.

IV. EXPERIMENTAL RESULTS

BCI IV competition IV, Data set IIa (available at:
http://www.bbci.de/competition/iv/#dataset2a) is employed
to evaluate the performance of proposed CNN-based clas-
sification scheme, i.e., CMI-ACSP-CNNs. The data set con-
sisted of EEG data of 9 subjects who performed four motor
imagery tasks of movement of left hand, right hand, both
feet and tongue. Two sessions of data were collected with
288 trials for each session. The timing scheme consisted
of a fixation of 2 s, cue time of 1.25 s, followed by
motor imagery of 4 s. EEG signals were recorded with 22
Ag/AgCl electrodes and sampled at 250 Hz. To show the
effectiveness of CNNs in learning the discriminant features,
the classification accuracies of CNNs by employing different
strategies for feature maps selection are compared with
FBCSP algorithm, with the 5×5 cross-validation (CV) results
shown in Table I. Noted that the time segment of [0.5 2.5] s
is used. Eight levels of frequency bands are employed, where
the starting and ending frequencies are chosen as fs=4 Hz
and fe=40 Hz; the width of each band (fw) is chosen as
fw=[3 4 7 8 11 12 13 15] Hz; and the width of each window
shift (fws) are: fws=[2 2 4 5 6 6 5 5]. In this way, we have
60 frequency bands in total. Eight and six feature maps are
selected for C2 and C4 layers, where each output feature
map at layer C4 is computed based on 5 selected maps (e.g.,
for PCMS and RMS), or all the maps (for FMS) in layer S3,
as shown in Fig. 3. The batch size and number of epochs
are 38 and 30, and α=0.5 is used for updating the weights
and bias in gradient-based learning. The MSE loss averaged
across 5×5 folds is shown in Fig. 4.
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Fig. 4. Mean square error loss as a function of number of epochs
for proposed PCMS scheme.
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Fig. 5. Illustration of the 6 feature maps generated for subject “S9” during cross-validation.

TABLE I

THE 5×5 CV CLASSIFICATION ACCURACIES (%) FOR 4-CLASSES EEG

Sub. Different strategies Baseline algorithm
PCMSa RMSb SFMc FBCSP d

S1 75.86 72.69 77.14 79.16
S2 48.71 45.44 49.82 52.08
S2 79.01 74.11 80.41 83.33
S4 52.77 45.92 53.88 62.15
S5 64.00 57.65 65.47 54.51
S6 49.04 46.05 48.70 39.24
S7 80.88 79.08 81.37 83.33
S8 83.20 74.50 84.39 82.64
S9 82.57 79.97 82.29 66.67
Aac 68.45 63.93 69.27 67.01
p-test a vs. b a vs. c a vs. d c vs. d

p-value *(3.93e-4) *(0.0077) 0.6190 0.4159

Aac: average accuracy across subjects (%). *: significant at 5%
significance level for paired t-test, i.e., p-test.

The results shown in Table I demonstrated that the CNNs
are able to learn the discriminant features for multi-class
EEG data classification. This is supported by the different
feature maps generated during cross-validation, as shown in
Fig. 5, where distinct features for the four classes were ex-
tracted for different feature maps. Hence, no feature selection
scheme is needed after the CSP features are generated. It
should also be noted that no significant improvements can
be observed by our proposed PCMS scheme compared with
full-map selection scheme and FBCSP algorithm due to the
small number of feature maps. Nevertheless, the accuracy
of our proposed scheme (i.e., selecting the feature maps by
constraining the dependency among the frequency bands)
is still significantly better than that obtained by randomly
selecting the feature maps. Further, the accuracy of our
proposed CNN-based classification method is still higher
than that of FBCSP algorithm, where a feature selection
scheme based on mutual information was implemented.

V. CONCLUSIONS

This paper investigates classification of multi-class motor
imagery of EEG signals based on convolutional neural net-
works and augmented CSP features. Investigations on how to
select the feature maps to form good representative features
are made. Experiments are conducted on data set IIa of
BCI competition IV. Averaged cross-validation accuracy of
68.45% and 69.27% is achieved for the proposed frequency

complementary feature map selection scheme and using full
maps, respectively. This is significantly higher (4.53% and
5.34%) than that obtained by randomly selecting the feature
maps, and higher (1.44% and 2.26%) than the baseline
FBCSP algorithm. These results further demonstrated the
capability of CNNs in learning discriminant features for EEG
classification.
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