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Abstract— Spike detection is often the first step in neural sig-
nal processing. It has profound effects on subsequent steps down
the signal processing pipeline. Most existing spike detection al-
gorithms require manual setting of detection threshold, which is
very inconvenient for long-term neural interface. Furthermore,
these algorithms are usually only evaluated using simulated
dataset. Few studies are devoted to evaluating how different
spike detection algorithms affect decoding performance in
brain-computer interface. We have proposed a new spike
detection algorithm called ”exponential component - power
component” (EC-PC) that offers fully automatic unsupervised
spike detection. In this study, we compared the performance of
a motor decoding task when different spike detection algorithms
were used. EC-PC is shown to produce a higher decoding
accuracy compared with other existing algorithms. Our results
suggest that EC-PC can help improve motor decoding perfor-
mance of brain-computer interface.

I. INTRODUCTION

To detect spikes in extracellular neural recording is a
challenging problem. The recorded signal is often heavily
contaminated by background neural noise. Its signal to noise
ratio may also change over time as the glial cells encap-
sulate the implanted microelectrodes [1]. Currently, many
algorithms have been proposed for spike detection, e.g. root-
mean-square, Nonlinear Energy Operator (NEO) [2], median
threshold[3], continuous waveform transform [4] etc.

However, existing spike detection methods are not with-
out their shortcomings. Firstly, most of the aforementioned
methods are supervised in the sense that they require the
user to manually set the threshold for detection. Such manual
intervention is not desirable for long term neural recordings
because the optimal threshold may change over time as the
signal-to-noise ratio of the recordings deteriorate. Secondly,
some of the existing methods (e.g. median-based threshold,
continuous-wavelet transform) are difficult to implement
online in integrated circuits, either due to demanding memory
requirements or high computational complexity. Therefore,
there is a need for an accurate, efficient spike detection
algorithm that can be implemented online. Thirdly, many
spike detection algorithms are only evaluated on simulated
spike signals but not on real data, and hence the validity
of the evaluation depends on the assumptions behind the
simulation procedures. A better way is to evaluate the
performance of various spike detection algorithms on real
data acquired during a behaviour task, e.g. motor decoding.
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A better spike detection algorithm should detect spike more
accurately and lead to better performance.

Previously we have proposed a novel spike-detection al-
gorithm called ”exponential component-power component”
(EC-PC) that is both efficient and accurate [5]. We have
shown that it outperformed other methods in simulated data
and also demonstrated the feasibility to implement it on an
Application-specific Integrated Circuit (ASIC) chip [6]. Here
in this study we evaluated the performance of EC-PC in
a motor-decoding task using brain computer interface and
compared it with other existing spike detection algorithms.

II. METHODOLOGY

A. EC-PC decomposition

In a previous study, we have reported that neural noise in
intracortical recording tends to follow an exponential distri-
bution while spikes tend to follow a polynomial distribution
in the Hilbert space [5]. Mathematically, given a recorded
neural data sequence V (t), we can construct an analytic
signal using Hilbert transform:

Vst(t) =V (t)+ jH{V (t)}=V (t)+ j
1
π

β

∫
∞

−∞

V (τ)

t− τ
dτ (1)

where β is the Cauchy principal value and H denotes the
Hilbert transform.

The instantaneous power of the Hilbert transform then is:

Z(t) = |Vst(t)|2 (2)

We have found that the probability density function of
neural noise in Hilbert space follows an exponential function:

fn(Z) ∝ e−λ1Z (3)

where λ1 is a positive real number. (3) can be fitted with
a linear function in the log-linear space:

ln( fn(Z)) = ln(a)−λ1Z (4)

where a is a constant.
The presence of spikes in a neural signal makes its

distribution deviate from exponential form and turned into
a power-law distribution:

fd(Z) ∝ Z−λ2 (5)

where λ2 is a positive real number. (5) can be fitted with
a linear function in the log-log space:

ln( fd(Z)) = ln(b)−λ2ln(Z) (6)

where b is a constant.
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Fig. 1. Experimental setup of the behavioural task. A monkey was trained
to use a joystick to control a mobile cart it was sitting on. The movement
of the joystick was restricted so that it can only move forward, turn left or
right. The objective of the task was to control the mobile cart to reach a
caretaker who held a food reward.

Since neural signals consist of both noise and spike, they
contain both the exponential component (EC) and power
component (PC). Given the EC component fn(Z) and PC
component fd(Z) fitted from neuron data, the probability of
a data point Zi being a spike can be calculated from:

p(Zi) =
fd(Zi)

fd(Zi)+ fn(Zi)
(7)

B. Data acquisition and behavioural task

100-channel microelectrode arrays were implanted into the
primary motor cortex of two monkeys. Intracortical neural
signals were sampled at 12.5kHz. The two monkeys were
trained to sit on a mobile cart and use a joystick to control
its movement (Fig. 1). The trajectory of the joystick was
restricted such that it can only be pushed forward, left,
or right. Pushing the joystick to the left or right turned
the mobile cart accordingly. Pushing the joystick forward
moved the cart forward. During an experiment session, the
caretaker of the monkey was standing at a distance from
the monkey while holding a food reward. The monkey was
trained to move the mobile cart to reach its caretaker. The
monkeys performed the task in multiple sessions per day.
Each session consisted of 15-30 trials. The first session of
each day’s experiment (i.e. the training session) was used as
the training set to train a classifier to decode the joystick
motion in subsequent sessions (i.e. the testing sessions) for
offline analysis. In total, 4 days of experiments were used,
2 for each monkey. Each day of experiment consisted of 1
training session and 1-2 testing sessions. The mobile cart was
controlled by the joystick in all sessions. In total there were
7 testing sessions. The experimental procedures involving
animal models described in this paper were approved by the
Institutional Animal Care and Ethics Committee.

C. Decoding algorithms

Raw signals from the microelectrode array were first
bandpass filtered between 300Hz-5000Hz. To capture the
changing signal characteristics of the signals, continuous
neural recordings were broken down into blocks of 5s.
Spike detections were then performed on each of these
blocks to extract spikes. Different spike detection methods

were used to compare their performance with the EC-PC
algorithm. After spike detection, the firing rate of neurons
was estimated as follows: in each of the channel, the firing
rate was obtained by counting the number of spikes within
a 500ms moving window with 100ms overlap and then
dividing the spike count by the length of the time window
(i.e. 500ms). The firing rates of all channels for a particular
time window were then used to construct a feature vector
for classification. Afterwards, the class label of that time
window was determined by the joystick X and Y coordinates
100ms ahead of the moving window. We labelled each
window as Left, Right, Forward or Stop based on the joystick
coordinate automatically. The extracted firing rates and class
labels were used to train a Support-Vector Machine classifier
using LibSVM [7]. We deliberately chose a simple decoding
method to ensure that the improvement in performance was
mainly due to the ability of the spike detection algorithms
in recovering useful information, rather than the capability
of the decoding method. The data from the first session of
one day’s experiments were used to train the SVM classifier.
The classification accuracy is defined as the percentage of
correctly classified moving windows over total number of
moving windows.

D. Comparison with other spike detection algorithms

We compared the decoding accuracy of EC-PC with other
popular spike detection algorithms. These algorithms will be
briefly described below.

1) Simple threhsold using root-mean-square (RMS): Us-
ing a multiple of root-mean-square is the most common
method for spike detection. The threshold of detection is
set at

T hreshold =C

√
1
N

N

∑
n=1

x[n]2 (8)

where x[n] is the input neural signal. C is a positive constant.
N is the length of the signal

In this study, the above C was set to be 3-5. The value
that produced the highest decoding accuracy was used.

2) Simple threshold using median (Median): Qurioga et
al. proposes a spike detection method that uses median
instead of root-mean-square [3]:

σn = median
(
|x|

0.6745

)
(9)

where σn is the estimated noise level. The threshold for
detection is then set to:

T hreshold = 4σn (10)

3) Nonlinear energy operator (NEO): Nonlinear energy
operator (NEO) gives the instantaneous energy of a signal
in the high frequency domain [2]. In discrete time, for input
signal x[n] NEO is defined as

ψ{x[n]}= x[n]2− x[n+1]x[n−1] (11)
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The threshold for spike detection is then set as

T hreshold =C
1
N

N

∑
n=1

ψ[x(n)] (12)

In this study, C was chosen to be 10-12. The level that
produced the highest decoding accuracy was used.

4) Continuous wavelet transform (CWT): Nenadic and
Burdick use continuous wavelet transform for spike detection
[4]. A limited set of wavelet scales, based on the length of
a typical spike waveform, is used to carry out continuous
wavelet transform of a neural signal. Then at each of the
transition index and scale, a hypothesis testing is performed
according to

if |X( j,k)|<
µ̂ j

2
+

σ̂ j
2

µ̂ j
logeγ j accept H0,

else, accept H1

(13)

where j is the translation index, k the scale index for scale
ak. H0 is the hypothesis that the sample only contains noise,
and H1 is the hypothesis that the sample contains both signal
(aka spike) and noise. σ̂ j

2 is the variance of the noise at scale
index j. µ̂ j is the sample mean of the absolute value of
wavelet coefficients under hypothesis H1. γ j is a parameter
specifying the acceptable level of false alarm and a prior
probability of two hypotheses. A data point is considered as
spike if at that point H1 is accepted at multiple scales.

E. Search for the best decoding accuracy

The addition of noisy channels to motor decoding may
lower accuracy due to the curse of dimensionality [8]. In this
study we determined the highest accuracy a spike detection
algorithm can attain using the following method: Motor
decoding was performed using each channel individually.
The channels were then ranked according to the accuracy ob-
tained using single-channel classification. Using this ranking
system, decoding was performed in successive iterations, and
the channel with the least information was deleted at each
iteration, until the maximum accuracy was achieved.

III. RESULTS

Fig. 2 shows the motor decoding accuracy when different
spike detection algorithms were used. As can be seen in
Fig.2(a), EC-PC achieved the highest accuracy when all
100 channels of neural signals were used for decoding,
attaining an accuracy of 72.4%. EC-PC also produced the
lowest standard deviation of decoding performance among
algorithms investigated. Fig. 2(b) shows the highest accuracy
obtained when low accuracy channels were removed one
by one. Again it can be observed that EC-PC obtained the
highest accuracy with the lowest standard deviation. It is
significantly better than RMS, NEO and CWT, although no
significant difference can be observed when compared to the
Median method. It should be noted that although continuous
wavelet transform produced a very low accuracy when all
100 channels were used for decoding, it achieved comparable
accuracy when only the best channels were used.

TABLE I
AVERAGE NUMBER OF CHANNEL HAVING ACCURACY ABOVE CHANCE

(I.E. 25%) WHEN ONLY A SINGLE CHANNEL WAS USED FOR DECODING

Methods No. of channel
EC-PC 72.6
Median 64.3
RMS-4 62.6
NEO-10 60.1

CWT 67.7

TABLE II
THE OPTIMAL THRESHOLD LEVEL OF NONLINEAR ENERGY OPERATOR

(NEO) AND MEDIAN THRESHOLD (MEDIAN) THAT ACHIEVED THE

HIGHEST DECODING ACCURACY IN EACH OF THE EXPERIMENT SESSION.

Session NEO RMS
1 12 5
2 11 5
3 10 5
4 10 4
5 10 4
6 11 4
7 11 3

Table I shows the average number of channels that can
produce a decoding accuracy higher than the chance level
(i.e. 25%) when only a single channel is used for classifica-
tion. The values were averaged across all 7 testing sessions.
As can be observed, EC-PC produced the highest number of
informative channels, with more than 72% of the channels
can decode motor movement higher than chance.

We have also tested different thresholding levels for the
NEO and Median method. Table II shows the optimal thresh-
old value that produce the highest decoding accuracy in each
testing sessions (i.e. the constant C in Equation (12) and (8)).
As can be seen, the optimal values varied from session to
session. There is no single value that can produce the best
performance across all sessions.

IV. DISCUSSION

We have evaluated the performance of various spike detec-
tion algorithms in motor decoding using actual intracortical
recordings from a behavioural task. We have found that
EC-PC produced the highest accuracy compared to other
commonly used methods. EC-PC also produced the largest
number of informative channels.

The EC-PC algorithm is able to produce the highest de-
coding accuracy compared to other spike detection methods
without any need to manually specify the detection threshold.
EC-PC is an automatic and unsupervised method. On the
other hand, many existing spike detection algorithms are
supervised in the sense that they require manual setting of
detection threshold. However, the optimal threshold is highly
data dependent and may change over time. For example, our
results show that for NEO and RMS, the optimal threshold
for decoding is highly data-dependent and change from ses-
sion to session. EC-PC obviate the need to set the threshold
manually. It also achieved the highest accuracy with the
lowest standard deviation, meaning that its performance is
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Fig. 2. Comparison of decoding accuracy between different spike detection methods. EC-PC: EC-PC decomposition; Median: median threshold; NEO:
Nonlinear Energy Operator; RMS: threshold based on root-mean-square method; CWT: continuous wavelet transform. The number behind NEO and RMS
are the threshold level that produce the highest accuracy. NEO was test from 10 to 12 and RMS was tested from 3 to 5 of the threshold level (a) The
decoding accuracy when all channels was used (b) The decoding accuracy when low-accuracy channels were removed one by one until the highest accuracy
was achieved. Repeated One-way ANOVA shows that there is significant difference among the algorithms used (p<0.05). The asterisk (*) indicates that
the accuracy of ECPC is significantly higher than that of the indicated method in a post-hoc test (p<0.05).

robust across different experimental sessions. It should be
noted that the decoding accuracy is lower than a typical
invasive BCI because we have included the Stop class, which
makes our system akin to an asynchronous BCI.

Our results also suggest that EC-PC can produce more
informative channel for classification. More than 70% of the
channel extracted by EC-PC are useful for classification in
the sense that they can produce an accuracy higher than
chance when used individually. This suggest that EC-PC
is able to extract more information out of the recording
channels. One reason why a more accurate spike detection
algorithm can improve motor decoding performance is that
it may help to uncover task-relevant neurons that have
small spike amplitude. Using conventional spike detection
techniques, spikes from such neurons will be considered as
noise and be discarded. A more accurate spike detection
method like EC-PC can help retain the information content
in such neurons and help improve decoding accuracy.

One advantage of implementing on-chip spike detection is
that it can drastically cut down on the wireless bandwidth
and power consumption of the implanted device, as only
spike timings are transmitted. However, some of the existing
algorithms, e.g. median threshold and continuous wavelet
transform, are difficult to be implemented on chip due to
demanding memory and computation power requirements.
Recently we have reported an ASIC chip based on EC-
PC that been successfully implemented on-chip [6]. The
feasibility of implementing EC-PC on-chip coupled with
the improved decoding performance reported in this study
suggest that EC-PC can be a valuable tool for implantable
neural interfaces.

V. CONCLUSIONS

We have used experimental data during a monkey be-
haviour task to show that EC-PC can produce higher mo-

tor decoding accuracy than other existing spike detection
algorithms. EC-PC can potentially improve the performance
of brain-computer interface applications. One direction for
future work is to use EC-PC in online motor decoding to
investigate its performance in a full online setting.
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