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Abstract— Brain-computer interface (BCI) could help dis-
abled patients with a broken neural pathway from brain to
limbs restore movements by directly exploiting brain signals.
Current laboratory BCIs on nonhuman primates (NHPs) were
usually started from open-loop hand control (HC) setup for
calibration and training, and then progressed to closed-loop
brain control (BC) setup without using natural limbs. Successful
transition from HC to BC necessitated motor leaning and
neural plasticity which might involve the cortical adaptation
induced by learning BCI. One useful strategy is to design neural
feedback procedure to assist such adaptation and learning.
We present an intracortical BCI on NHP with our designed
feedback training procedure. In particular, we showed the
motor cortical adaptation in terms of single neuron spiking
activity in vivo during the closed-loop motor learning induced
by our designed feedback training procedure. This experimental
work can complement the existing theoretical modeling works
on such closed-loop learning process.

Index Terms— Brain computer interface, maximal a poste-
rior, motor cortex, motor learning, neural decoding.

I. INTRODUCTION

Brain-computer interface (BCI) reads the neural signals
from the brain and directly translates them as commands to
an external device to help the disabled patients bypass the
broken neural pathway from brain to limbs [1]. During the
last decade, several groups have demonstrated the capability
of extracting cortical neuronal activity from motor areas of
brain for controlling computer cursor or robotic arm (see
a recent review in [2] and more references therein), which
showed great promise of BCI for such disabled patients.

Usually the BCI was started in open-loop setup through
hand control (HC). It may use use some apparatus like joy-
stick to provide calibration data for training. After training,
the joystick was removed from the monkey’s access for
instructing the context of brain control (BC). It has been
reported that the different contexts of control could introduce
the change of neuronal tuning characteristics [3]–[5] and
the BC immediately following HC was usually unsuccessful
presumably the change of the context was too sudden [5].
Successful transition from the context of HC to BC neces-
sitates the motor learning which may induce adaptation in
the cortex [6]. There was a hypothesis [7] that the subjects
may benefit from the feedback which trades feedback bias
for motivation and success in the skill acquisition process,
but only limited evidence was observed for it on EEG based
BCI. In contrast, similar assisted feedback training principle
was introduced for spiking [5], [8] and ECoG [9] based BCI,
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respectively, to help monkeys and patients successfully learn
the context of BC and thus modulate their neural activity
in closed-loop setup without using natural limb movement.
Recently, [10] compared open-loop simulation and closed-
loop experimental data, and showed the monkey could learn
to compensate for certain types of bias in linear neural
decoders. [11] further introduced a Bayesian framework
to explicitly incorporate the assisted feedback into it and
demonstrated its effectiveness through simulation. However,
it is still unknown the neural basis for inducing plasticity
and motor adaptation by means of BCI. We present here our
intracortical BCI on NHP with this feedback training and
motor learning, and in particular show the motor cortical
adaptation in terms of single neuron spiking during motor
learning from HC to BC in a single experimental day.

II. MATERIALS AND METHODS

All procedures and experiments described here were ap-
proved by the Singapore Health Services Institutional Animal
Care and Use Committee and conform to the Guidelines for
the Care and Use of Laboratory Animals.
A. Behavior Task

A male rhesus macaque was trained to perform the center-
out reaches to three peripheral targets evenly spaced in the
upper half-circle presented on a computer screen mounted
vertically in front to it. The monkey was seated in a primate
chair while his shoulder was abducted 90 degree and his
elbow was supported by the primate chair, and was trained
to use a joystick to control the computer cursor to reach
three peripheral targets (right = 0 degree, forward = 90
degree, left = 180 degree) mainly by his wrist. Reaching
to the left/right targets required wrist flexion/extension and
to the forward target required ulnar deviation. The computer
cursor movement speed was set constant for each target. In
addition, the monkey was also trained to stop movement
by holding the joystick at the neutral position. Such task
design, i.e., the three directions of targets and the stop state,
was mainly inspired by our further experiment on the self-
driving mobile robot [12]. The feedback of joystick control
was displayed as white circular cursor while the peripheral
targets were displayed as a yellow square of larger size.
Every trial started with acquisition of the computer cursor
and waited the cue for a incoming reaching target chosen
pseudo-randomly. After the target cue, the monkey has 4 sec
to reach the target and hold for 0.2 sec for a successful trial
to get a liquid reward.
B. Neural and Kinematics Recordings

We used the same recording apparatus as described previ-
ously [12]. Briefly, four floating microelectrode arrays (Mi-
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croProbes, MD, USA) were implanted anterior to the central
sulcus in the proximal arm region of the contralateral primary
motor cortex (MI) to the trained (right) wrist/arm. Total 96
single-electrode were available with tip impedance of ∼ 0.5
MΩ. Neuronal extracellular activities were simultaneously
recorded with a Plexon data acquisition system (Plexon,
TX, USA) with 40kHz sampling of extracellular voltage
waveforms. Spike sorting was performed manually at the
beginning of neural recording to build the templates and later
was automatically done by Plexon online sorter and fixed
thereafter in all sessions.

Analog joystick signals accompanying the overt wrist
movement made by the monkey were also recorded from
Plexon system and synchronized with neural recordings. Four
different classes of movement were identified by the joystick
signals, which represent right/left/forward movement and
stop. During offline processing and building neural decoder,
the segments of sorted neuronal spiking activity given these
four different classes were extracted as inputs for the decoder
with the corresponding class labels. During closed-loop brain
control sessions, the class labels were defined as the three
reaching targets of different directions.

C. Neural Decoder

Probabilistic inference based methods have been widely
used in machine learning and emerged in neuroscience for
neural decoding. We employed the maximal a posterior
(MAP) method with a parametric modeling for the proba-
bility distribution of spiking activity as in [13]–[15]. In the
framework of rate coding, it usually assumes that the condi-
tional probability distribution of binned spike counts follows
Poisson distribution [14], [15] given the target direction θ,

P (r|θ) = [f(θ)]r exp[−f(θ)]/r! (1)

where r is the spike count of a sorted single neuron within
a single bin. f(θ) is the empirical tuning curve of the sorted
single neuron. By further assuming conditional independence
of spike count rn of the n-th neuron, a joint conditional dis-
tribution for the recorded population {rn} can be obtained.

P ({rn}|θ) =
N∏

n=1

[fn(θ)]
rn

rn!
exp[−fn(θ)] (2)

In fact, the spike count correlation coefficients are generally
very small among cortical neurons within time interval
of a few hundred milliseconds [14]–[16] and thus such
conditional independence is a reasonable approximation.
Moreover, we define a log likelihood (LLH) function L(θ)
for the population as taking log of P ({rn}|θ) and further
removing the terms of independent on θ as follows.

L(θ) =

N∑
n=1

Ln(θ) =

N∑
n=1

rn log[fn(θ)]−
N∑

n=1

fn(θ) (3)

Given recorded population of neuronal spike counts {rn},
the movement direction can be inferred through MAP.

θ̂ = argmax
θ

P (θ|{rn}) = argmax
θ

P ({rn}|θ)P (θ) (4)

Assuming a uniform prior P (θ) over the targets, the decision
rule of (4) is equivalent to the maximal likelihood estimate

θ̂ which can be equivalently and more efficiently computed
by using the LLH function L(θ).

θ̂ = argmax
θ

P ({rn}|θ) = argmax
θ

L(θ) (5)

Notice that the LLH function of (3) is linear on the spike
counts rn given the neuronal tuning curve, i.e., a weighted
average over spike counts. In this essence, it is similar to
other linear classifiers such as Fisher linear discriminant and
support vector machine. However, different from other linear
classifiers, the weight for each sorted neuron in the Poisson
decoder is fully determined by the tuning curve of itself.
In addition, a neural network model has been described in
[17] to perform the probabilistic computation implicitly by
spiking neurons. Here, we are particularly interested in the
motor cortical adaptation and learning with respect to such
decoder in the closed-loop BCI.

D. Assisted Feedback Training in Closed-Loop
During the assisted feedback training, we modified the

neural feedback computed from our neural decoder (5) to
assist the cursor movement towards the correct direction. The
previous works on velocity decoding [5], [8], [9] designed
the assistance by blending the neural decoded velocity with
an attracting velocity towards the correct target during the
entire trial. Different from that, we designed the assistance
by conditioning on the neural decoded direction in which
only when the decoded direction θ̂ is different from the
target direction θtarg, the forthcoming neural feedback θfb

would be modified in a probabilistic sense with strength s,
i.e., Pr(θfb = θtarg|θ̂ ̸= θtarg) = s, with s ∈ [0, 0.8].
This time multiplexed feedback design blending brain and
assistance control effectively ensured an overall success rate
of ≥ 70% in a session which could keep the monkey engaged
and motivated. The hypothesis of this biased feedback was
to shape the monkey’s behavior and neural modulation by
operant conditioning. As the performance improved, the bias
was gradually reduced to zero in which the cursor control
was solely from our neural decoder.

III. RESULTS AND DISCUSSION

We have built an intracortical BCI with the Poisson
decoder for a rhesus monkey to learn the closed-loop BC
on the center-out task. The input vector {rn} to our neural
decoder was the spike counts of the online automatically
sorted units with a time bin of ∆t = 500 ms. For continuous
control to reach targets, the decoder was operated in 20 Hz
(i.e., every 50 ms) on the time bin without any time lag.

Here, we reported the results of multiple experimental
sessions within a single day. We trained our decoder during
HC session by estimating the tuning curves fn(θ) of sorted
neurons (n = 43). After that, we started closed-loop BC
sessions by removing the joystick from monkey’s access.
The neural feedback for controlling the computer cursor
movement was firstly dependent on both the assisted feed-
back training and our neural decoder, and was later solely
determined by neural decoder when setting s = 0. During all
the BC sessions, the spike sorter and the neural decoder were
fixed to allow us studying the cortical adaptation induced by
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(a) Decoding Probability.
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(b) Contribution to Population.
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(c) Spike Count Distribution over Trials.

Fig. 1. Single neuron (unit 28) spiking adaptation for the target direction of 0 degree (data set C20141024).

BCI1. The following results for these BC session data were
computed offline by restricting decoder ouputs only to three
targets, i.e., renormalizing the probabilities by excluding the
stop state. In this dataset, we have 104, 100 and 96 successful
BC trials for directions of 0, 90 and 180 degree, respectively.
A. Improvement of Brain Control by Assisted Feedback

Fig. 1 shows a typical example of single-neuron exhibiting
spiking adaptation during closed-loop BC sessions. We show
the correct decoding probability P (θ|r28) computed offline
by this sorted neuron alone. Note that although the assistance
feedback training was applied when s > 0, here we only
showed the decoding probability before feedback assistance
and thus truly reflected the ongoing neural activity and its
BC performance. The decoding probability for each trial
was computed as the arithmetic mean of the decoding
probabilities for all the bins within a given trial. Fig. 1
shows all successful trials to the direction of 0 degree. The
unfilled symbols before trial 0 (at the left gray solid vertical
line) in Fig. 1(a) show the results from the HC session for
comparison. All the filled symbols represent the results from
BC sessions. The right gray dot-dash vertical line shows the
end time of the feedback training and after that the monkey
took full control of cursor by the neural decoder (s = 0).
In between were the feedback training sessions where the
gray dash line showed the assistance level s. We fitted the
linear regression line shown overlaid in red. The correlation
coefficient is 0.63 and it is statistically significant based on
its p-value. Although at the beginning of BC sessions (a few
tens of trials), this neuron performed worse than the HC
session, it slowly improved its decoding performance along
the feedback training trials. After about 50 trials, it almost
reached the level of HC session and further improved which
clearly showed the motor learning process.

Besides the above single neuron analysis, we also show
how about this single neuron’s contribution to the population
decoding in Fig. 1(b), with similar format and notation as in
Fig. 1(a). For each bin, we computed the ratio between the
decoding probability by this neuron and the probability by
the whole population. Then for a given trial, we computed

1We did not wrap the monkey’s right arm during BC sessions, but the
monkey had learned the context of brain control after practicing for a while
and just rested his hand on the primate chair. Although we did not measure
the EMG signal of the monkey’s forearm muscle, we did not see any
movement of its forearm from the recorded video of the monkey’s behavior
and thus loosely confirmed the brain control without hand usage.

the geometric mean of all such ratios within the given trial
(For averaging ratios, geometric mean is more appropriate
and conservative than arithmetic mean.). As shown in Fig.
1(b), it can be seen similar trend as in Fig. 1(a). In addition,
this neuron had a significant contribution on decoding since
the ratio was often larger than one. By linear regression, it
also showed significant positive correlation with feedback
training trials on motor learning. We also show two other
neurons contributing to the other two directions of targets in
Fig. 2(a) and (c) and in Fig. 2(b) and (d), respectively, which
showed the similar trend as in Fig. 1.
B. Induced Adaptation of Single Neuron Spiking

Since the neural decoder was fully determined by the
neuronal spiking rate, we further investigated the adaptation
of single neuron spiking along with the above decoding
probabilistic analysis. Fig 1(c) shows the evolution of the
spike count distribution of this single neuron along with all
successful trials to the target of 0 degree. Each column of the
image shows the spike count distribution for a trial and we
also show the distribution of HC session for comparison. It
can be seen that at the beginning of BC sessions, the monkey
increased the spike count greatly which deviated the HC ses-
sion (decoder building session) and thus affected the correct
decoding performance by this neuron. After about 40 trials,
the monkey gradually declined the spike count and matched
that of HC session and thus improved the performance. We
also show the similar figures for two other neurons for the
other two targets in Fig. 2(d) and Fig. 2(f), respectively. In
particular, the neuron shown in Fig. 2(f) shows a different
learning pattern. It slowly increased its spike count after
about 50 trials to match that of HC session. This showed both
excitation and inhibition of neuronal spiking were involved
in the cortical adaptation during motor learning, and their
effects on neural decoding were similar.
C. Discussion

Although the principle of assisted feedback training were
reported in [5], [8], [9] to help monkey’s leaning, there are
still some questions about the neuro-feedback procedure to
affect the extent of induced cortical adaptation [7], [18] in
BCI community. Especially, the relation between feedback
accuracy and the induction of motor adaptation remains not
well understood, and the effectiveness of the biased feedback
was speculative [7] in EEG based BCI. In addition, the
learning process was not well reported partly due to the long
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(a) Decoding probability.
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(b) Decoding probability.
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(c) Decoding contribution.
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(d) Decoding contribution.
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(e) Spike count distribution.
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(f) Spike count distribution.

Fig. 2. Single neuron spiking adaptation for the directions of 90 degree
(unit 26) and of 180 degree (unit 27), respectively (data set C20141024).

period of days or weeks [19]. In this work, we showed a
relatively fast learning process for cursor control task. We
modified the assisted feedback training for our decoder by
controlled randomly biasing the decoding error towards to
the target. Our result clearly demonstrated its effectiveness
for motor learning, even just over about a few tens of trials.

Recently, the closed-loop learning also attracted attention
in theoretical modeling. [20] presented a feedback error
learning model to interpret the closed-loop learning pro-
cess. In addition, [11] introduced a Bayesian framework to
explicitly incorporated the assisted feedback training into
it, which demonstrated its effectiveness by simulation. Our
work complements these theoretical modeling studies by
showing the cortical adaptation in the level of single neuron
spiking in vivo. Due to the causal nature of the neural
decoder, the improvement on the performance was indeed
induced by the learning process during which the monkey
successfully modulated the spiking rates of some neurons.
Other forms of cortical adaptation were also reported in rats
on the simpler 1D task of two directions [21] for the motor
skill learning of real movements and in [22] for a BCI task
only conditioning on one preselected single neuron.

IV. CONCLUSION

This paper presented a time multiplexed assisted feedback
training for BCI and showed its effectiveness on motor
learning in closed-loop BCI of cursor control. In particular,
we showed the cortical adaptation in terms of single neuron
spiking activity in vivo during the closed-loop motor learning

induced by our designed feedback training procedure. Both
excitation and inhibition mechanisms were seen in single
neuron spiking, and their effects on neural decoding were
similar in terms of the correctly decoding probability and
the relative contribution to the population. It remains to be
understood the mechanism and function of cortical adapta-
tion in the levels of single neurons, populations and networks
when motor contexts change, given the same task.

ACKNOWLEDGEMENTS

We thank Duncun Ho, Clement Lim, Revethi, Yvonne Loh
and Koh Mingxuan for training monkeys and veterinary care.

REFERENCES

[1] J. P. Donoghue, “Bridging the brain to the world: a perspective on
neural interface systems,” Neuron, vol. 60, pp. 511 – 521, 2008.

[2] J. C. Kao, S. D. Stavisky, D. Sussillo, P. Nuyujukian and K. V. Shenoy,
“Information systems opportunities in brain-machine interface de-
coders,” Proc. IEEE, vol. 102, pp. 666 – 682, 2014.

[3] D. M. Taylor, S. I. Tillery, and A. B. Schwartz, “Direct cortical control
of 3D neuroprosthetic devices,” Science, vol. 296, pp. 1829 – 832,
2002.

[4] M. A. Lebedev and M. A. L. Nicolelis, “Cortical ensemble adaptation
to represent velocity of an artificial actuator controlled by a brain-
machine interfaces,” J. Neurosci., vol. 25, pp. 4681 – 4693, 2005.

[5] M. Velliste et al., “Cortical control of a prosthetic arm for self-
feeding,” Nature, vol. 453, pp. 1098 – 1101, 2008.

[6] J. N. Sanes and J. P. Donoghue, “Plasticity and primary motor cortex,”
Annu. Rev. Neurosci., vol. 23, pp. 393 – 415, 2000.

[7] A. Barbero and M. Grosse-Wentrup, “Biased feedback in brain-
computer interfaces,” J. NeuroEng. Rehabil., vol. 7, pp. 1 – 4, 2010.

[8] J. L. Collinger et al., “High-performance neuroprosthetic control by
an individual with tetraplegia,” Lancet, vol. 381, pp. 557 – 571, 2013.

[9] A. G. Rouse, J. J. Williams, J. J. Wheeler and D. W. Moran, “Cortical
adaptation to a chronic micro-electrocorticographic brain computer
interface,” J. Neurosci., vol. 33, pp. 1326 – 1330, 2013.

[10] S.M. Chase, A. B. Schwartz and R. E. Kass, “Bias, optimal linear
estimation, and the differences between open-loop simulation and
closed-loop performance of spiking-based brain-computer interface
algorithms,” Neural Networks, vol. 22, pp. 1203 – 1213, 2009.

[11] Y. Zhang, A. B. Schwartz, S. B. Chase and R. E. Kass, “Bayesian
learning in assisted brain-computer interface tasks,” in Proc. Int. Conf.
IEEE EMBS, San Diego, CA, USA, Aug. 2012, pp. 2740 – 2743.

[12] Z. Xu et al., “On the asynchronously continuous control of mobile
robot movement by motor cortical spiking activity,” in Proc. Int. Conf.
IEEE EMBS, Chicago, IL, USA, Aug. 2014, pp. 3049 – 3052.

[13] R. S. Zemel, P. Dayan, and A. Pouget, “Probabilistic interpretation of
population codes,” Neural Computation, vol. 10, pp. 403 – 430, 1998.

[14] N. Hatsopoulos, J. Joshi, and J. G. O’Leary, “Decoding continuous
and discrete motor behaviors using motor and premoter cortical
ensembles,” J. Neurophysiol., vol. 92, pp. 1165 – 1174, 2004.

[15] G. Santhanam et al., “A high-performance brain-computer interface,”
Nature, vol. 442, pp. 195 – 198, 2006.

[16] K. Padmanabhan and N. N. Urban, “Intrinsic biophysical diversity
decorrelates neuronal firing while increasing information content,”
Nature Neurosci., vol. 13, pp. 1276 – 1282, 2010.

[17] T. D. Sanger, “Neural population codes,” Curr. Opin. Neurobiol.,
vol. 13, pp. 238 – 249, 2003.

[18] M. Grosse-Wentrup, D. Mattia and K. Oweiss, “Using brain-computer
interfaces to induce neural plasticity and restore function,” J. Neural
Eng., vol. 8, pp. 1 – 5, 2011.

[19] K. Ganguly and J. M. Carmena, “Emergence of a stable cortical map
for neuroprosthetic control,” PLoS Biol., vol. 7, pp. 1 – 13, 2009.
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