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Abstract— A common problem in Brain-Machine Interface
(BMI) is the variations in neural signals over time, leading to
significant decrease in decoding performance if the decoder is
not re-trained. However, frequent re-training is not practical in
real use case. In our work, we found that a temporally more
robust system may be achieved through the use of wavelet
transform in feature extraction. We used wavelet transform
coefficients as means to detect spikes in neural recordings, in
contrast to conventional amplitude threshold methods. Using
offline data as the preliminary testbed, we showed that de-
coding based on firing rates determined from four levels of
wavelet transform decomposition resulted in a decoder with
6-12% improvement in accuracy sustained over four weeks
after training. This strategy suggests that wavelet transform
coefficients for spike detection may be more temporally robust
as features for decoding, and offers a good starting point for
further improvements to tackle nonstationarities in BMI.

I. INTRODUCTION
Brain-Machine Interfaces (BMI) has the potential to be

developed into assistive technologies for patients with severe
motor disabilities by translating their thoughts to control
external devices. Such devices, which include computers [1],
[2], robotic arms [3], [4] or wheelchairs/mobile platforms
[5], [6], can give these patients the ability to accomplish
tasks that they would otherwise be unable to. In a typical
BMI system, there are five key components, namely, 1)
the signal acquisition system, 2) signal pre-processing, 3)
feature extraction, 4) decoding algorithm and 5) control
interface to the external device [7]. Using existing neural
recording devices, our work primarily focuses on the feature
extraction and decoding algorithm (3 and 4) to achieve
optimal performance and robustness in the BMI decoder.

In our work, we focused on intracortical BMI system,
where signals are recorded from the motor cortex. The
development of multi-electrode arrays has given us access to
intracortical recordings, thereby allowing us to record single-
unit spiking activity of neurons. Many BMI algorithms have
used neural firing rates as inputs, given that there has been
strong foundation in the neural tuning between firing rates
and directions [8].

However, BMI systems may not be temporally stable.
This variability in recordings may occur for a variety of
reasons, from variations in behavior, micro-movements in
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the implant to changes in electrode impedance during chronic
implantation [9]. As a result, the BMI decoder would result in
degraded performance over time in the absence of re-training
[11]. However, constant recalibration and re-training is not
practical during actual deployment as it causes inconvenience
and frustration to the user.

One strategy is to investigate the extraction of features
that are temporally more stable. Given that neural recordings
contain spikes against large background noise, a robust yet
simple spike detection would help in BMI performance. In
this paper, we propose the use of wavelet transform as a sim-
ple feature extraction method. This paper presents our initial
findings on the relevance of wavelet transform coefficients
(WTCs) for spike detection in intracortical BMI decoders. In
our offline tests based on pre-existing dataset collected, we
found that decoders using firing rates determined from spikes
in WTCs may be temporally more robust than using firing
rates from conventional amplitude threshold methods, and
can sustain a higher performance across weeks after training.

II. PRELIMINARIES
A. Wavelet Transform

Wavelet transform is a time-frequency analysis tool that
decomposes signals into a set of wavelets, which are wave-
forms with compact support. Such a decomposition provides
information on different frequency sub-bands while preserv-
ing its temporal information. This information is obtained
through the convolution of the signal and a wavelet function,
which is a scaled and shifted version of the wavelet basis
(also termed as mother wavelet). Scaling by geometric series
of 2 at each level of decomposition is commonly used,
particularly for discrete-time signals.

In this respect, wavelet transform resembles short-time
Fourier transform in providing frequency information over
time; however, due to the scaling of wavelets at each de-
composition level, wavelet transform provides high temporal
resolution for high frequency components and high spatial
resolution for low frequency components. In this work, we
are focusing on the high frequency components. Further-
more, the convolution with a well-selected wavelet would
aid in highlighting neural spikes and suppressing background
noise. We chose ‘symmlet4’ as our wavelet basis, as it has
been described to be the optimal representation of neural
signals amongst well-established wavelet types [12].

In traditional discrete wavelet transform, the outputs are
decimated (i.e., down-sampled) by two at each level without
causing any loss in information. However, such a scheme
results in the loss of the shift-invariant property of the
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Fig. 1. Comparison of spikes detected in bandpass-filtered data to those
detected in WTCs detail levels 1 to 4 (high frequency components)

wavelet transform, which would affect the accurate temporal
localisation of spikes. Hence, we adopt the use of stationary
wavelet transform (SWT), where the output is not decimated.
This results in redundancy in data, but is shift-invariant and
thus a more reliable representation of the spikes present.

The use of wavelet transforms is not new to neuroscience
and BMI. In neuroscience, wavelet transforms have been
used for spike detection [12], [13], spike sorting [14] and
denoising of neural signals [15]. In BMI, it has been used
with EEG and ECoG recordings to capture oscillatory com-
ponents with good temporal resolution [16], [17]. However,
the use of WTCs in intracortical BMI has not been well
studied. The key contribution of our work is in showing
the improvement WTC-based spike detection can offer to
intracortical BMI performance and robustness, without the
need for further intensive processing such as spike sorting
or signal reconstruction from the WTCs.

B. Feature Extraction with Wavelet Transform

We propose the use of wavelet transform for spike detec-
tion due to its ability to localise high frequency information
in the signal. At lower detail levels (higher frequency bands),
the coefficients correspond to spiking activity, wherein the
presence of a spike (similar in shape to the wavelet) cor-
responds to a large coefficient. Therefore, we can deploy
a threshold on the WTCs to detect spikes and obtain their
respective spike timings.

In this work, we took the first four detail levels of WTCs.
This results in four times as many features. Given that each
detail level corresponds to the convolution with differently
scaled wavelets, differently shaped spikes in the raw signal
may be captured as spikes in certain detail levels but not
in others. Figure 1 is a representative window of the spikes
detected through WTCs, compared to conventional bandpass-
filtering and amplitude threshold. Note that this is not a
robust spike sorting process based on matching waveforms or
features, but would provide a quick and simple way of detect-

ing spikes and differentiating distinctly different waveforms
from a single recording channel. However, the relationship
between spikes in raw recording and the profile in its four
detail levels may require further study and characterization
to better understand the kinds of features WTCs can capture.

In addition, we report that the use of WTCs can provide
spike timings without the need for reconstruction for each
frequency sub-band. Firing rates based on spike timings
determined by WTCs can be used for decoding with compa-
rable performance, and may be more robust to any inter-day
variations in the raw signal.

III. PROPOSED DECODING ALGORITHM

A. Dataset

The performance of the decoding algorithm was as-
sessed through offline tests with datasets collected from one
macaque monkey. Details of the experiment are described in
[6]. Briefly, the intracortical neural data was obtained from
a macaque, implanted with multi-electrode arrays and seated
on a robotic platform. The animal was trained to control
the robotic platform with a 3-direction joystick to follow
one of four commands: turn right for 90◦, turn left for 90◦,
move forward for 2m, or stay still for at least 5s (right, left,
forward and stop respectively). The data used was collected
over seven different days within a two-month span. The data
from each experimental day contained four to five sessions,
each session with 20 successful trials (5 in each direction).
All sessions were conducted with the monkey controlling the
robotic platform using a joystick.

For our offline analysis, our goal was to develop a high
performing classifier that can translate the monkey’s neural
data into its control intent at every 100ms timepoint. The
ground truth of the monkey’s intent was obtained from the
joystick position.

B. Workflow

The offline decoding was tested on MATLAB (MathWorks
Inc, Massachusetts, USA). The raw data was pre-processed
to obtain the corresponding neural recording signals (100
channels), the accompanying joystick position data and the
experimental session data (such as trial start and end times).

First, we establish the conventional method of calculating
firing rates. The raw signals are filtered with a 2nd order
elliptic bandpass filter with passband frequencies from 300
to 3000Hz, 0.1dB passband ripple and 40dB of stopband
attenuation. Spikes are detected through a simple amplitude
threshold using data from the first 30s from the respective
sessions, wherein the threshold value for the channel i is
determined using the following expression [14]:

T hri = 5∗median{|xi|}/0.675 (1)

where xi are the values in the recorded signal from channel
i. The time associated with negative crossings from the
threshold (i.e., spikes with amplitude less than negative of
the threshold) was determined, and the number of spikes
detected in each 100ms window gave the firing rates. We
also calculated the firing rate in 500ms moving window at
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every 100ms. The latter strategy has been empirically shown
to perform better than decoding with non-overlapping 100ms
bins. It is believed that the inclusion of such long history
may be more resistant to noise and provide more accurate
information on the directional intent. However, we note that
there is a compromise in refresh rate of the control com-
mands, and that the response time to changes may be slowed
due to the effects of longer history in the features used.
Additionally, noting that not all channels contain information
for the decoding, we only used features that have non-zero
in-class variance for each of the four classes.

For the new method proposed here, the key modifica-
tion from the conventional method is the replacement of
the elliptic filter with an SWT. We performed SWT and
obtain the first four detail levels (discarding the remaining
approximate level). The undecimated fast wavelet transform
function ufwt from the LTFAT toolbox [18], [19] (also listed
as SWT in the accompanying description) was used to filter
the raw neural signals. Since the transform assumes periodic
extension, the signal was de-meaned and zero-padded with
half the signal length before and after the signal prior to
taking the wavelet transform. Subsequently, we detected the
spikes through thresholding, using the same equation above,
and calculated the “firing rates” per detail level for each
channel at every 100ms non-overlapping window.

With the conventional firing rates (for 100ms non-
overlapping and 500ms moving windows) and the WTC-
based firing rates (for 100ms non-overlapping bins), we used
linear discriminant analysis (LDA) to perform classification.
Since we are investigating the temporal robustness, our
training set comprises of all observations from sessions
recorded on the first three experimental days, and the testing
set is each session for the remaining four experimental days
after, which span across one month.

IV. RESULTS AND DISCUSSION

Accuracy was calculated by the percentage of observations
at each 100ms timepoint that were correctly classified, based
on the ground truth from the joystick position. Figure 2
shows the comparison of 4-class decoding accuracy for each
untrained experimental day; the error bars correspond to the
standard deviation of accuracy scores across the sessions in
the given experimental day. The classifier performance on
trained days is also reported using a 10-fold cross-validation.

Generally, on the untrained days, the use of WTC-based
firing rates resulted in improved decoding accuracy over
conventional firing rates for both 100ms and 500ms windows.
The accuracy with our algorithm is about 60 to 70%. As
mentioned in our previous study [6], we require roughly 70%
accuracy in decoded commands directed towards the target
direction for good control of the mobile platform. We rec-
ognize that, despite the improvement in decoding accuracy
when WTCs were used, the performance for untrained days
falls slightly short of 70%. One of the contributing factors
may be the nonstationarity in one of the classes, the ’stop’
command, as discussed in [20].

Fig. 2. Comparison of 4-class decoding accuracy between the use of
conventional firing rates (100ms and 500ms windows) and WTC-based firing
rates (100ms bins). Significant difference in mean accuracy across sessions
in a given day is denoted with (*) for p < 0.05 and (**) for p < 0.01.

Fig. 3. Comparison of 3-class decoding accuracy, by removing ‘stop’
observations, between the use of conventional firing rates and WTC-based
firing rates. Significant difference in mean accuracy across sessions in a
given day is denoted with (*) for p < 0.05 and (**) for p < 0.01.

Therefore, we re-investigated the decoder performance
for decoding the 3 directions (leaving out observations
corresponding to the ‘stop’ command). Figure 3 shows
the comparison of the 3-class decoding accuracy. The im-
provement when WTCs were used was significant, wherein
the untrained days show an average of approximately 80%
accuracy that is sustained across the four experimental days.
The performance is a significant improvement over using
conventional firing rates, particularly in the later experimen-
tal days. However, the omission of any class other than ’stop’
did not result in similar improvements in decoding accuracy.

We noted that LDA with WTC-based firing rates is capable
of classifying the three different directions (‘left’, ‘right’ and
‘forward’), but performs worse when the fourth command
(‘stop’) is included. Hence, we believe the use of WTC-
based spike detection and LDA could serve well as a 3-class
decoder for active movement commands, but the decoding of
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‘stop’ may require a different set of features or strategy, such
as the inclusion of state classifier in addition to a directional
decoder [21], presenting an opportunity for further work.

This demonstration has also shown that we can use WTCs
for decoding without the need for spike sorting methods or
reconstruction of signal for each level. The potential benefit
of using WTC, as demonstrated in this offline analysis, is
in a more prolonged performance that lasts for up to four
weeks. This improvement could be due to a more precise
spike detection, particularly on some detail levels, which may
be more robust against noise and artifacts. However, further
characterization of how WTCs help with spike detection is
required to understand the underlying mechanism for the
decoder’s improvement. We also recognize the need for more
data across a longer period to assess the extent of robustness,
as well as the need for more subjects to demonstrate the
generalizability of our algorithm.

One of the key concerns using WTC-based spike detection
is the processing time of the signals. As there are four times
as many features to process and different filter functions
used, preliminary measurements of execution time shows
that feature extraction may take about nine times as long
(approximately 1.1s to process 1s worth of a session’s data
with WTCs, versus about 0.12s to process 1s data with con-
ventional methods). Nevertheless, we have not made attempts
to optimize the code for speed and efficiency, especially for
operations like spike detection and filtering. Furthermore,
in the offline tests, we processed data as a whole, rather
than treating them as realtime streams. Other strategies,
both algorithmic and hardware solutions, can potentially be
adopted to ensure fast performance. Some design changes
to the algorithm is also needed to ensure filter causality and
realtime processing for implementation in online BMI.

All in all, this work demonstrated significant improve-
ments to performance through the simple introduction of
WTC-based spike detection. The inclusion of wavelet trans-
form can easily replace the filtering step or be used in
conjunction with current processing workflow. We believe
that this could be one of key strategies for processing of raw
data that will ensure long-term high performing decoder for
BMIs, while subsequent strategies such as semi-supervised
learning and other adaptive algorithm can be adopted to
further improve decoding performance.
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