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Abstract— In Brain Computer Interfaces (BCIs), with mul-
tiple recordings from different subjects in hand, a question
arises regarding whether the knowledge of previously recorded
subjects can be transferred to a new subject. In this study, we
explore the possibility of transferring knowledge by using a
convolutional network model trained on multiple subjects and
fine-tuning the model on a small amount of data from a new
subject, thus, reducing the calibration time by reducing the time
needed to record data and train a model. Our results show a
significant increase in 4-class classification accuracy on the BCI
IV-2a competition data, even when a small subset of the data
is provided for training.

I. INTRODUCTION

Transferring knowledge from subject to subject is a chal-
lenging problem in Brain Computer Interface (BCI) systems
due to anatomical differences between the subjects [1] or
statistical variations in the data [2]. The main goal in
most transfer learning solutions proposed in literature is to
reduce the calibration time needed to gather new information
regarding a new subject. Recording data is time consuming,
meaning it is mentally exhausting for the subject which in
turn affects the quality of the data recorded. Therefore, it is
highly favourable if the information from other subjects can
be used to reduce the calibration time (i.e. use a lower of
number samples from the new subject and/or using a pre-
trained model).

As discussed in a survey by Jayaram et. al [2], there
are mainly two approaches in transfer learning: domain
adaptation (DA) or rule adaptation (RA). In DA, the solution
proposed for transferring knowledge between subjects is
bringing their data into a common space. These algorithms
have mainly focused on finding spatial filters that are com-
mon amongst subjects [3], [4] and have been the to-go
method for transfer learning. In RA, the classifier is changed
based on a distribution of classifiers between the subjects[5].

In this study, we are taking a RA-based approach to the
problem of classifying motor imagery EEG signals: rather
than bringing the data to a common space, we train a neu-
ral network model that captures information from multiple
subjects and stores the information as the parameters of the
network. This network has been trained to classify these
data correctly to their corresponding classes. The choice
of a neural networks as the classification model is due to
their high capacity and flexibility in design [6]. Such a high
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capacity network cannot be trained in the presence of low
number of samples and is sure to over-fit. To our knowledge,
this is one of the first attempts to use neural network based
method for transfer learning in BCI.

After training, the network is then transferred to a new
subject and fine-tuned to match the subject’s classification
needs. These needs can either be using less data to reduce
the calibration time in a single session or using the fine-
tuned model to transfer to a new session of the same subject
(session-to-session transfer).

Based on the above, in this paper, we propose a pipeline
for EEG which:

• Extracts EEG representations from multiple subjects
independently (III-A)

• Uses a deep convolutional neural network to train a
model on the multi-subject data (IV-B)

• Transfers the model parameters to train/fine-tune on the
new subject’s data (III-B)

• Utilizes the labels estimated by the transferred model
to regularize the training/fine-tuning process (III-B)

Using this pipeline, we have achieved significant accuracy
increase in same session transfer when a low number of
samples is used to train the model. A schematic of the
pipeline can be seen is figure 1.

II. DATA

We are using the BCI competition IV-2a dataset [7] which
is 9-subject 4-class motor-imagery dataset with 72 samples
per class per session. Each trial contains a cue in which after
the subject performs 4 seconds of motor imagery for each of
the classes (right hand, left hand, tongue and feet). The data
recorded contains two sessions with the first session being
the train data and second session being the test data in the
original competition.

III. METHODS
A. EEG Representation

We have used the FBCSP[8], [9] algorithm to extract
the representation similar to our previous paper [10]. Using
the FBCSP algorithm, we first find the spatial filters and
frequency bands that are contributing to the discriminance
between the classes based on the log-energy features. The
selected spatial filters are then applied to the original time-
series data and the envelope is extracted using absolute value
of the analytic signal. The envelope power is considered as
the feature.

It should be noted that, similar to the FBCSP algorithm,
the energy of each channel is divided by the energy of the
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Fig. 1. Schematic of the algorithm proposed in this paper.

paired channels from the CSP algorithm. This means the
end representation of the data is relative energy, not absolute
energy. If absolute energy is used instead of relative energy,
there is no guarantee that the energy content of one subject
is similar to another subject. But when relative energy is
used, the data is scaled into a space in which the data is
more similar. This can be a simple step towards adapting
the domain of the data without considering the data of other
subjects.

The EEG representation extraction procedure can either
be applied to each session individually or all sessions can
be viewed as one. Using multiple individual sessions and/or
union of multiple sessions can be used to increase the number
of data in the multi-subject setting when the session of the
other subjects are not important (e.g. when training a model
for the new subject). For example, if using data from subject
x to transfer to subject y, it is not important which session
of subject x is used.

After extracting the representation, the average channel
means are deducted and a scale of one over the median
maximum of all trials is applied on the data.

B. Transfer Learning & Knowledge Distillation

By not using data from the new subject, we have a metric
of what the model is learning about the new subject data by
looking at the classification accuracy of the new subject’s
training set and by looking at the distribution of the labels
for each of the trials. In other words, we will have two sets
of labels for the training data of the new subject: one set

which are the hard labels that have been provided based on
the task (hard labels) while the other set of labels have been
estimated by the pre-trained model on the subjects other than
the new subject (soft labels). The soft labels contain useful
information regarding the distribution of the data: if the hard
and soft labels are not similar for a certain trial, this shows
that there is a possibility that the subject has not performed
well in that specific trial. In order to utilize the soft labels,
we have turned to the knowledge distillation technique.

The knowledge distillation technique by Hinton [11], [12]
introduces an algorithm to train networks based on the hard
labels and also soft predictions that have been made about
the data using a previously trained network. Given that the
hard labels (task-related) of trial xi is yi and the soft label
is si, the loss function for training the classifier f can be
defined as :

f∗ = argmin
f

1

N

N∑
i=1

[λ(L(yi, f(Xi)))

+ (1− λ)(L(si, f(Xi)))] (1)

In equation 1, L is the loss function. The last layer of
function f is a softmax function (σ(x)) and si is the output
of another network (ft) which has been passed through an
additional softmax with a temperature (si = σ(ft(Xi)/T )).
In our proposed algorithm, ft is the network that has been
trained on all the other subjects’ data. λ is a constant value
that balances the weight of the algorithm between the soft
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label and hard label. The temperature, T , is used to decrease
or increase the similarity between the classes. If T is high,
the probability of all classes become even. If T is low, one
class becomes more probable than other classes and becomes
similar to hard labeling. We have chosen a T = 0.25 for the
results of this paper.

IV. RESULTS

A. Data Preparation

Regarding the FBCSP method, we have used 9 frequency
bands, 2 pairs of CSP features and a one-versus-rest strategy
to calculate the spatial features. This leads to 32 spatially
filtered channels. The 4 second motor imagery period has
been used for calculating the CSP spatial filters and also
been used for the envelope features. With a sampling rate of
250Hz, the number of samples is 1000. Because the envelope
feature is baseband, the number of samples can be decreased
to 40, yielding a 32× 40 dimension for the input feature.

During the pre-training stage of the classifier, the FBCSP
algorithm is performed on each session individually and also
the union of sessions for subjects other than the current
subject, resulting in ∼ 2000 samples of training data per
class. Although we can use the data from all subjects, in
this study we have decided to use the data from subjects
that have high session-to-session performance. Therefore, the
number of samples used for training the networks is ∼ 1000
per class. The subjects used to train the network are subjects
1, 3, 7, and 8. Naturally, when the network is fine-tuned on
the above subjects, the subject’s data will be excluded from
pre-training.

B. CNN Architecture

Using multi-subject data increases the number of samples
used for training. This gives the opportunity to utilize classi-
fiers that have high learning capacity such as Convolutional
Neural Networks (CNN)[13]. We have utilized the model
shown in figure 1. The convolutional neural network config-
uration is brought in table I.

TABLE I
DETAILS OF THE CNN ARCHITECTURE

Layer # Layer Type Patch size / Stride Hidden Unit
1 Convolution 4× 1/2× 1 32
2 Convolution 3× 1/2× 1 32
3 Convolution 3× 1/2× 1 32
4 Convolution 1× 32/1× 1 32
5 Linear - 128

Assuming the input contains two dimensions of channel
and time (X ∈ RC×T ), the CNN contains two types
of convolution: temporal (Layers 1,2,3) and channel-Wise
(Layer 4). Temporal convolution applies kernel independent
of which channel it belongs to and channel-wise convolution
mixes the channels in the channel dimension. Convolution
and linear units are without bias. After each linear unit,
there are batch normalization[14] and ReLU [15] activation
units. After each convolution layer there is a ReLU layer
only. The main reason for this design choice is that batch

normalization, in images, tends to normalize the activation
layers in each individual pixel. In signals, this is not an
desired operation.

The MLP contains a single linear layer with the hidden
unit number of 128. The input to the MLP unit is the average
of the energy envelope of each of the channels over time.
Therefore, the dimension of the input to the MLP layer is
32 and the output is 128.

After concatenation of the features from the MLP and
CNN models, a vector of 256 features is created and fed
into a linear classifier. The model is then trained given a KL-
Divergence loss function and using the Adam optimization
algorithm[16]. It should be emphasized that the network
is optimized jointly; This means that the error is back-
propagated from the loss function to the MLP and CNN
networks.

To increase the classification accuracy and decrease the
initialization dependency, an ensemble of 5 networks with
different initialization is trained. The Torch7 [17] deep learn-
ing software has been used to design and train the networks.
To compare the classification performance, we have set the
baseline to be a SVM classifier operating on the FBCSP
energy features, extracted from the time interval of 0.5 to
2.5 s after the cue.

C. Same Session Subset Results

For the results of this section, we use the second session
data provided for all subjects. We extract 5, 10, and 20
samples per class from the session and use the rest of the
samples are used for evaluation. The results for each of the
sample sizes can be seen in Table II. Note that these results
are not cross-validation results but rather a small subset of
the data selected randomly. As shown in the table, for λ = 1,
in all sample sizes, using transfer learning boosts the average
accuracy over subjects. This increase of accuracy can be also
seen in each subject individually in almost all subjects. At
the same time, for smaller samples, using a smaller value for
λ shows better results. This can be contributed to the fact
that for smaller sample sizes, such as 5 and 10 samples per
class, are not sufficient for fine-tuning and a regularization
is needed to reduce over-fitting.

Based on the Wilcoxon signed-rank test, the increase
in the accuracy for 5 and 20 samples is significant with
a bound of p < 0.05, but for 10 samples the Wilcoxon
score is not low enough for the significance bound of p <
0.05. This can be solved by increasing the capacity of the
network or increasing the number in the ensemble which
will be explored in future studies. Furthermore, the difference
between the best λ and λ = 1, is not significant based on the
Wilcoxon score. A significant difference relative to changes
in λ may be seen in cross-validation results.

An interesting observation in table II is related to some
subjects that have relatively high performance in the SVM,
subjects 3, 8, and 9. There performance increase is in the
order of 9 to 16 percent increase in the 5 sample case. This
is an indication that their data is very similar to other good
subjects. As a result, the accuracy given by fine-tuning the
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TABLE II
RESULTS FOR SMALL SUBSET SELECTION FROM THE SECOND SESSION OF THE BCI COMPETITION DATA

5 Samples 10 Samples 20 Samples
SVM λ = 1 λ = 0.75 SVM λ = 1 λ = 0.5 SVM λ = 1 λ = 0.75

Subject 1 54.48 53.36 54.85 60.89 62.10 59.27 69.71 72.12 70.67
Subject 2 29.10 29.85 29.85 36.69 39.52 38.71 47.12 49.04 49.04
Subject 3 50.75 76.87 76.87 71.37 77.42 78.23 80.77 84.13 83.65
Subject 4 39.55 41.79 41.04 33.47 51.61 48.79 54.33 63.46 59.13
Subject 5 27.99 35.07 35.45 44.76 43.55 44.35 58.65 58.65 56.73
Subject 6 29.10 30.22 30.22 29.84 28.23 30.24 35.10 38.46 38.46
Subject 7 52.61 54.48 54.85 59.27 84.27 83.87 75.48 87.50 86.54
Subject 8 46.64 56.34 56.72 63.31 66.13 66.13 77.40 83.65 83.65
Subject 9 58.21 69.03 69.03 72.18 73.39 75.81 82.21 90.38 91.35
Average 43.16 49.67 49.88 52.42 58.47 58.38 64.53 69.71 68.80

model on a small sample can be an indication of whether
the subject is able to perform motor-imagery well.

V. CONCLUSIONS

This paper proposes a new pipeline for classifying 4-class
motor-imagery data using transfer learning. The results show
a significant increase in both small subset calibration in the
three cases shown. Although Training neural networks is time
consuming but when using for deployment, each forward
pass of a sample is in the order of milliseconds. Therefore,
are pipeline proposes a accurate and fast deep neural network
model that can deployed after a few samples have been
obtained.

There are a few parameters that have been pre-selected
such as the temperature value for soft labels or the number
of hidden nodes in the MLP and/or CNN. Cross-validation
must be done to effectively select the parameters. Amongst
the parameters, the parameter λ is not selected and only the
best values of lambda have been reported and due to being
useful for small sample size, it is a priority to find a way to
optimize the value.
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