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Abstract—Invasive brain-machine-interface (BMI) has the 

prospect to empower tetraplegic patients with independent 

mobility through the use of brain-controlled wheelchairs. For 

the practical and long-term use of such control systems, the 

system has to distinguish between stop and movement states 

and has to be robust to overcome non-stationarity in the brain 

signals. In this work, we investigates the non-stationarity of the 

stop state on neural data collected from a macaque trained to 

control a robotic platform to stop and move in left, right, 

forward directions We then propose a hybrid approach that 

employs both random forest and linear discriminant analysis 

(LDA). Using this approach, we performed offline decoding on 

8 days of data collected over the course of three months during 

joystick control of the robotic platform. We compared the 

results of using the proposed approach with the use of LDA 

alone to perform direct classifications of stop, left, right and 

forward. The results showed an average performance 

increment of 22.7% using the proposed hybrid approach. The 

results yielded significant improvements during sessions where 

LDA showed a heavy bias towards the stop state. This suggests 

that the proposed hybrid approach addresses the non-

stationarity in the stop state and subsequently facilitates a more 

accurate decoding of the movement states. 

I. INTRODUCTION 

Invasive Brain-Machine-Interfaces (BMI) are able to 
translate neural data into control signals with good spatial 
resolution and high signal-to-noise ratio, empowering 
tetraplegic patients with independent mobility through a BMI 
wheelchair control system [1]. Such systems have been 
attempted using electroencephalography (EEG), however 
performance has been limited due to the poor spatial 
resolution and low signal-to-noise ratio of EEG [2-4]. 

 For a BMI wheelchair control system to be viable in a 
daily setting, it is important for the system to be robust and 
not require constant retraining over long periods of time [5]. 
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Moreover, it is essential that the system has the capacity to 
distinguish between the stop state and movement state, such 
that the different movement states may be differentiated more 
accurately. This isolation of the stop state is necessary due to 
its inherent instability and tendency to drift across days [6].  

In this paper, a decoding algorithm which integrates 
Random Forest (RF) and Linear Discriminant Analysis 
(LDA) classifiers is proposed to perform the aforementioned 
tasks. This approach was applied on offline Neural signals 
from a macaque trained to move a robotic platform using a 3-
direction joystick. Results suggest that in cases where the 
LDA classifier becomes biased towards the stop class, RF 
remains unbiased and provides a more accurate distinction 
between stop and movement. 

II. METHODS 

A. Data Acquisition 

All procedures and experiments were approved and 
conducted in accordance with the standards of the Singapore 
Health Services Institutional Animal Care and Use 
Committee (Singhealth IACUC #2012/SHS/757). Neural 
signals were acquired from a young male adult macaque 
(Macaca fascicularis) implanted with arrays of intracortical 
microelectrodes (96 channels) in the hand/arm area of the 
primary motor cortex. Signals were acquired at a sampling 
rate of 13 kHz while the macaque performed the task of 
controlling a robotic platform, upon which it was seated, in 
the directions of left, right, forward by using a joystick 
controller, as well holding still for stop, forming four discrete 
classes. Further details of the experimental setup have been 
outlined in a prior work [7]. All analyses of neural signals 
were performed offline. 

B. Preprocessing 

Raw signals were band-pass filtered between 300 to 3000 
Hz and spikes detected via threshold-crossing criterion 
selected for each channel [8]. No spike sorting was 
performed as studies have found no significant difference 
between spike sorting and thresholding [8, 9]. For each 
channel, firing rates were computed using an equally-
weighted moving average with a kernel width of 500ms and 
time steps of ∆t = 100ms. For classification, data collected 
from 8 days were utilized, spanning over the course of three 
months. The model was retrained for each day using data 
from the preceding three days in a causal manner e.g. days 1-
3 data were used for training for testing on day 4 data, days 
2-4 data were used for training for testing on day 5 data.  

C. Classifier Design 

To illustrate the necessity of separating the stop class 
from the rest, a four-class LDA decoder was compared to a 
three-class LDA decoder, with the stop class data removed 
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from the three-class decoder. The resulting model was tested 
on only movement data. The kappa coefficient measures the 
agreement between two observers; in this case between the 
correct output and the decoder output. The kappa coefficient 
was chosen as a performance measure to account for chance 
performance [10], a common measure used in BCI [11]. As 
shown in Fig. 1, a more accurate decoding of left, forward, 
and right is achieved when the stop class is removed. The 
same test was conducted with the other three classes, and 
lower accuracies were achieved, further indicating the poorer 
performance of the classifier in distinguishing stop from the 
movement classes. The paired t-test was used to test for 
statistical significance in the comparison between the two 
decoders and a significant difference was found on days 2, 3 
and 5 (p-value < 0.05) , with the poorest performance on day 
3 due to the similar class covariance and mean, resulting in 
poor separation.  

 

 

 

 

 

 

 

 

  

Figure 1. Performance of movement decoding without and with the inclusion 
of stop data using linear discriminant analysis.  

The figure above suggests that it is the stop class that 

mainly adds non-stationarity, and hence the ability to 

distinguish between stop and movement classes is important 

for long-term use of the decoder. In view of this, we propose 

a hybrid RF+ LDA decoder. For performance comparison, a 

four-class LDA decoder was used, described in algorithm 1, 

as has been performed in classification studies of intracortical 

BMI [7, 12]. An LDA decoder searches for a linear 

combination of features for the best separation between 

classes. For the hybrid decoder, RF, which operates by fitting 

decision trees and averaging to improve accuracy and control 

over-fitting, was first used as a binary decoder to separate the 

stop and movement state, following which LDA was 

performed on data from the predicted movement states 

mainly to determine the directions left, right, and forward. As 

the amount of data increases, the heterogeneous nature of the 

stop data would lead to the biasing of linear decoders, as we 

can no longer expect the data to be linearly separable. In 

contrast to LDA, which has low variance and is prone to high 

bias [13, 14], RF, a non-linear classifier, is capable of 

achieving both low variance and low bias [14-16]. RF was 

therefore chosen as the classifier for discriminating between 

stop and movement. This algorithm is described in algorithm 

2.  

Algorithm 1: Linear Discriminant Analysis classifier 

algorithm 

Input: A set of training data {X, α} 

• : a set of single session 

firing rates for each channel, where D is the total 

number of sessions with N channels and T sample 

points. 

• : true class labels at each sample point i, 

where . 

Output: Predicted class labels P 

• : predicted class labels at each sample 

point, where . 

The LDA algorithm is briefly described as follows [17]: 

• Step 1: Using the training data, a 2Hz threshold is 

used to identify dropped channels and remove 

them, and the remaining channels vectorised and 

used as features. 

• Step 2: Scatter between class defined by sample 

covariance of the estimated class means 

• Step 3: Eigenvectors are computed for scatter 

matrices. 

• Step 4: Maximum separation found by transforming 

firing rates with the eigenvectors and projecting 

onto a new subspace.  

Algorithm 2: Hybrid RF+LDA classifier algorithm 

Primary Input: A set of training data {X, α} 

•  : a set of single session 

firing rates for each channel, where D is the total 

number of sessions with N channels and T sample 

points. 

• : true class labels at each sample point i, 

where . 

Primary Output: Predicted class labels P 

• : predicted class labels at each sample 

point i, where . 

Secondary Input: A set of training data {Y, β}: 

•  : a set of single session 

firing rates for each channel, where D is the total 

number of sessions with N channels and S sample 

points, where S are the sample points with .  

• : true class labels at each sample point 

within new truncated space, where 

. 

Secondary Output: Predicted class labels Q 

• : predicted class labels at each sample 

point i, where . 

The hybrid algorithm is briefly described as follows: 

• Step 1: Using the training data, a 2Hz threshold is 

used to remove channels with firing rates that fall 

under the threshold, and the remaining channels 

vectorised and used as features. 
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• Step 2: Random forest constructs a multitude of 

decision trees randomly restricted to be sensitive to 

particular parameters [18]. 

• Step 3: Mode of the classes predicted by individual 

trees is used as the predicted class for each sample 

point, forming the primary output [18]. 

• Step 4: Data corresponding to predicted movement 

classes is used as input for an LDA classifier 

• Step 5: Through the steps mentioned in algorithm 1, 

left, right, forward are predicted with the 

occasional stop, forming the secondary output. 

• Step 6: The primary and secondary outputs are 

combined to give predictions for all T sample 

points. 

These algorithms were performed in an offline analysis of 

data collected from the macaque. Preprocessing was done in 

Matlab (Mathworks Inc, Massachusetts, USA) and 

classifiers were implemented in Python 3.  

III. RESULTS 

The results are structured in two parts. First, we show a 

comparison between RF and LDA in acting as binary 

classifiers for distinguishing between stop and movement. 

Second, we present the results of the implemented hybrid 

RF+LDA decoder, using LDA as the baseline for 

comparison, demonstrating that in cases where LDA is biased 

towards the stop class, the addition of RF as a preliminary 

binary decoder may help to improve performance. Paired t-

test was used to test for statistical significance in all 

comparisons and indicated with an asterisk where significant 

(p-value < 0.05): 

A.  Performance Comparisons of Random Forest and Linear 

Discriminant Analysis for Binary Classification 

Percentage accuracy of the predictions was used as a 

performance measure in evaluating RF and LDA as binary 

classifiers. For comparison the dataset was resampled such 

that the data for both stop and movement classes were 

balanced. Chance performance for decoding accuracy is 50%. 

We found that the performance of RF was comparable or 

higher than that of LDA across five experimental days, as 

seen in Fig. 2, suggesting that RF is a better choice for 

distinguishing between the two classes. 

 

 

 

 

 

 

 

 

 

Figure 2. Performance of RF and LDA as binary classifiers distinguishing 
between stop and movement states. 

B. Performance Comparisons of LDA+RF and LDA as 

Four-class Decoders 

We further evaluated that a hybrid of LDA+RF could 
provide a more accurate decoding for entire experimental 
sessions. The data were resampled such that the four classes 
were balanced. Chance performance for decoding accuracy is 
25%. Across the five experimental days, we found that the 
hybrid decoder could give a higher performance on 
experimental day 3, illustrated in Fig.3, with average 
performance of 59.8% (± 3.13) for the hybrid decoder and 
37.1% (± 3.08) for the LDA decoder. This improvement in 
decoding corresponded with a significant improvement in RF 
performance in distinguishing between stop and movement 
(Fig. 2). 

 

 

 

 

 

 

 

 

 

Figure 3. Performance of hybrid random forest + linear discriminant analysis 
decoder as compared to linear discriminant analysis in four class decoding. 

Examining the specific breakdown of decoded directions 
via normalized confusion matrices, as shown in Fig. 4A and 
4B, we found that performance improvements were seen in 
cases where the LDA was initially biased towards the stop 
class. In such cases RF remained unbiased and subsequently 
LDA could distinguish more accurately between left and 
right in the second step of the hybrid decoder. 

However, in cases where the bias did not lie with the stop 

class, the hybrid decoder performed at a comparable level to 

LDA, providing no significant improvement, as seen in Fig. 

4C and 4D. 
 

IV. DISCUSSION 

Our results suggest the binary classification of stop and 
movement before further classification has the potential to 
increase the performance of the decoding, when using 
decoding models built from data collected from previous 
days. The problem of non-stationarity, especially in the stop 
class, was addressed in part by using a hybrid decoder 
approach. This study represents the significance of using a 
separate decoder for the isolation of the stop class to achieve 
better decoding for the movement class. In the absence of an 
overt movement during the stop task, greater diversity was 
observed in recorded neural signals, leading to drift across 
experimental sessions, reducing decoding performance [6].  
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Figure 4. Sample normalized confusion matrices measuring true labels 
against predicted labels. A) LDA decoding for session 15111601. B) 
RF+LDA decoding for session 15111601. C) LDA decoding for session 
15102606. D) RF+LDA decoding for session 15102606.     

A possible reason for the higher accuracy of RF during 
the binary classification is the non-linearity of the model, and 
the robustness of the algorithm against bias [15, 16]. The 
diverse nature of the stop class across sessions and days 
would lead to a heterogenous dataset that a linear classifier 
such as LDA may under-fit. This framework of a hybrid 
decoder may therefore be further refined using non-linear 
decoders with higher capability of distinguishing between 
stop and movement states. In an ideal situation, the LDA in 
the second step would be completely reduced to a three-class 
classifier with no false negatives for the movement class, 
resulting in greater improvements in performance, as 
suggested in Fig. 1. 

Improved decoding of the stop vs. movement classes 
reduces effects of non-stationarity in the stop class, allowing 
for a lower frequency of retraining, and a more practical 
implementation of the wheelchair control system in daily life. 

V. CONCLUSION 

For a brain-controlled wheelchair to be compatible with 

activities of daily living, it is essential that the decoding 

algorithm can distinguish between active and inactive states 

with high accuracy with low incidence of false positives. To 

address this need, we report a hybrid method that has the 

potential to increase the performance of the decoding. This 

study represents one approach in addressing the non-

stationarity of the stop state during classification for a 

wheelchair application. Further investigations should be 

carried out on identifying a model which best captures the 

distinction between movement and stop states, and bringing 

this method online for testing in a closed-loop experiment, 

considering the potential added computational complexity.  
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