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Abstract—Recently, noninvasive brain stimulation is gaining
a lot of attention in stroke rehabilitation. In this paper, we
investigate the effects of transcranial direct current stimulation
(tDCS) on the motor-imagery brain-computer interface (MI-
BCI) performance of stroke patients. To this end, we processed
the EEG data collected from a randomized control trial (RCT)
study of 19 stroke patients grouped into tDCS and sham. An
ensemble method for feature extraction is proposed in this study
that combines shrinkage regularized Common Spatial Pattern
(CSP) features from sensor-space and sLORETA-based source-
space EEG across ten rehabilitation sessions. The classification
results of MI vs. Idle state in stroke patients show that the
concatenated features from both the sensor- and source space
EEG provided an average cross-validation accuracy of 64.5%
which is statistically significant (p ¡ 0.001) compared to either
using source or sensor-space features alone with at least 3%
improvement in the accuracy. Further, our findings suggest that
the effect of tDCS on the stroke recovery is pronounced in
subjects whose delta and alpha band power during the post-
tDCS intervention is significantly higher as compared to before
intervention. The group-averaged sLORETA activation results
showed significantly more number of dipoles activated in the
tDCS group as compared to sham. In summary, our study paves
a new way to analyze the neural correlates of the MI-BCI
performance for stroke rehabilitation.

I. INTRODUCTION

With the advances in Brain-computer interfaces (BCI), it
has been demonstrated that the BCI can be used to decode
and translate human intentions into control commands [1]. As
such, the motor-Imagery (MI) BCI paradigms are extensively
explored in healthy as well as stroke subjects with varying
types of movement imagination [2], [3]. Although MI-BCI can
facilitate the user to modulate his/her sensorimotor rhythms,
there are no changes in the cortical excitation. Since the motor
recovery is crucial in stroke rehabilitation, the behavioral
effects of noninvasive brain stimulation on stroke subjects
are studied recently [4], [5], [6], [7] to see if the stimulation
alters the motor performance by exciting the motor regions.
Most widely known noninvasive brain stimulation methods are
transcranial direct current stimulation (tDCS) and transcranial
magnetic stimulation (TMS) [4], [6], [8]. Both tDCS and

TMS-based studies conventionally use direct current impulses
and magnetic impulses respectively to stimulate certain areas
of the brain. In this paper, we study the effects of tDCS on
the MI-BCI performance of stroke subjects in a randomized
control trial (RCT) setting. Here, the subjects are randomly
allocated into two groups: One group received the treatment,
whereas another group is considered to be a control group (or
sham). In the present context of tDCS intervention for stroke
recovery, the group receiving the brain stimulation is called
‘tDCS’ group, and the control group is ‘sham.’ To describe
briefly, sham stimulation remains off for the remainder of the
stimulation period after emitting a brief current for a very
short period (typically, few seconds). When using the sham
stimulation, the person does not have the knowledge that they
are not receiving prolonged stimulation. Therefore, we can see
how much of an effect is caused by the current stimulation as
we compare the results in subjects exposed to tDCS to that of
subjects exposed to sham. Therefore, we planned to validate
the effect of tDCS on the MI-BCI performance by using
cortical source EEG features to classify MI and Idle states. Our
hypothesis is that the anodal tDCS as an excitatory stimulus
will result in better cortical excitation in the motor region, thus
facilitating better discrimination between MI and idle state.
Our preliminary studies on the healthy subjects have shown
that the EEG source space can result in more discriminating
features [9], [10] in movement-related tasks. However, there
have not been many studies investigating the use of cortical
source features in stroke patients. Since the stroke patients
have a very limited movement, our goal is to provide useful
features that can classify movement intentions with a high
accuracy. To this end, we extracted the spatiotemporal features
from the sensor space as well as the cortical source space and
compared them by evaluating the crossvalidation accuracies
across experimental sessions.

In the previous study on the same dataset [7], Ang et.al
performed online classification of MI-BCI using Filter Bank
Common Spatial Pattern (FBCSP) features based on session-
to-session transfer learning. Since this dataset was not studied



from the cortical source perspective, our objective in current
work is to investigate the neural correlates of differences
between the tDCS and sham group as well as the motor
recovery of stroke patients.

To the best of our knowledge, there are no studies which
have used source-space EEG features to study the MI-BCI
for stroke recovery with tDCS intervention. In this study,
we examined the efficacy of MI vs. Idle classification in the
tDCS and sham subjects by extracting and classifying source-
space EEG features. The remainder of this paper is as follows:
Section II describes the Participants, tDCS setup, Experimental
procedure, and EEG data acquisition and preprocessing. Sec-
tion III describes the EEG feature extraction and classification.
Section IV exemplifies the results and discussion. Section V
concludes this paper.

II. EXPERIMENTAL SETUP

A. Participants

A randomized control trial (RCT) was conducted at National
University Hospital (singapore) in which a total of 42 chronic
stroke patients were recruited for this study. Five subjects
did not meet the inclusion criteria of at least nine months
post stroke onset. Out of the 37 subjects who went BCI
screening, 11 subjects did not meet the BCI performance
criteria (above chance-level performance), and seven subjects
declined to participate further. So, the remaining 19 subjects
were randomized into two groups: ‘tDCS’ and ‘sham.’ Fugl-
Meyer Assessment (FMA) upper extremity scores of these
subjects ranged from 11 to 45 (out of the maximum points
of 66). Higher FMA scores indicate better motor functioning.
An informed consent from all the subjects was obtained as
per the principles of the National Healthcare Group Domain
Specific Review Board of Singapore.

B. Transcranial Direct Current Stimulation

The stroke patients in the ‘tDCS’ group were subjected to
direct current stimulation for 20 minutes before beginning the
MI-BCI experiment. For the ‘sham’ group, the current was
applied only for 30 seconds, as it has been reported not to
alter the cortical source excitability and also the duration is
enough to blinding the subjects from knowing whether they
are in the ‘tDCS’ or ‘sham’ group. For specific details of the
tDCS procedure, please refer to [7].

C. Experimental Procedure

A total of 10 rehabilitation sessions were conducted over
a period of 2 weeks (1st week: 1-5 sessions; 2nd week: 6-
10) sessions). Before the rehabilitation session, a calibration
session was conducted wherein the EEG data were used to
train a model for an online MI-BCI with a robotic feedback
[7]. Each rehabilitation session comprised of therapy and
evaluation portion wherein the therapy portion had repetitive
trials of MI task, and the evaluation portion had randomized
order of ‘MI’ and ‘Idle’ tasks. During the ‘MI’ task, subjects
were instructed to imagine the movement of their stroke-
affected hand toward the target indicated on the 8-point

Fig. 1. Experimental timeline of evaluation portion in each MI-BCI rehabil-
itation session

clock-face game [11] while their affected hand was strapped
to the MIT-MANUS robotic exoskeleton, that restricted the
volitional movements of the stroke-affected hand. Since the
MIT-MANUS robot was programmed to give a feedback based
on the output of MI task, subjects were instructed to keep
repeating the MI until they saw the visual feedback on whether
the trial was successful or a failure. If a trial was correctly
classified as MI, then the MANUS robot would move from
the center towards a predefined target. In this paper, we used
the data from the evaluation portion only as it had trials
corresponding to both the classes for evaluating the binary
classification. In each session, evaluation portion had 20 trials
of ‘MI’ and 20 trials of ‘idle’ task, totaling to 200 trials of each
class in 10 sessions per subject. An experimental timeline of
an evaluation portion is shown in Fig. 1. After the rest period, a
visual cue was shown to indicate the preparation for the trial,
after which another visual cue appeared corresponding to a
randomized order of MI or Idle task. We used the EEG data
from 1s before the stimulus-onset until 3.5s after the onset for
the offline analysis.

D. EEG Data Acquisition and Preprocessing

Continuous EEG data were recorded from 27 channels using
the Neuroscan Nuamps EEG amplifier. Sampling frequency
was 250Hz. EEG trials were bandpass filtered between 0.5-
40Hz, followed by common-average referencing. Independent
component analysis was performed using an extended infomax
algorithm in the EEGLAB toolbox [12], followed by automatic
artifact removal using the MARA(Multiple Artifact Removal
Algorithm) plugin of EEGLAB [13].

III. METHODOLOGY

A. EEG Source Imaging

The objective of our work is to observe the cortical features
in the stroke subjects after tDCS vs. sham intervention. Since
the sensor-space EEG do not reveal much information of
cortical activity, we propose to employ source localization
techniques to study the cortical source space. EEG source
imaging comprises of 2 stages: Forward modeling and inverse
modeling. Mathematical model of EEG source imaging is
expressed as,

Ω = ΘfJ + ε (1)



Fig. 2. Overview of the procedural block diagram of EEG data processing in this study.

where, Ω is the scalp EEG recorded from N sensors, Θf is
the lead field matrix (LFM) of size N ×m (where, m� N).
Θf describes the propagation of current from source dipoles
(m) to each scalp electrode (N ). J is an m×t matrix of source
dipole time series. ε is the noise perturbation matrix with a
trial-based noise-covariance matrix computed during the pre-
stimulus baseline period. Lead field matrix (Θf ) is computed
during the forward modeling as described below.

1) Forward Modeling: A 3 layered shell model is as-
sumed for the forward modeling with the conductivity values
of 0.0125 S/m (Skull), 1 S/m (scalp), and 1 S/m (cortex)
[14]. Symmetric Boundary Element method (sBEM) in the
OpenMEEG toolbox [15] is used to implement the forward
modeling that interpolates the triangular meshes to form the
head model.

2) Inverse Modeling: To get the time series information of
source dipoles J(m, t) (where, J is the dipole matrix shown
in (1), we need to solve the inverse problem. However, the
number of cortical sources (m) obtained modeled using a
forward model vastly outnumber the number of scalp elec-
trodes (N ), which is an ill-posed problem. Therefore, this
under-deterministic problem needs to be solved using the head
model and volume conductivity values as a priori information.
There are several techniques to solve this inverse problem [16],
and we chose standardized Low-Resolution Electromagnetic
Tomography (sLORETA) as a nonparametric inverse method
[17] which is reported to give a zero-localization error. As a
current density estimation method, sLORETA is a regularized
variant of minimum norm estimation (MNE) that localizes the
sources using the images of standardized current density. At
each dipole, the current density value is computed using the

minimum norm estimate as expressed in (2),

ĴMNE = ΘT
f (Θf .Θ

T
f + αIN )−1Ω (2)

where, Θf is the lead field matrix, and Ω is the scalp EEG as
mentioned earlier, IN is an Identity matrix of size N ×N .

B. Dimension Reduction

Since the cortical source-space EEG is of very high di-
mension (15002 voxels × 1126 time samples × 20 trials ×
2 classes) per session; feature extraction would be computa-
tionally prohibitive. Therefore, we use a priori information of
regions of interest (ROI) and the state-of-the-art dimensional-
ity reduction method that preserves the local information in a
low-dimensional subspace.

1) Region of Interest (ROI): It has been well-established
in the literature that the neural population in sensorimotor
cortex is responsible for MI and ME tasks. Therefore, we
down-sampled the spatial information by picking the voxels
that belong to Brodmann Areas BA4 and BA6 that covers
the primary motor cortex (M1), premotor cortex, (PMc) and
somatosensory cortex areas.

2) Locality Preserving Projections: Even after selecting
an ROI, the number of voxels belonging to these ROIs was
more than 1000. Therefore, we further reduced the number
of dimensions to have much more tractable computation in
the feature extraction stage. We used Locality Preserving
Projection (LPP) as a dimension reduction technique that
is insensitive to outliers and other noise as compared to
traditional method like Principal Component Analysis [18].
It preserves the neighborhood of data as the nearest neighbor
search in a low-dimensional subspace will fetch similar results



to that of high dimensional data [18]. In the current study, the
number of reduced dimension is set at 30 which is comparable
to the dimensions (N=27) of the sensor-space EEG.

C. An Ensemble Feature extraction method using Shrinkage-
regularized Filter Bank Common Spatial Patterns (SR-FBCSP)

To evaluate the MI-BCI binary classification performance,
we used a regularized version of a popular Common Spatial
Pattern (CSP) algorithm, a classical Rayleigh quotient method
[19]. Extending the traditional approach of computing CSP
using the sensor-space EEG, we propose to use ensemble
features by concatenating the features from both sensor, and
source space EEG. In principle, CSP maximizes the inter-class
(between-class) variance and minimizes the intra-class (or
within-class) variance. The objective function of conventional
CSP algorithm J(w) is as shown in (3),

J(w) =
wTC1w

wTC2w
(3)

where, w denotes the spatial filters, Ci denotes the covari-
ance matrix computed for all the trials belonging to class i.
Traditionally, an empirical covariance is used as the covariance
matrix. Although it is unbiased and usually works well, it
leads to imprecise estimation when the sample size (in this
context, number of trials) is small [20]. Therefore, we use the
Shrinkage regularized CSP in which a structured estimator
(Cc) is used instead of an empirical covariance matrix Ci and
it is computed as shown in (4),

Cc = (1 − γ)Ci + γI (4)

where, γ is the shrinkage regularization parameter that
has analytical solution [20], I is the identity matrix. As the
traditional CSP computation in a single frequency band does
not reveal spectral information as much, a filter bank CSP
(FBCSP) was proposed in [21]. Based on this approach, we
filter the EEG in 10 non-overlapping filter bands ranging
from 0.5Hz to 40Hz (0.5-4Hz, 4-8Hz,...,36-40Hz) using a
Chebyshev type-II Infinite Impulse Response (IIR) filter with
zero-phase. Extending the resultant multiband filtered EEG,
we apply SRCSP- now called as SR-FBCSP. It projects the
input Xi(t) = RN×T (N channels ×T time samples in an ith

trial) into a spatially filtered subspace Z as, Z = W×X where
the columns of W ′ corresponds to the spatial filters. In the case
of source-space EEG, the input would be X ′i(t) = RN ′×T ,
where N ′ is the number of low-dimensional cortical sources.
The features are computed by log-normalizing the top and
bottom ‘m’ rows of Z as shown in (5),

Fp = log

[
var(Zp)/

i=2m∑
i=1

var(Zp)

]
(5)

Once these features are computed, we evaluate the classifi-
cation accuracies using Fishers Linear Discriminant Classifier
(FLD). The performance was evaluated in terms of mean
classification accuracy using 5 × 5 cross validation where the
data were split into 80% training and 20% testing repeated
five times.

IV. RESULTS AND DISCUSSIONS

A. Classification Performance

In this study, we proposed an ensemble feature method that
uses spatial features from both sensor and source domain to
classify MI vs. Idle state. The plot shown in Fig. 3 illustrates
session-wise 5 × 5 cross validation accuracies of all the
subjects across the two groups evaluated using different types
of features. In particular, we have evaluated the classification
accuracies for each session consisting 40 trials (20 MI, 20 Idle)
and performed session-wise 5 × 5 cross-validation. Subject-
specific accuracies for each session is averaged across all the
subjects from the same group (tDCS or sham) and is plotted
in Fig 3. For both groups (tDCS and sham), the SR-FBCSP
features from the sensor and the source space individually
were compared with the combined features. In this figure, x-
axis indicates the session index (1-10), and y-axis corresponds
to percentage classification accuracies averaged over the group
of subjects.

The ensemble features resulted in a higher classification
accuracy (64.42%) in tDCS group as compared to using either
sensor (58.47%) or source space features (61.48%) alone.
Similar is the observation in the sham group, although the
improvement in the classification accuracy using ensemble
features (58.67%) is not significant compared to either sensor
(58.04%) or source-space (58.04%) features in sham group
subjects. The performance of tDCS group was better than
that of sham group. Irrespective of the type of subjects
or feature space, there is no clear trend in the classifica-
tion accuracy over a period of 10 rehabilitation sessions,
although the grand-average classification accuracies across dif-
ferent types of features were significantly higher than chance
level accuracy. Post-hoc analysis (paired sample t-test) was
conducted to observe the efficacy of the proposed method.
The ensemble features resulted in a statistically significant
(p <0.001) improvement compared to the features from both
sensor and source space EEG in the tDCS group, but not in the
sham group (p=0.343). Similarly, the groupwise comparison
revealed that the MI vs. Idle classification accuracies in the
tDCS group are significantly higher compared to the sham
group (p < 0.001).

B. Spectral source power analysis

In addition to the classification accuracy, we also explored
the cortical source activation patterns across tDCS and sham
groups in different frequency bands. Since we defined an ROI
earlier, trial-averaged band power of time series information
in these ROIs were computed corresponding to the calibration
session that was commenced before the tDCS intervention
and the 10th session which is at the end of 2 weeks of
tDCS intervention. As a case proof, we studied source-space
EEG data of one of the subjects whose MI-BCI classification
performance, as well as FMA scores, was improved during
the intervention. We found that the average band power of
Delta (< 4Hz) and Alpha (8-12Hz) frequency bands were
significantly higher during the post-intervention as compared



Fig. 3. Group-average session wise 5×5 crossvalidation based binary classi-
fication accuracies of MI vs. Idle state using different types of features

to pre-intervention, based on the number of voxels that are
significantly different compared to the baseline. The results
are shown in Fig. 4 in which the thick line and shaded portion
represent the mean and standard deviation of source power of
all the dipoles belonging to an ROI determined earlier. Post-
hoc two sample t-tests revealed that the tDCS stimulation was
associated with significant band power increase (p < 0.001)
in both delta and alpha frequencies as compared to before the
intervention, which concur with the findings in [22].

Extending further, we studied the group-level neural patterns
by averaging the source activation across all sessions and
subjects in each group. In Fig. 5, we have shown the group-
averaged significant source activation based on the paired t-
test results at a significance level of 0.05. We found that the
number of significant voxels was higher in the tDCS group
as compared to the sham group. Interestingly, the significant
source dipoles are located in the central region of Brodmann
areas BA4 and BA6 which are associated with motor functions.
It is to be noted that the subjects received anodal tDCS (or
sham) stimulation only in the ipsilesional motor region. Since
there were almost equal number of subjects with either right
or left-hand stroke-affected, the group average did not reveal
any significant cortical excitation in either of the hemispheres.
Nevertheless, there is no conclusive causal interpretation of
whether the relatively stronger source activation in tDCS group
has implications on the MI-BCI performance as well as FMA
scores during the therapy.

C. Limitations

As is the case with any BCI study, there is a lot of both
intra-subject and inter-subject variability in this study as well.
Within each subject, there is a high variability in the MI vs.
Idle classification results performance across sessions. Further,
both the groups (tDCS and sham) showed a high variability in
the session-averaged classification results across subjects. In
the previous study [7], the model trained using the calibration
session data was transferred to each online session. Although
the session-to-session transfer may result in relatively lesser

Fig. 4. An illustrative example of comparison between post-tDCS intervention
and pre-tDCS intervention spectral source power - (a) delta frequency band
(0.5-4Hz) (b) alpha frequency band (8-12Hz). The time-series information
corresponds to the source activation in the predefined ROI (BA4 and BA6).

Fig. 5. Group-averaged sLORETA activation results during the MI trials in
(a) tDCS and (b) Sham group

variability as compared to cross-validation study, the classi-
fication results may not be necessarily better in the case of
session-to-session transfer. Since the classification accuracies
were computed session-wise, we suspect the training sample
size is not enough to obtain good classification accuracies.
It would be interesting to investigate robust transfer learning
algorithms in the future studies with multiple subjects and
sessions.

Also, we have used a subject-independent template anatomy



for the head model digitized based on a fewer number of
scalp EEG electrodes which is not ideal for good source
localization accuracies. Nonetheless, our study is not as critical
from an EEG source localization perspective as is the case
with epileptic studies where it is very crucial to achieve a very
high localization accuracy of detecting the seizure locations.
Further, our study is limited to a relatively fewer subjects and
therefore, we need to validate our findings from longitudinal
studies in the future. Although we have found that the tDCS-
intervention resulted in increase in the bandpower of delta and
alpha frequencies in the motor regions, we need to study the
causal evidence behind this observation.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we examined different types of spatial features
for classifying MI vs. Idle state in a randomized group of
stroke patients receiving noninvasive brain stimulation (tDCS
group) and another group receiving a placebo (sham group).
We found that an ensemble of features resulting from con-
catenated spatial features computed using sensor-space and
sLORETA-based source EEG gave us higher classification
accuracy as compared to using either sensor or source-space
features alone. Further, the spectral analysis in the Brodmann
Areas BA4 and BA6 showed significant increase in the band
power of Delta (<4Hz) and Alpha bands (8-12 Hz) during the
tDCS intervention. At the end of 2 weeks of tDCS interven-
tion, the tDCS group showed stronger cortical activation as
compared to the sham group.

In our future work, we intend to study the causal inter-
pretation of neural correlates of stroke recovery. The therapy
portion of the current dataset is not used for classification
as it has only one class (MI) and thus not used for any
analysis in this paper. However, the number of MI trials per
subject across all the therapy portions of rehabilitation sessions
(N=1600 trials) will allow us to generalize group-wise causal
inference of connectivity measures. Since it has been reported
in the literature that the stimulus-based causal interpretation
is empirically provable [23], our future work will focus on
encoding and decoding of neural correlates corresponding to
a given stimulus.
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