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Abstract— In this paper, we compared the performance of
a number of Diffusion Tensor Imaging (DTI) pre-processing
tools on a dataset of chronic subcortical stroke patients during
rehabilitation exercise. In the comparison, acquired Diffusion-
Weighted Images (DWI) are pre-processed by different pi-
pelines, which compose of different DTI pre-processing tools,
independently. And a DTI measure, FA (fractional anisotropy),
is derived from each processed image. Then, a group-based
DTI tractography analysis tool, Tract-Based Spatial Statistics
(TBSS), is used to localize brain changes in white matter that
correlate to the behavior changes during stroke rehabilitation.
Although the ground-truth of the dataset is unavailable, it can
be observed that there exist significant variations in the obtained
hot spot maps that come with different DTI pre-processing
pipelines. It suggests that the imaging technicians and scientists
should choose the tools carefully according to the acquisition
methods and parameters.

I. INTRODUCTION

During last two decades, Diffusion Tensor Imaging (DTI)
technique has been widely used to understand and track brain
recovery after stroke [1], [2] as it provides an unique capabi-
lity of detecting adaptive changes of structural connectivity
in brain. Especially, micro-architectural changes of the white
matter and neuronal fiber bundles that relate to motor system
is the major focus in the studies. However, DTI images
are always suffering from eddy current induced distortion
and subject movement during image acquisition process.
Removing or at least reducing the impact of the distortions
to an acceptable level, is vital to the reliability of the analysis
results, so many techniques have been developed [3], [4], [5].

Recently, a new type of distortion, CSF-contamination, has
drawn attention from researchers [6], [7], [8]. In previous
DTI distortion correction techniques, the diffusion displace-
ment profile in each voxel has been approximately described
by a Gaussian function. However, the approximation may
bring mismatches between non-gradient and gradient volu-
mes in CSF-grey matter boundary regions, especially in high
b-value (bval > 1000s ·mm-2) DTI images. An extrapolation-
based correction technique has been proposed by Nilsson
et al [8] to remove the impact of the distortion. Instead
of registering each gradient volumes to the non-gradient
reference image like most conventional techniques doing, in
the technique the correction is performed by registering each
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gradient volume to a middle image that are extrapolated from
the non-gradient reference image. In [8], Nilsson et al also
compared their technique with a conventional one [9] on a
dataset of DTI images acquired using high b-value imaging
protocol (up to bval = 2750s ·mm-2) on a number of PDD
patents. It showed that using extrapolation-based correction
technique it generated quite different DTI measures compare
to the conventional ones, which are FSL’s eddy correct [10]
and eddy [11]. However, as ground truth is almost impossible
to obtain for real-world clinical data, it is difficult to make
a solid judgment in the comparison on which technique has
a better performance.

In this paper, we further investigate the performance of
extrapolation-based distortion correction technique on a data-
set of chronic subcortical stroke patients during rehabilitation
exercise. The MRI images were acquired using quite com-
monly used protocols. Two widely used techniques, FSL’s
eddy correct [10] and the DTI pre-processing pipeline of
VISTASOFT’s MrDiffusion [12], are used in the comparison
as counterparts. In this paper they are denoted by EC and
MD, respectively. As Nilsson’s extrapolation-based distortion
correction technique can be used together with other DTI
distortion correction algorithms, it is combined with the
DTI pre-processing pipeline of VISTASOFT’s MrDiffusion
in this work. The motion artifacts, eddy-current and EPI
distortion can be firstly processed by MrDiffusion’s pipeline,
then extrapolation-based distortion correction technique is
used to further remove motion artifacts by introducing CSF-
contamination distortion correction. The third pipeline is
denoted as MD+EB.

In the comparison, the DTI images are first pre-processed
by the three pipelines independently. Then, the distortion-
corrected images are converted into DTI measures by FSL’s
dtifit tool [10], including Fractional Anisotropy (FA), Mean
Diffusivity (MD), etc. After that, FSL’s Tract-Based Spatial
Statistics (TBSS) group analysis tool [13] is applied on the
FA images of each pre-processed dataset to localise the brain
changes related to the changes of the patients’ behaviours
scores, Fugl-Meyer Assessment (FMA) [14], during stroke
rehabilitation.

II. MATERIALS AND METHODS

A. Subjects

The study was approved by the Domain Specific
Review Board (DSRB) of the National Healthcare
Group, Singapore (Clinical Trial Registration-
URL: http://www.clinicaltrials.gov. Unique identifier:
NCT01897025). Eighteen subjects (54.1±10.8 years old, 5
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Fig. 1. Timeline of motor function assessments and MRI scanning.

female), who had their first ever subcortical stroke more
than 9 months ago, that led to unilateral impairment of upper
extremity, were recruited with written informed consent.
They went through motor function and corticospinal
excitability assessments, study interventions and MRI
scanning following the timeline shown in Fig. 1. Among
the eighteen subjects, one subject failed his/her first MRI
scan, so totally 53 DTI scans and the correspondent FMA
scores were used in the comparison. In addition, 11 healthy
subjects (57.2±5.0 years old, 5 female) were recruited as
control. Two MRI scans (3 weeks apart) were conducted in
the healthy control group.

B. Motor function assessment

For stroke subjects, motor function of the affected arm was
evaluated by the upper extremity component of the FMA at
the initial screening, 1 week prior to, immediately after and
4 weeks after the training (Fig. 1).

C. MRI acquisition

MRI scanning was conducted on a 3T scanner (Sie-
mens, Germany) with a 32 channel head array coil. DTI
data were acquired with spin-echo EPI of 61 diffusion
sensitizing directions and 7 non-diffusion (B0) volumes,
bval=1000s ·mm-2, TR=8000ms, TE=87ms, and 2.3mm iso-
tropic resolution. This is a quite commonly used DTI ima-
ging protocol that is not fall in “high b-value” region. T1-
weighted images were acquired with a magnetization prepa-
red rapid gradient-echo (MPRAGE) sequence in the sagittal
view with TI=900ms, TR=1900ms, TE=2.5ms, and voxel
size=1mm isotropic. T2-weighted images were acquired with
fluid-attenuated inversion recovery (FLAIR) sequence in
the coronal view with TR=9320ms, TE=82ms, and voxel
size=0.9x0.9x3mm3. Stroke lesion masks were manually
labelled based on T2-FLAIR images by a radiological expert.

D. MRI image processing

The brain extraction for DTI, T1-weighted and T2-
weighted images were conducted by FSL’s bet tool [10] with
manual adjustment. For each patient subject, the lesion masks
were casted from T2-FLAIR image into T1-weighted image
by FSL’s linear registration tool (FLIRT), then into DTI non-
gradient reference image by ANTS’ non-linear registration
tool [15] to reduce the impact of EPI distortion in DTI
images. In EC pipeline, the reference image is the first B0
volume, and in MD and MD+EB pipelines, it is the “average”
of all 7 B0 volumes. The lesion masks on DTI images
were used in TBSS analysis to exclude the impact of lesion
when registering with the target image and the displaying

of final analysis results. For subjects with lesion on the left
hemisphere, images were flipped along the midline so that
the lesion appeared on the right hemisphere for all subjects.

E. DTI pre-processing

Default parameter settings and linear interpolation were
used in EC and MD pre-processing pipelines, as well as
the MD part of MD+EB pipeline. In EB part of MD+EB
pipeline, FSL’s FLIRT tool was used to match each gradient
image with its correspondent extrapolated reference image
with default parameter settings and linear interpolation. Then
the B-matrix is rotated by the linear registration result. It
worth pointing out that only DWI images are used as input in
EC pipeline, while MD and MD+EB pipelines use both DWI
and T1-weighted images as input, and alignment was conduct
between them. The functionalities of the three pipelines are
summarized in Table I.

TABLE I

FUNCTIONALITIES OF THE DTI PRE-PROCESSING PIPELINES.
EC MD MD+EB

Motion distortion correction yes yes yes
Eddy current distortion correction yes yes yes
B-matrix rotation no yes yes
CSF-contamination correction no no yes

F. DTI TBSS analysis

FSL’s TBSS pipeline was modified as shown in Fig. 2. In
order to remove the impact of stroke lesion in registration,
the target FA image was extracted from healthy control
group. When conducting registration from subjects’s (stroke
rehabilitation patients) FA image to the target, subjects’
lesion regions were excluded in the registration mask. Visual
inspection of each subject’s registered FA image in all three
pipelines revealed no noticeable misalignment.

Fig. 2. Flowchart of the modified TBSS analysis.

FSL’s “randomise” tool [16] with demeaning option was
used to find the correlation between the DTI FA images and
the FMA scores. Both Threshold-Free Cluster Enhancement
(TFCE) correction [10] and False Discovery Rate (FDR)
theory [17] are applied to correct the statistical analysis
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results. TFCE correction is conducted together with “rand-
omise” permutation interference. Then, FSL’s FDR tool is
applied to further adjust the TFCE-corrected results. Default
parameter settings and linear interpolation were used in dtifit
and TBSS pipelines, except a new threshold value of 0.15
instead of the default 0.2 is used in “tbss 4 prestats” when
conducting the projection of all subjects’ FA data onto the
mean FA skeleton. This is to include more micro-structure
details of FA image in the analysis. And it worth to emphasis
that exactly same TBSS pipeline and parameters are used to
analyze the three datasets that pre-processed by EC, MD and
MD+EB pipelines, respectively.

III. RESULTS

Figure 3 shows some TBSS statistical analysis results
(p< 0.05) on the same dataset but pre-processed by different
pipelines. The whole 3D t-test statistics image overlapped
with mean FA can be found in the supplementary for
better observation. The images were generated using FSL’s
visualization tools, and the regions that falling into lesion
areas were removed. The foreground color voxels are the
estimated regions that have high correlation with subjects’
behaviour scores. Yellow color indicates higher correlation
and red is comparatively lower. The background gray scale
image is the mean FA images of all patient subjects.

First of all, it can be observed that the mean FA image are
quite different among them. Because of the variation exist
in the DTI images that pre-processed by different pipelines,
different target FA image were obtained from healthy control
group in TBSS. And the variation are amplified during
registration process. Among the three mean FA images,
EC image contains more sparks. And comparing MD with
MD+EB, the mean FA image of MD+EB is sharper, which
indirectly suggests MD+EB has a better performance.

Second, the estimated behaviour-score-correlated regions
are very different, although some similar regions can be
found on some major tracts, such as forceps minor and
contralesional corticospinal tract. This suggests patients tend
to use the contralesional motor cortex to fulfill movement
functions and it is not desired for stroke rehabilitation pro-
cess. However, a strong correlation in ipsilesional corticospi-
nal tract, which lead to ipsilesional primary motor cortex can
be seen in EC, but no such observation can be found in MD
and MD+EB (Fig. 3(d)). In frontal lobe, activated regions
lead to somatosensory cortex can be found in EC result
on both hemispheres. While in MD and MD+ED longer
activated regions can be found in ipsilesional hemisphere. In
contralesional hemisphere, a small activated region can be
seen in MD result, but no such activation can be observed
in MD+EB (Fig. 3(a)(b)). Moreover, a large high-correlated
region can be found in MD in ipsilesional middle front gyrus,
but cannot be seen in EC and MD+EB (Fig. 3(c)). In Parietal
lobe, EC result shows hot spots lead to visual cortex in both
hemispheres, but no strong correlation can be found in MD
and MD+EB results. Obviously, quite different conclusions
can be drawn from these statistical analysis results, which
are based on same dataset with different pre-processing

pipelines. This brings confusion to the stroke rehabilitation
experts.

IV. CONCLUSIONS

In this paper, we investigate the performance of
extrapolation-based distortion correction technique on a da-
taset of chronic subcortical stroke patients during rehabili-
tation exercise. The extrapolation-based distortion correction
technique is combined with VISTASOFT’s MrDiffusion pi-
peline, and compared with FSL’s eddy tool and VISTA-
SOFT’s MrDiffusion pipeline. It shows that the combined
pipeline shows better pre-processing result. Further statistical
analysis of the pre-processed data using FSL TBSS tool
displays very different results. This shows how important
the pre-processing pipeline is. It suggests that the imaging
technicians and scientists should choose the pre-processing
tools carefully according to the acquisition methods and
parameters.
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[14] A. R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S. Steglind,
“The post-stroke hemiplegic patient. 1. a method for evaluation of phy-
sical performance,” Scandinavian Journal of Rehabilitation Medicine,
vol. 7, no. 1, pp.13–31, 1975.

[15] B. B. Avants, C. L. Epstein, M. Grossman, and J.C. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: Evaluating
automated labeling of elderly and neurodegenerative brain,” Medical
Image Analysis, vol. 12, no. 1, pp. 26–41, 2008.

[16] A. M. Winkler, G. R. Ridgway, M. A. Webster, S. M. Smith,
T. E. Nichols, “Permutation inference for the general linear model,”
NeuroImage, vol. 92, pp. 381–397, 2014.

[17] T. Nichols and S. Hayasaka, “Controlling the familywise error rate
in functional neuroimaging: a comparative review,” Stat Methods Med
Res, vol. 12, pp. 419–446, 2003.

571


