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Abstract—Among various brain activity patterns, Steady State
Visual Evoked Potential (SSVEP) based Brain Computer Inter-
face (BCI) requires the least training time while carries the fastest
information transfer rate, making it highly suitable for deploying
efficient self-paced BCI systems. In this study, we propose a
Spectrum and Phase Adaptive CCA (SPACCA) for subject- and
device-specific SSVEP-based BCI. Cross subject heterogeneity
of spectrum distribution is taken into consideration to improve
the prediction accuracy. We design a library of phase shifting
reference signals to accommodate subjective and device-related
response time lag. With the flexible reference signal generating
approach, the system can be optimized for any specific flickering
source, include LED, computer screen and mobile devices. We
evaluated the performance of SPACCA using three sets of data
that use LED, computer screen and mobile device (tablet) as
stimuli sources respectively. The first two data sets are publicly
available whereas third data set is self-collected in our BCI lab.
Across different data sets, SPACCA consistently performs better
than the baseline, i.e. standard CCA approach. Statistic test to
compare the overall results across three data sets yield a p-value
of 1.66e-6, implying the improvement is significant.

I. INTRODUCTION

EEG-based Brain Computer Interfaces (BCI) can be catego-
rized approximately into four different modalities: ERD/ERS
(eventrelated desynchronization/synchronization) [1], P300
[2], SSVEP (steady state visual evoke potentials) [3] and
SCPs (slow cortical potentials) [4]. Among these brain activity
patterns, SSVEP based BCI requires least training time, carries
the fastest information transfer rate, and needs fewer EEG
channels [5].

SSVEP signals can be observed when brain response to
visual stimulation at a particular frequency, such as flashing
LED or flickering on computer screen. The visual stimuli at a
specific frequency trigger the visual neural pathway and further
radiate throughout the brain, producing electrical signals in
the brain at the base frequency and multiple frequencies.
The detection of underlying signals corresponding to different
source frequencies enables a self-paced BCI solution. The
most notable use of SSVEP technology is the cases of a
text-based spelling system for paralysis patients [6]–[8]. Other
interesting cases of SSVEP being employed are games such
as spacecraft [9] and maze [10]. Like other EEG modalities,
the SSVEP can be contaminated by background noises and
spontaneous EEG. Accurate detection of its frequency com-
ponents in a short time window is challenging and critical to
the effectiveness of SSVEP-based BCI.

Early approaches for SSVEP recognition calculated power
spectral density (PSD) at different frequencies within a specific
time window, and identify the target frequency by the one
with the maximal PSD value. This approach works on a
signal EEG channel thus is sensitive to noise and needs a
relatively longer time window. Later on, canonical correlation
analysis (CCA) based recognition method was proposed [11]
and soon become widely adopted [12]–[14]. CCA maximizes
the correlation between the reference signals of sine-cosine
and multi-channel EEG signals. The maximum correlation
coefficient (CC) among CCs of all stimuli frequencies is
identified as the target. Compare with PSDA, CCA approach
optimizes the recognition procedure because by nature it
combines information from multiple channels to improve the
signal to noise ratio (SNR).

Various methodologies have been proposed to improve the
basic CCA method for SSVEP-based BCI. Chen et al. [13]
developed filter-bank CCA (FBCCA), conducting correlation
analysis on the reference signals and the spectrum sub bands
of original EEG signals, and optimize the overall performance
through fine tuning the weights of the group of sub bands.
Another study introduces a L1-regularized multiway CCA for
SSVEP-based BCI [14]. The optimization was implemented
on constructing matrix of multi-trial multi-channel EEG to
learn the reference signals in correlation analysis for SSVEP
recognition, and imposing L1-regularization to optimize the
trial-way array for effective trial selection. Both methods take
tedious offline parameter tuning process to obtain the best
set of parameters, either by grid search or by regularized
optimization.

Above mentioned methods attempted to build a general
module working across all subjects, which have some limi-
tations because individuals react to visual stimulus vary from
each other. Research has shown that it takes 600 to 800 ms
for cortical facilitation by visual attention, and such time
lags vary among different individuals [12]. Furthermore, each
individual has different base spectrum distribution, which may
deteriorate the discriminative feature of CCA-based correlation
coefficient. Therefore, subject-specific information needs to be
incorporated to optimize the SSVEP detection.

In this study, we proposed a subject specific self-paced
BCI for gaming and control, which differs from the other
existing methods in the following aspects: firstly, it tackles the



cross-subject heterogeneity of spectrum distribution characters
through a novel spectrum adaptation module; secondly, we
propose a novel solution to fit subject-specific cortical response
time lags by composing a library of phase shifting reference
signals. By applying spectrum adaptation and subject-specific
reference signals, our framework can be optimized for any
subject with any stimuli source.

II. METHOD

A. SSVEP-BCI based on Basic CCA

CCA-based SSVEP BCI was first proposed by Lin et al.
[11], we refer the method as basic CCA in this context. CCA is
a method exploring the relationships between two multivariate
sets of variables or vectors, to infer their similarity. In the
SSVEP detection context, it is used to detect the similarity
between stimuli frequency and the reference signal frequency.
For two multivariate variables X and Y , CCA transforms them
into 1D variable x and y, through a pair of vectors wx and wy ,
so that to maximize the correlation between x and y, where
x = wT

xX , y = wT
y Y . The CCA problem can be considered as

a generalized eigenvalue decomposition problem. It is realized
by solving the optimization problem described in (1)

maxwxwy , ρ(x, y) =
E[wT

x XY Twy]√
E[wT

x XXTwy]E[wT
x Y Y Twy]

(1)

In [11], reference signal Y is designed as a group of sine and
cosine waveform with frequencies containing the frequency of
stimuli f and its harmonics, as described in equation (2) as
Y (f).

Y (f) =
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Where N is the number of samples in a EEG epoch, S is
the sampling rate and f is the base frequency to be detected.
To recognize the frequency ftarget of the SSVEP-BCI system,
CCA calculates the canonical correlation coefficient ρ between
the multi-channel EEG signals and the reference signals at
each stimulus frequency f, (f = f1, f2, . . . , fK). The fre-
quency of the reference signals with the maximal correlation
is selected as the frequency of SSVEPs, as shown in (3). Let
wx ∈ RC×1 and wy ∈ R2Nh×1 denote weighting vectors for
X and Y (f) respectively. C and Nh denote the number of
EEG channels and the number of harmonics being considered
respectively.[

ftarget = argmaxf ρ(f), f = f1, f2, . . . , fK
]

(3)

Where f1,2..K are different stimuli source frequencies.
The design of the reference signal Y (f) as a group of

sine and cosine waveforms works effectively to capture the
frequency features of SSVEPs. This makes the template based

CCA approach very successful in SSVEP BCIs. The first two
coefficients in wy that are correspond to cos(2π ∗ f ∗ n) and
sin(2π ∗f ∗n) could reflect the phase information of the base
signal. Thus CCA could address the phase shifting in SSVEPs
by learning an effective weight vector wy . However, it would
requires a relatively lengthy base signal. CCA may not work
well when the data length is short.

To address this problem, we design a algorithm called
Spectrum and Phase Adaptive CCA (SPACCA), as describe
in the following.

B. Spectrum and Phase Adaptive CCA

We proposed a Spectrum and Phase Adaptive CCA approch
(SPACCA) to improve the SSVEP detection accuracy. The
framework is illustrated in Figure 1. Visual stimuli (provided
by LED lights, computer screen or mobile device) composes
a group of flashing units, each flickers at a certain frequency
implying a particular control command for gaming or other
application. The subject provides desired command to interact
with system by looking at the targeting flickering unit. EEG
signals are acquired, processed and inferred by the system in
order to detect the target unit and trigger the corresponding
control command.
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Fig. 1. Proposed SSVEP-BCI System Framework

The BCI system composes a calibration session and a con-
trol session. During calibration session, a set of regularization
parameters are derived from spectrum distribution analysis;
followed by a optimal reference signal selected to optimize
CCA. The control session infers the targeting stimuli using
SPACCA based on the parameters obtained in the calibration
session.

C. Subject Specific Phase Regularization

In formula 2, f refers to the stimulation frequency and m
is the number of harmonics. The basic CCA calculates the
canonical correlation between multi-channel EEGs and Y (f)
corresponding to each stimulation frequency to recognize the
stimuli. Such approach does not take into consideration the
time lag variations among subjects’ reaction to visual stimuli.



In this study, we propose a new way to compose reference
signals, one example is Y2(f) shown in 4, where si, ci, i =
1..m are values in [−1, 1] , representing the shifting phase of
delayed response.

Y2(f) =

 sin(2π ∗ f ∗ n)
cos(2π ∗ f ∗ n)

sin(2π ∗ f ∗ n+ si), i = 1, ...,m
cos(2π ∗ f ∗ n+ c1), i = 1, ...m

 , n =
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S
,
2

S
, ...,

N

S

(4)
Figure 2 visualizes our library of different reference signal

sets. In Figure 2 Y1 plots the original reference signals
proposed in [11]. Y2 to Y4 plot the different reference signal
sets we proposed, which are designed to cover various phase
shifting range. The library provides multiple choices for CCA
reference signals, ensuring the optimal detection accuracy for
different subject. The selection of reference signal can be
realized in a calibration session.
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Fig. 2. Library of Reference signal sets for CCA. a. original reference signals
proposed in [11] b,c,d. proposed reference signals.

D. Subject Specific Spectrum Regularization

Each individual’s EEG signals, under different situations
demonstrate different characteristics of spectrum distribution.
Such variation would affect the subsequent analysis of CCA.
To tackle this issue, we propose a subject specific spectrum
regularization step. A subject’s baseline spectrum distribution
can be detected during idle epochs at the initial part of
the calibration session. A simplified procedure to search for
reguralization parameters is described as following:

• Calculate base correlation coefficients (CC) between EEG signal
acquired from idle state and reference signal (see next subsec-
tion): ρ̂i, i ∈ 1, 2, ...n

• Infer a regularization parameter based on ρ̂ , λi =
∑n

j=1 ρ̂i

ρ̂i
• Calculate CC ρi , i ∈ 1, 2, ...n between SSVEP EEG signal

and reference signal, then normalize them by regularization
parameter, ρ̃i = λi × ρi, i = 1, 2, ..n

A set of subject specific parameters are obtained and will be
used by control session. The correlation coefficients for each
stimulus frequency then will be regularized accordingly.

III. EXPERIMENT AND RESULT

We conduct experiment on three sets of SSVEP data, with
visual stimuli generated from LED, computer screen and tablet
respectively. The details of data is described in table I.

TABLE I
DATA SETS USED FOR EXPERIMENT

Data Flickering Number of Number Stimulus
set Device subjects Sessions frequencies
1 LED 5 20 13,17,21Hz
2 monitor 4 20 8,14,28 Hz
3 tablet 5 20 8,9,10,...,15Hz

• Data set 1 [15] includes SSVEP recordings from 5
subjects focusing on LED blinking at three different
frequencies. Each subject had 4 sessions of record, end
up a total of 20 records.

• Data set 2 [16] contains 4 subjects’ SSVEP data, each
conducted 3 groups of trial for 3 stimuli frequencies.
We combine every 3 stimuli sessions into 1 session and
obtained 20 sessions for analysis. Since 14 Hz and 28Hz
are harmonic frequencies, we treat this data as a bi-class
problem.

• Data set 3, we design our own experiment to collect
mobile device SSVEP data using a tablet as flickering
stimulus. 5 Subjects each conducted 4 sessions: 2 for
static stimuli (target is not moving) and 2 for dynamic
stimuli (target is moving randomly around its position)
of 8 flickering frequencies In total, 20 sessions were
available for analysis.

A. Effect of Spectrum Regularization

Each individual’s EEG signals, under different situations,
will not have the same characteristics of spectrum distribution.
We illustrate this by an example shown in figure 3.
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Fig. 3. Subjective Spectrum Adaptation improves discriminative power for
SSVEP detection. (CC- correlation coefficients)



The plots were generated by averaging the ρ values across
multiple trials of SSVEP experiment. The top subplots at left
show the subject’s ρ distribution during idle state. Apparently,
the subject has a relatively higher 13Hz power ratio as
compare to 17 and 21Hz. This will affect the approach using
CCA algorithm. The second to forth subplots shows the distri-
butions of EEG power ratios during visual stimulation using
13, 17, 21Hz respectively. It is clear that the discriminative
power decreases at 17Hz, mainly because the subject’s base
17Hz power is rather low. Results after adaptation are shown
in the bottom plots. The regularized ρ values for both 17 and
21Hz are much more discriminative.

B. Comparison of the different approaches

We evaluated performance of SPACCA using three data sets
comparing the three approaches: 1/ Baseline method using
standard CCA approach as described in [11]; 2/ Spectrum
Adaptive method, which applies subjective spectrum adaptive
approach; and 3/ SPACCA, which , further to spectrum adap-
tation, applies phase adaptation through choosing the suitable
reference signal from our signal pool.
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Fig. 4. Comparison of different methods across three data sets

Figure 4 shows the prediction result for all the sessions
of three data sets. We observe that SPACCA may not always
perform the best, however, across different data sets, SPACCA
is the most stable method. The increase of accuracy for three
data sets are 8.6%, 51.7% and 8.8% respectively. We conduct
Wilcoxon rank sum test to assess the improvement of SPACCA

versus baseline method, the p-value is 1.66e-6, inferring that
the improvement is statistically significant.

IV. CONCLUSION

In this study, we proposed a subject specific and device
specific SSVEP-based solution for self-paced gaming and con-
trol BCI. Cross-subject heterogeneity of spectrum distribution
is incorporated into the system to improve the prediction
accuracy. A library of phase shifting reference signals tackles
the variations of subject-specific cortical response time lags.
Such system can be optimized for any specific flickering
source device, include LED, computer screen and mobile
devices. With a simple calibration stage, optimized parameters
can be obtained with ease for best modeling.
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