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Abstract— With deep learning emerging as a powerful machine 

learning tool to build Brain Computer Interface (BCI) systems, 

researchers are investigating the use of different type of networks 

architectures and representations of brain activity to attain 

superior classification accuracy compared to state-of-the-art 

machine learning approaches, that rely on processed signal and 

optimally extracted features. This paper presents a deep learning 

driven electroencephalography (EEG) -BCI system to perform 

decoding of hand motor imagery using deep convolution neural 

network architecture, with spectrally localized time-domain 

representation of multi-channel EEG as input. A significant 

increase in decoding performance in terms of accuracy of � ��  

is obtained compared to a wideband EEG representation. We 

further illustrate the movement class specific feature patterns for 

both the architectures and demonstrate that higher difference 

between classes is observed using the proposed architecture. We 

conclude that the network trained by taking into account the 

dynamic spatial interactions in distinct frequency bands of EEG, 

can offer better decoding performance and aid in better 

interpretation of learned features.  

    

I. INTRODUCTION 

Electroencephalography (EEG) is the widely used as the non-
invasive brain data acquisition modality in Brain Computer 
Interface (BCI) research. BCI functions by decoding the neural 
activity and translating the brain states directly to output 
commands that communicate and control an interfaced external 
devices [1, 2]. Hence, to ensure a robust and reliable performance 
of BCI, a variety of decoding tools have been proposed aiming 
higher accuracy and lesser training time. One of the widely 
investigated BCI paradigms is motor-imagery (MI) in which 
participants perform mental rehearsal of movement which forms 
characteristic Sensorimotor rhythm (SMR) modulations in EEG 
[3, 4]. SMR-BCI studying activations in EEG has identified 
event related desynchronization/ synchronization (ERD/ERS) as 
the fundamental indicator of MI [4]. These are the localized 
neural synchrony variations in distinct contralateral and 
ipsilateral sensory motor regions. EEG-BCI research have 
reported many decoding techniques to classify right and left hand 
motor imagery including linear and non-linear classifiers, nearest 
neighbor classifiers, neural networks, adaptive classifiers, matrix 
and tensor classifiers, transfer learning and deep learning [5]. 

Deep Learning has emerged as a powerful machine learning 
tool with superior performance in speech recognition and 
computer vision [6]. There is a growing interest among 
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neuroengineering researchers to use deep learning methods in 
building BCI systems to attain superior decoding performance. 
The potential of deep learning tools to learn optimal features and 
decoding models, voids the need to perform signal processing 
and machine learning based feature engineering in conventional 
BCI. Researchers have presented wide range of deep network 
architectures which are validated on various EEG datasets [7-
13]. The recent literature indicates that deep learning methods 
outperform the state-of-the-art machine learning approaches 
using processed EEG. Even though the results look promising, 
the choice of brain signal representation, type of network and its 
hyperparameters to be used, largely vary among these reported 
methods and datasets used, and hence a conclusion regarding the 
optimal deep neural network (NN) models are not yet available 
[5, 13].  

In EEG decoding using deep learning, one of the critical and 
initial steps is to determine how to represent time series data 
recorded from each sensors, considering that it can cause the 
most information loss and computational cost. Researchers have 
reported the use of raw, wide and narrow band and filter-bank 
filtered and time-frequency spectrum of EEG as input to deep 
neural networks [7-13] to classify it. In [7, 8] envelope 
representation of EEG using Hilbert transformation and passing 
it through a convolutional NN (CNN) was proposed. In [9], a 
sequence of topology-preserving multi-spectral images were 
obtained from EEG and a recurrent-convolutional NN was used 
to decode cognitive load. In [9], a 5-layer CNN was proposed 
built on spatiotemporal characteristics of EEG to classify MI. 
CNN-based framework to study neural patterns underlying 
attention and consciousness are reported in [10] and [11] 
respectively. In [12], short time Fourier transform was used to 
convert EEG into 2D images, followed by 1D convolution along 
time axis. In [13], the EEG was represented as a 2D array with 
the number of time steps as the width and the number of 
electrodes as the height, and a deep ConvNet architecture was 
proposed. 

In the research reported in this paper, our objective is to 
propose an EEG signal representation in temporal, spectral and 
spatial domain. The goal is to allow the network to process and 
localize the class-specific information in these three domains 
thereby better capturing the movement task-specific dynamics of 
EEG. The first convolution block performs filtering over time 
followed by spatial domain. The spatial filtering is carried out in 
each band following which the information is pooled together. 
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The deep convolutional NN architecture proposed to decode 
this signal uses deep ConvNet [13] as a baseline. Further, we also 
studied how the EEG signal is transformed into feature maps at 
different levels in the network. The output from the proposed 
input convolution-max pooling block is obtained for both classes 
of data and we illustrated how adding spectral information offers 
more distinction between classes. To the best of our knowledge, 
a similar architecture validated on EEG dataset and comparison 
of the effect of different input signal representations in deep 
learning methods has not been reported in literature. 

The rest of this paper is organized as follows: Section II 
explains the methodology, dataset and data processing steps. 
Section III reports the results and discussion of the research 
followed by conclusions in Section IV.  

I. METHODOLGOY 

The objective of this research is to define a deep convolution 
neural network architecture to decode binary right hand and left 
hand motor imagery EEG data. We propose an EEG input 
representation by preserving temporal, spectral and spatial 
information of the signal. The input convolution-max pooling 
layer is then designed to filter the signal in two stages, detecting 
the information along time domain, and along channels, 
separately in each frequency band. This is followed by other 
convolution-max pooling layers and softmax layers. The details 
of the architecture, analysis and the dataset used for validation is 
given in the following sub-sections. 

A. Dataset  

The EEG dataset used in this research is recorded at the 

Department of Brain and Cognitive Engineering, Korea 

University.   The data from fifty-four healthy subjects (ages 24-

35, 25 females) performing binary class motor imagery (MI) 

were recorded using BrainAmp (Brain Products; Munich, 

Germany). EEG signals were recorded with a sampling rate of 

1000 Hz and collected with 62 Ag/AgCl electrodes. The MI 

paradigm used was the well-established protocol as per [14]. For 

all blocks, the rest 3s of each trial began with a black fixation 

cross that appeared at the center of the monitor to prepare 

subjects for the MI task. Afterwards, the subject performed the 

task for 4s when the right or left arrow appeared as a visual cue. 

After each task, the screen remained blank for 6s (±1.5). For 

more details on data and experiment protocol, please see [15].  

Each subject participated in two data recording sessions and 

each session had an offline training phase to record data and 

construct classifier and a test phase that provided visual 

feedback to the subject by decoding data using the classifier. For 

the research reported in this paper, we used EEG data from first 

session that consists of 200 trials of data, with equal number of 

trials in left (class-0) and right hand (class-1) MI. 
The EEG data from 4 seconds of MI task, for every trial was 

segmented from the continuous data. The data is then 
downsampled by a factor of 2. For further processing, data from 
34 channels {F9, F7, F3, Fz, F4, F8, F10 FC5, FC3, FC1, FC2, 
FC4, FC6, C5,C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, 
CP2, CP4,CP6, P7, P3, P1, Pz, P2, P4, P8} were used. 

B. Proposed EEG representation and CNN architecture  

 In neuroengineering studies, the widely followed approach 

for processing multi-channel EEG data is to decompose the 

signal into frequency bands. The power modulation in specific 

bands originating from distinct areas of the brain are proven to 

be the source of neural activity correlated to motor task [3, 4]. 

This is the basis of various feature extraction algorithms used in 

EEG-BCI. The filter bank decomposition of EEG in mu and beta 

ranges, followed by spatial filtering of data using common 

spatial pattern (FBCSP) to provide features is the state-of-the-

art decoding approach using shallow classifiers [16]. Similar 

approach has been employed in CNN architectures as well, that 

uses 2D image representation of EEG, including time, 

frequency and location information, followed by convolution in 

time axis [12]. The proposed architecture in this paper, is build 

based on the deep CNN architecture proposed in [13] and 

available in the open source toolbox, Braindecode. The authors 

have reported extensive analysis of this architecture and 

compared its performance against machine learning methods, 

making this a strong basis for our study.  
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In this paper, we propose a deep CNN architecture as 

indicated in Fig. 1. As indicated in Fig. 1(a), a multiband, multi-

channel EEG input to the network, represented as a 2D image. 

The epoched data for each trial denoted by � � ��	 �
 , is 

decomposed to �� overlapping frequency bands of 2 Hz 

bandwidth, spanning from 8 to 30 Hz. The data is concatenated 

as indicated in Fig.1 and is fed into the network. The input 

convolution block in the network, provides a 2 stage 

convolution – first along time, followed by convolution along 

channel, in individual bands. This step creates a spatial filter for 

each spectrally localized EEG data, and thus offers a generic 

spectro-spatial filtering of EEG. The goal of this approach is to 

preserve and localize spatial information in each frequency band 

which is significant in discriminating 2 classes of data, thereby 

aiding in decoding. We believe that a data representation in this 

manner, allows the network to learn the temporal evolution of 

interactions between channels in each frequency band, which is 

otherwise lost in case of a wideband data. In the interest of 

interpreting the features generated and propagated through the 

network, we also study how data from each movement class is 

modulated by each CNN architecture. 

The proposed architecture is compared against a wideband 

EEG representation indicated in Fig. 1(b). We use band pass 

filtered EEG from 8 to 30 Hz as input to the network. The input 

block here performs a temporal convolution followed by a 

spatial convolution over all channels. The rest of the 

architecture follows the same approach as Deep4Net presented 

in [13], and its pipeline indicated with the in Fig. 1. After the 

first convolution-max-pooling block, the network features three 

convolution-max-pooling blocks, using batch normalization and 

dropout, followed by a dense softmax classification layer. All 

layers use exponential linear units (ELUs) as nonlinearities. The 

research in [13] reported used full bandwidth and high-pass 

filtered (>4 Hz) data as input to the network. 

C. Evaluation and analysis of network 

 The decoding performance of the proposed architecture is 

computed in terms of classification accuracy for each subjects. 

For each subject, we perform the performance evaluations using 

EEG data from first session. The data undergoes a train-test 

split, and test classification accuracy is computed and reported. 

Since the optimization parameters are not computed for this 

data, we train the network multiple times and statistical results 

are reported.  

 In this research, we also investigate how the proposed EEG 

representation and input layer of network represents the data and 

its correlates to movement class label. For this, to determine the 

input from each movement class, trial-averages, over all the 

samples. Once the network is trained, we study how it translates 

the input representing each movement class as features. The 

intermediate output (features) obtained after the input 

convolution-max pooling block is then studied to identify how 

the discrimination between each movement class is preserved in 

the network.  

 

II. RESULTS AND DISCUSSION 

The results of classification and analysis using the proposed 
architecture is reported in this section. The results are compared 
with baseline architecture. Further, the input-level features are 
illustrated to study how the network transforms the EEG data. 

A. Classification accuracy 

The results of the performance evaluation indicated in 
Section II-C is presented in Fig. 2. The accuracy obtained using 
the baseline and proposed methods for each subject is shown. It 
can be observed that, for majority of the subjects, accuracy 
improved using the proposed method. The average values over 
all subjects are indicated in Fig. 3. As mentioned earlier, since 
the network optimization parameters are not computed for the 
data, the model is trained multiple (� ) times. The first set 
of bars in Fig 3(a) reports average test performance over these � 
times. The accuracy achieved are  and 

 for proposed and baseline methods 
respectively. The second set of bars indicate the average 
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accuracy, by considering only three (out of ten) models with the 
best test accuracy. The accuracy obtained are  and 

 for proposed and baseline architectures respectively. 
This result indicates that there is scope of improvement in 
decoding performance by identifying an optimized (cross-
validated) model for each subject.  The increase in accuracy for 
the proposed method,  and  in both sets are 
statistically significant  ) as well.  

The decoding performance for the same data reported in [15] 
using the state-of-the-art filter band common spatial pattern [16] 
method is 68.8%, and it can be noted that the proposed deep 
learning method outperforms this method. 

B. Input data and feature representations 

A gap in current BCI research using deep learning is the 

interpretation of trained networks and the generated features. It 

can be presumed that input representations that preserve most 

distinct class-specific information and network architecture that 

carries this information forward can offer higher decoding 

performance. Since the key addition in the proposed architecture 

is the transformation of input to feature after the first 

convolution-max pooling block, we illustrate the data at these 

levels in Fig. 4. We use the data from subject S2 to present the 

approach (selected since the data obtained good performance in 

both architectures). The proposed EEG input representation for 

class-0 and its output after the first convolution max-pooling 

block is given in Fig. 4 (a) and (c). Similarly the input and output 

for class-1 is given in Fig. 4(b) and (d). Differences can be 

observed between the classes and the output from this network 

level in Figs. 4(c, d) seem to have condensed all the information 

spread-out in temporal, spatial and spectral domains in Figs. 4(a, 

b). In comparison, the input-output signal using the baseline 

architecture is given in Fig. 5. Here, 5(a) and 5(c) are for class-

0 and 5(b) and 5(d) are for class-1, with the first column giving 

input EEG and second column giving output of the first 

convolution-max pooling block. Differences can be observed in 

these figures as well.  

 To visualize the differences between classes, we simply take 

the difference of values from class-0 and class-1. This 

difference, denoted as �, is illustrated in Fig. 6. ��������� gives 

the difference between Fig. 4 (c) and 4 (d) and is shown in Fig. 

6 (a), whereas Fig. 6 (b) gives difference between 5 (c) and 5(d) 

as ���������. The x-label of the figures represent time samples 

after convolution and pooling, and y-label indicates the output 

from each convolution filter. It can be observed that, certain 

localized patterns can be observed in Fig. 6 (a), which are not 

quite stronger in Fig. 6 (b). Fig. 6 (c) illustrates the � for both 

architectures averaged over all the output channels. The values 

are smoothed with a moving average filter (window-size=5, 

Hanning window), for better visualization. Each plot represents 

the difference between both movement classes as identified by 

the input convolution- max pooling block of the network. It can 

be observed that difference between both movement classes are 

more distinct in the proposed architecture, which used the added 

information in frequency domain. Similar analysis can be 

conducted for all the subjects to obtain the various feature 

representations. Further, we presume that the patterns observed 

in Fig. 6(c) for the proposed approach, will have correlation to 

ERD/ERS patterns that form the basis of MI neural activity in 

EEG, and thus has potential for further investigation. 

C. Discussion 

In this paper, we present an EEG representation in time, 

frequency and space domains to be applied as input to a deep 

CNN architecture. The decoding performance reported in Figs. 

2 and 3 indicates the superior performance that can be attained 

by incorporating the spectral characteristics of data to the 

network. This indicates that in the proposed architecture, the 

network learns the time-varying spatial interactions in each 

frequency band, which effectively captures the dynamic 

characteristics of EEG.  

To investigate how the EEG representations can influence the 

network, we also looked into the data input and output features 

from the convolution-max pooling block from the first layer of 

network. The results are presented in Figs.4-6 and as explained 
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it offers a simple visualization of how the different networks 

transform the class-specific information represented in two 

different ways. Based on the illustration in Fig. 6, we conclude 

that the between-class difference is more distinct in the 

proposed architecture. We believe that this difference has 

contributed to the increase in classification accuracy for the 

proposed approach. Further research is required to define 

quantitative approaches to understand the signal propagation 

through network and statistical measures to characterize and 

differentiate class-specific activations. The correlation of such 

feature representation to the standard sensorimotor rhythm 

patterns will also be of interest for more interpretability of 

results.  

Since adding more spectral information effectively increases 

the number of parameters to be trained by the network, the deep 

learning approaches demand more data samples to train the 

model without overfitting. To facilitate this, future research will 

also build and evaluate the network in a subject-independent 

leave-one subject-out approach, by pooling data from all 

subjects. Furthermore, the correlation of ERD/ERS activations 

between the input and output data will be studied to better 

interpret and explain the deep networks.  

III. CONCLUSION 

The paper presented a deep CNN architecture for 

classification of binary hand motor imagery EEG data. An input 

EEG representation preserving temporal, spatial and spectral 

information is proposed, followed by input convolution-max 

pooling block that creates a set of spatial filters for each band of 

data. The proposed architecture offers a significant increase of 

 in average classification accuracy. The paper also 

illustrated the distinct between class differences in features 

created by the proposed architecture that may have aided the 

increase in performance.  
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