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Abstract—Glaucoma is an eye disease that occurs without
the onset of symptoms at initial, and late diagnosis results
in irreversible degeneration of retinal ganglion cells. Standard
automated perimetry is the gold standard for assessing glaucoma;
however, the examination is subjective, where responses can
fluctuate each time the test is performed, significantly con-
founding the test’s interpretation. In this study, we present our
approach that aims to provide a rapid point-of-care diagnostics
for glaucoma patients by eliminating the cognitive aspect in
existing visual field assessment. Unlike existing methods that
mostly report the foveal target detection’s accuracy, we employed
a multi-task learning architecture that efficiently captures signals
simultaneously from the fovea and the neighboring targets
in the peripheral vision, generating a visual response map.
Furthermore, we designed a multi-task learning module that
learns multiple tasks in parallel efficiently. We evaluated our
model classification on a 40-classes dataset, with yields 92% and
95% in accuracy and F1 score respectively. Our model is able to
perform on a calibration-free user-independent scenario, which is
desirable for clinical diagnostics. Our proposed approach could
be a stepping stone for an objective assessment of glaucoma
patients’ visual field.

Index Terms—SSVEP, Multi-task Learning, Convolutional
Neural Network

I. INTRODUCTION

Glaucoma is a worldwide leading cause of irreversible vi-
sion loss, possibly affecting 111.8 million people worldwide in
2040 [1]. As glaucomatous visual field losses progress without
noticeable initial symptoms, this results in late diagnosis,
where the degeneration of retinal ganglion cells has already
occurred with irreparable consequences [2]. Many glaucoma
suspects are suffering silently from peripheral vision loss,
with up to 50% of previously undiagnosed glaucoma patients
already had significant visual field defect at diagnosis [3].

The key diagnostic sign for a glaucoma patient is peripheral
vision loss, referring to the maximum angle field of vision
from the center of fixation for each eye. Glaucoma suspects
are advised to assess their visual functions early and regularly.
This assessment is done by standard automated perimetry
(SAP); it is the gold standard performed to assess and diagnose
the disease’s severity. The assessment of blind areas in the
visual field is used to monitor visual function in glaucoma.
The procedure duration is approximately 10-minutes per eye,
where the patient is required to look at a large semi-circular
bowl that covers their entire field of view. The system will
present a series of stimuli (spots of light), one at a time while

Fig. 1. We present a multi-task learning framework for generating a visual
response map potentially suitable for providing glaucoma diagnostics.

the patient has to maintain fixation at a central target during
the entire procedure. The patient responds by clicking a button
when a stimulus is seen, and this process yields a map of the
seeing parts of the patient’s field of view.

SAP is a subjective examination where varying responses
may be obtained each time the test is performed or even during
the same test [4]. These fluctuations usually increase with the
severity of the disease. It has been the biggest drawback of this
visual field assessment, as it may significantly confound the
test’s interpretation. These conflicting results may hinder the
physician’s decision to make a diagnosis and order multiple
subsequent tests. In order to reduce results variability, patients
must first be educated to use the system; this would take
multiple sessions, depending on the patient’s ability to carry
out the procedure. Approximately ten visual field tests are
needed to achieve an accurate prediction point-wise and mean
sensitivity for a typical glaucoma patient in the clinic [5],
which in turn can lead to a delay in diagnosis. This highlights
the current limitations of visual field testing. A study [6]
investigates patients’ experiences regarding their glaucoma
follow-up indicates that patients find visual field examination
by SAP challenging or uncomfortable. Some patients who
underwent multiple tests describe their feelings of anxiety. As
a patient’s cognitive ability is involved in the assessment, it
can produce inaccurate test results due to the patient being
inexperienced with the system and examination procedure. A
patient could lose fixation to the central target due to fatigue
and distraction, which could also affect the test results [7].
These factors highlight a need for a technological solution
that provides an objective assessment that is highly desirable
to improve visual field test efficacy.

Steady-state visual-evoked potential (SSVEP) is an oscil-
latory stimulus-response evoked by certain repetitive stimuli
with a constant frequency. These are recorded in the electroen-
cephalogram (EEG) and can be detected from the primary



visual cortex. These produce a brain response that has the
frequency that matches the rapid flickering stimulation in
amplitude and phase. With this method, the need for cognitive
processing can be eliminated, removing the requirement for the
patient to click a button when a stimulus is presented. Instead,
we extract a stimulus’s presence by detecting the stimulus’
frequency from the EEG, which we can yield a map of the
patient’s visible field of vision.

SSVEP has many neuroscience applications, such as visual
spelling [8], [9], and decoding user intends to operate assistive
devices [10], [11]. SSVEP is popular due to its ease of record-
ing and high signal-to-noise ratio [12]. Despite a few studies
that use SSVEP on glaucoma applications, using SSVEP to
assist in glaucoma diagnosis could yield significant potential.
A study [13] shows that brain-computer interface devices were
able to discriminate glaucomatous eyes from healthy eyes.
Another study [14] shows that it is possible to use SSVEP
responses to detect visual signals of varying view angles in
the peripheral field. These studies suggest that SSVEP could
be promising for objectively assessing visual function loss and
detecting glaucomatous damage.

Most studies have been devoted to identifying a single
flickering target where the focus is on delivering reliable
SSVEP responses detected on fovea vision; hence stimuli
at the peripheral vision are considered noise signals. In this
study, we focus on detecting the peripheral field to diagnose
glaucoma patients by capturing signals from the fovea and the
neighboring targets in the peripheral vision. A fundamentally
different way to detect SSVEP was proposed in this study,
employing the use of Multi-task Learning (MTL) [15], which
is to train a neural network with multiple related objectives
(or tasks) while sharing a common network structure. MTL
can determine how tasks are related without being given a
specific knowledge for task relatedness. Training a network
that learns to predict multiple tasks in one network performs
better than training multiple separate networks to predict
multiple tasks [15]. In SSVEP detection, we utilize MTL
to improve SSVEP classification performance. The shared
layers enabled the model to decode SSVEP from raw EEG,
and task-specific layers will learn to separate different target
frequencies. The number of outputs corresponds to the number
of target frequencies in the dataset, where each output is the
probability of the SSVEP frequency present in the EEG. MTL
will allow us to identify a patient’s visual field by detecting
multiple SSVEP targets at once, thus cutting down the patient’s
assessment time.

Convolutional neural networks (CNN) have pushed com-
puter vision tasks’ performance because of its remarkable
ability to learn directly from images end-to-end without hand-
crafting features [16]. However, the applications of CNN on
SSVEP are still at the beginning stage. Traditionally, the
go-to SSVEP detection techniques have been statistical and
correlation-based such as canonical-correlation analysis, where
its objective is to find the maximum correlation between
the signal and the target frequency [17]. However, studies
[10], [18] have shown that CNN can provide significant

improvement in SSVEP classification performance as com-
pared to traditional SSVEP detection techniques. Interestingly,
the top-performing methods in various fields have adopted
dilated convolution for efficient dense feature extraction; it has
been beneficial in image semantic segmentation [19], speech
recognition [20] and signals processing [21]. That is because
dilated convolutions are effective feature extractors due to its
capability to expand the receptive field without significantly
increasing computational cost [22]. As such, our MTL model
is a deep CNN model with dilated convolutions.

The main idea of our study is illustrated in Fig. 1 with the
aim to implement a system that produces visual field tests
results that are more reliable as we eliminate the cognitive
aspect in the existing visual field assessment. By doing so,
patients do not have to learn to use the system, and test
results are not affected by patients being distracted or feeling
uncomfortable. Since our MTL model is capable of detecting
multiple stimuli, we can reduce visual field assessment time
and produce reliable test results. This could be potentially
suitable for providing a rapid point-of-care diagnostics for
glaucoma patients.

II. METHOD

A. Data

In this study, we used an open-access dataset by Tsinghua
University, HS-SSVEP [9], a 40-classes dataset for visual
spelling tasks. The EEG was recorded using 64 channels at
the 250-Hz sampling rate, and 35 healthy subjects participated
in the experiment. The 40 stimuli flickered at frequencies
between 8-15.8 Hz with an interval of 0.2-Hz; each target
frequency was presented six times, totaling to 240 trials per
subject. Each trial lasted 6-seconds, in which the first and the
last 0.5-seconds were used for visual cue and rest.

Out of the 64 electrodes, we selected 11 from the occipital
and parietal areas, namely P-z, PO-3/4/5/6/7/8/z, and O-1/2/z.
EEG data were preprocessed by band-pass filtering using a
6th order Butterworth between 1 and 40 Hz. Then, the filtered
data were segmented and removed the first and the last 0.5-
seconds, and we selected the first 1-second for training and
validation. Therefore, the input data dimension was 1000 time
samples by 11 channels (Nch).

B. Multi-task Learning Architecture

Traditionally, studies on SSVEP were focused on detecting
the target stimulating frequency in the foveal, while the
other stimuli are interference. In our study, we assess the
peripheral field’s visual responses by detecting the responses
from the off-foveal targets. We proposed a multi-task learning
architecture to handle the multi-label learning problem. This
approach allowed us to identify the presence of multiple
SSVEP frequencies in a single trial. During training, the model
learns each SSVEP target separately in parallel and back-
propagated jointly to improve the generalization of the EEG
input at the shared hidden layer. Our implementation is built



Fig. 2. Left: A convolution block. Right: Proposed multi-label SSVEP classifier with modified multi-tasking learning architecture.

Fig. 3. Multi-task learning block that performs convolutions by groups,
performing separate convolutions within a single convolution layer.

on the PyTorch framework and is made publicly available at
a companion website1.

The network is composed of four convolution blocks and
one convolution layer. Each convolution block consists of a
convolution layer, a batch normalization, and an exponential
linear unit, as shown in Fig. 2. The fifth and final convolution
layer is a multi-task learning block, where it learns to differ-
entiate multiple SSVEP target frequencies. An illustration of
the proposed network is shown in Fig. 2.

Convolution blocks C1 to C4 in the proposed MTL ar-
chitecture are shared hidden layers responsible for learning
EEG representations across all target frequencies. A study
[23] has shown that the network can learn the EEG’s fea-
tures by convoluting across time, followed by convoluting
across channels. C1 block was designed to extract the spectral
representation of the EEG input, as it performs convolution
across the time dimension, capturing features from each EEG
channel independently from the others. We have chosen the
kernel size of 1×59 to allow the network to observe a few
cycles of the lowest target frequency, as well as selecting based
on experimentation and is therefore described in the Results
section. C2 block was designed for performing spatial filtering,
as it performs convolutions across the channel dimension. The
objective of this layer is to learn the weights of all channels
at each time sample. The convolution kernel size is Nch×1
where Nch is the number of channels. The purpose of C3
and C4 blocks are capturing the temporal patterns in each

1Source code is available at jinglescode.github.io/ssvep-multi-task-learning.

extracted feature maps. We have chosen kernel size 1×19
based on experimentation, further described in the Results
section. We also explored different dilation configurations on
C3 and C4 block. As the kernel size needed for signals is
much larger compared to for images, dilation convolutions
allow us to expand the receptive field, perform feature learning
with a smaller kernel size, which produces a smaller model,
and potentially increase performance. We will evaluate the
effectiveness of dilation convolutions on this EEG dataset in
the Results section.

In regular MTL architectures, each task is separated into
task-specific layers, where each layer is responsible for learn-
ing to identify each task. In this study, we designed an MTL
block that performs convolutions by groups, as shown in
Fig. 3. By defining t groups, we are essentially performing
t separate convolutions within a single convolution layer. This
allows us to use the same model architecture and scale to any
number of tasks effectively. To match the input size of the
MTL layer’s input, we expanded the output from convolution
block C4 by Nt folds by concatenation, where Nt is the number
of targets. Next, we employ a group-wise convolution to split
the input into Nt different groups of weights, each responsible
for learning each target frequency separately. The result of
Nt convolutions are concatenated to produce Nt binary output
targets. This MTL block allowed us to train multiple tasks
in parallel efficiently on a single GPU. We can dynamically
tweak our MTL model for any number of tasks, which is
potentially suitable for other MTL applications.

Dropout has been used in deep neural network training as
a regularisation technique to reduce the network tendency to
overfit during the training process. Therefore, we used it after
convolution blocks C2 and C4, with the dropout set to 0.5.

C. Training Protocol

The model was trained for 100 iterations with a minibatch
size of 64. We monitored the accuracy and F1 score on the
validation set and used an early-stopping mechanism when the
model stops improving for ten consecutive epochs. We used
Adam optimizer with an initial learning rate value of 0.01.
L2 penalty was added to reduce overfitting by fixing 0.05 to
weight decay.

https://jinglescode.github.io/ssvep-multi-task-learning/


Fig. 4. Accuracies by MTL model, TRCA and FBCCA across subjects.

D. Evaluation

Many studies have been done to explore user-dependent
SSVEP classification. In this study, we focused on user-
independent SSVEP classification. Our aim is to build a
calibration-free SSVEP classification system that is practical
for clinical use, capable of diagnosing new patients. This
eliminates the need for data collection and training for novel
users. We evaluated our model’s performance with the leave-
one-subject-out method to determine our model’s performance
in a calibration-free user-independent scenario.

We applied the stratified K-fold technique to experiment
and verify multiple model configurations such as kernel size,
filter size, and dilation size. The performance of each model
is determined by averaging across all subjects and 5-fold
cross-validation. We used the accuracy metric to determine
the model’s ability to detect target frequencies and evaluate
true positive performance. F1 score metric was also adopted
to determine the model’s ability to do well on both positive
and negative classes in multiple output MTL scenarios.

III. RESULTS

A. Performance

The classification performance on the 40-classes dataset is
as shown in Table I. We compare our model’s classification
accuracy against Canonical Correlation Analysis (CCA), Filter
Bank Canonical Correlation Analysis (FBCCA) [24], and
Task-Related Component Analysis (TRCA) [25]. At 1-second
data length, CCA, FBCCA, and TRCA yielded approximately
59%, 72%, and 88%, respectively. Using our proposed method,
we can identify the foveal’s target frequency effectively, with
the best performing model configuration (Net-4/4) achieved
an accuracy of 92.2%. Evidently, this result shows that our
approach can be an alternative to identifying a single flick-
ering target where the focus is on delivering reliable SSVEP
responses detected on fovea vision. Our model’s average cross-
validation accuracy for each subject is compared against other
methods, as shown in Fig. 4. By evaluating using the leave-
one-subject-out method, our model was able to generalize to
unseen test data, potentially little to no training and calibration
are required for new users, suitable for other SSVEP classi-
fication tasks. Our model achieved 95.2% in the F1 score.
This result shows the model’s ability to do well in identifying
both positive and negative classes in a multi-label classification
scenario.

TABLE I
PERFORMANCE ON 40-CLASSES HS-SSVEP DATASET

Network Filters Dilation # Params Accuracy F1
CCA - - - 59% -

FBCCA - - - 72% -
TRCA - - - 88% -

No Dilation 2 1 290,654 84.8% 90.1%
Net-2/2 2 2 280,414 88.4% 92.2%
Net-2/4 2 4 259,934 90.2% 93.4%

No Dilation 4 1 582,228 86.2% 90.9%
Net-4/2 4 2 561,748 90.0% 93.8%
Net-4/4 4 4 520,788 92.2% 95.2%

No Dilation 8 1 1,168,376 84.1% 90.4%
Net-8/2 8 2 1,127,416 89.0% 92.4%
Net-8/4 8 4 1,045,496 90.1% 93.6%

B. Effects of Kernel Size and Dilated Convolutions

We experimented with different kernel sizes and evaluated
the effects of dilated convolutions. From our experiments, the
kernel size of 1×59 for convolution blocks C1 produced the
most consistent performance with a lower standard deviation.
Based on our observation, kernel size lower than 1×39 can
cause a drop in performance, as single convolution might not
be able to detect enough sufficient data points of the lowest
frequency. As for convolution block C3 and C4, we expanded
the receptive field by employing dilated convolutions. Thus,
our model can effectively perform feature learning with a
smaller kernel size of 1×19, improving classification perfor-
mance while reducing the model size. We also observed that
increasing the number of feature maps increases the model
size, but it does not improve its performance.

C. Multi-label Classifcation and Visual Response Map

From a multi-label classifier perspective, we used the MTL
approach to learn all 40-tasks, thus enabling a unified system
to predict all target frequencies simultaneously. As such, this
enables us to visualize what the user has seen with a visual
response map. We selected 6-targets that are located around the
center of the screen (Fig. 5), as this is the region of interest for
visual field assessment in our future work. We have evaluated
our models with the leave-one-subject-out method to exhibit
the generality of our approach, and our approach requires little
or no calibration data novel users. Additionally, we explored
further on the models’ ability to diagnose users who are not
experienced in SSVEP-based BCIs. Specifically, we trained
our model with the first eight participants from the dataset and



Fig. 5. Visual response maps of subjects unseen by model, predicted by proposed multi-task learning model.

validated the remaining 27 subjects. Each map is the average
response of the 27 subjects for a target frequency: a darker
shade denotes a stronger signal being detected. As the subjects
recruited in the HS-SSVEP dataset have healthy eyesight and
considering that all the stimuli are flickering simultaneously
in a visual spelling task, expected results will be the intense
signal concentration at the target frequency.

From our results, it is evident that the model has success-
fully identified the target frequencies with a strong signal,
and some neighboring off-foveal targets around the target
frequency were detected more than those there were further
from the target frequency. We noticed that the frequency above
the target is often zero; this was due to the loss function
minimizing errors during the training. We also observed that
some frequencies in the peripheral vision were detected more
than others. However, we cannot verify why some frequencies
were detected more than others on the visual response map
due to the lack of eye tracker information. Thus we planned to
verify this in our future work by creating our experiments and
data collection. Nevertheless, our MTL model can generalize
well on unseen subjects, performing reasonably well even
though these participants are not experienced in SSVEP-based
BCIs. This is desirable as these are the type participants that
we will encounter in the clinic.

IV. FUTURE WORK

This study presented a deep learning method that potentially
enables us to detect multiple SSVEP stimuli simultaneously,
thus mapping a visual map of glaucoma patients, reducing
visual field assessment time and produce reliable test results.
The results in this study encourage and motivate us to apply
MTL to a more challenging dataset to test our hypothesis. As
such, we will design our experiments to collect data for this
purpose, and utilizes what we have learned from this study

in subsequent studies and verify the results presented in this
paper with clinical results.

V. CONCLUSION

Traditionally, studies on steady-state visual-evoked potential
(SSVEP) were focused on detecting the target stimulating
frequency in the foveal while the other flicking stimuli are
regarded as interference. Our study presented an end-to-end
multi-task learning approach to detect the responses from
the peripheral vision. Furthermore, we designed multi-task
learning (MTL) block that learns multiple tasks in parallel
efficiently, and we can dynamically tweak our MTL model to
the number of tasks.

Our results show that our MTL model can perform in single
target SSVEP classification, which could be potentially useful
in other SSVEP applications and studies. We observed that
the MTL approach is able to learn each target frequency
separately, which allowed us to yield a map of the patient’s
visible field of vision.

In view of recent events during disease outbreak and pan-
demics where non-essential hospital appointments are recom-
mended to be kept to a minimum, this assessment method
can reduce the number of tests needed, thus minimizing any
unnecessary or additional tests. In essence, this study enables
our future work to potentially assess glaucoma patients’ visual
field to detect peripheral vision loss. To improve the reliability
of the assessment results, utilizing SSVEP could eliminate a
patient’s ability to carry out the procedure and variability of
the patient’s mental state. Assessment time could be cut down
by detecting multiple SSVEP targets at once and generating
a visual response map. Our approach could be potentially
suitable for providing a rapid point-of-care diagnostics for
glaucoma patients.
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