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Abstract— Accurate and robust classification of Motor Im-
agery (MI) from Electroencephalography (EEG) signals is
among the most challenging tasks in Brain-Computer Interface
(BCI) field. To address this challenge, this paper proposes
a novel, neuro-physiologically inspired convolutional neural
network (CNN) named Filter-Bank Convolutional Network
(FBCNet) for MI classification. Capturing neurophysiological
signatures of MI, FBCNet first creates a multi-view represen-
tation of the data by bandpass-filtering the EEG into multiple
frequency bands. Next, spatially discriminative patterns for
each view are learned using a CNN layer. Finally, the temporal
information is aggregated using a new variance layer and a
fully connected layer classifies the resultant features into MI
classes. We evaluate the performance of FBCNet on a publicly
available dataset from Korea University for classification of
left vs right hand MI in a subject-specific 10-fold cross-
validation setting. Results show that FBCNet achieves more
than 6.7% higher accuracy compared to other state-of-the-art
deep learning architectures while requiring less than 1% of
the learning parameters. We explain the higher classification
accuracy achieved by FBCNet using feature visualization where
we show the superiority of FBCNet in learning interpretable
and highly generalizable discriminative features. We provide
the source code of FBCNet for reproducibility of results.

I. INTRODUCTION

Brain-Computer Interface (BCI) systems capture real-time
neuronal activity using a signal acquisition device and try
to decode user’s intentions from the observed brain states
[1]. In BCI systems, electroencephalography (EEG) is the
most widely used signal acquisition modality and Motor-
Imagery (MI) based EEG-BCI, wherein participant performs
mental rehearsal of a particular motor movement is one
of the frequently investigated protocols. Hence, owing to
its widespread use and application in the post-stroke motor
rehabilitation, EEG-BCI literature contains many reports on
decoding techniques to classify various MI classes with an
aim to achieve higher accuracy. Classical machine learn-
ing techniques like linear and non-linear classifiers, nearest
neighbour classifiers as well as more data-driven techniques
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like neural networks and deep learning have been explored
for this task of MI classification [2]–[6].

EEG, with a high noise content and low signal-to-noise
ratio (SNR), offers unique challenges to the classical ma-
chine learning techniques. Therefore, many of the classical
machine learning strategies of MI classification have paid
prominent attention to the extraction of neurophysiologically
sound features from the EEG data. These extracted features
offer higher SNR and hence result in a more generalizable
classifier model. Neuroscientific studies have documented
that MI elicit characteristic EEG activation patterns known as
sensory-motor rhythms (SMR). SMRs are generally observed
at the contralateral and ipsilateral sensory-motor regions in
the form of a time-locked, event-related desynchronization/
synchronization (ERD/ERS) [1]. It is also known that differ-
ent classes of MI differ in the spectro-spatial distribution of
SMRs [1]. Taking advantage of exactly this discriminative
information, Filter Bank Common Spatial Patterns (FBCSP)
has been proven to be one of the most successful algorithms
for MI classification [2]. FBCSP first decomposes the EEG
into multiple narrowband signals, achieving EEG spectral lo-
calisation. The narrowband EEG is then spatially filtered us-
ing Common Spatial Patterns (CSP) algorithm which extracts
discriminative spatial patterns such that the spatially filtered
output will have a maximised class discriminative variance.
This results in the spectro-spatially localised features which
are then classified using support vector machine algorithm.
An efficient and effective embodiment of neurophysiological
priors in the classifier design can be considered as a reason
behind the success of FBCSP algorithm.

Different from classical machine learning approaches,
Deep Learning (DL), which is an extensively data-driven
approach to classification has shown very prominent results
in the field of natural language processing and computer
vision. Hence, there is a growing interest among BCI re-
searchers to use DL methods for achieving higher classifica-
tion accuracies in MI decoding. In particular, architectures
based on Convolutional Neural Network (CNN) have gained
popularity in the BCI domain due to their ability of effec-
tively learning the local connectivity patterns from the given
data [3]–[7]. Due to this, in recent years, many CNN based
architectures have been proposed and validated on various
MI datasets. Although these architectures have outperformed
state-of-the-art machine learning techniques in the subject-
specific classification task, the achieved improvements are
still marginal [3]–[5]. These only marginally better results
with DL can be traced back to the nature of BCI datasets.
One important difference between computer vision and BCI



Fig. 1. Proposed network architecture: FBCNet.

field is that BCI datasets are very small and contain very
few training samples while having high dimensionality. This
creates a huge problem for adaptation of DL methods in
the BCI field and results in heavy overfitting of the models.
One solution to this overfitting problem is to encode the
neurophysiological priors in the classifier architecture.

In this paper, we present Filter-Bank Convolutional Net-
work (FBCNet), which is a novel end-to-end CNN architec-
ture designed with an aim to best encode neurophysiolog-
ical priors for MI classification. Motivated by the FBCSP
algorithm, FBCNet encodes spectro-spatial discriminative
information with the help of spectral filtering of the EEG
and CNN based spatial filtering. The temporal informa-
tion is aggregated using a novel variance layer. FBCNet
consists of only two trainable layers and hence offers a
direct interpretation of learned features. While being simple
and interpretable, FBCNet also offers significantly better
classification results. We present the classification superiority
of FBCNet over other deep learning architectures and FBCSP
with the help of large publicly available dataset from Korea
University involving the task of classifying right vs left hand
MI [8]. We also explain the better classification result with
the help of feature map visualization. Lastly, we provide
the PyTorch implementation of the FBCNet at https:
//github.com/ravikiran-mane/FBCNet.

II. RELATED WORKS

In recent years, numerous DL based architectures have
been proposed for EEG-BCI classification [3]–[7]. In [3],
Schirrmeister et al. proposed two CNN based architectures
named Deep Convnet and Shallow Convnet. Also being in-
spired by FBCSP, both of these architectures consisted of an
initial CNN layer acting along the time dimension which was
followed by CNN-based spatial filtering. Although proven
to be effective, unlike FBCSP, these networks lacked the
explicit spectral filtering of the input EEG data. Building
upon Deep Convnet, Robinson et al. showed that the multi-
view representation of EEG using a filter bank is indeed
highly effective by achieving higher classification accuracy
over broad-band Deep Convnet [6]. EEGNet is another CNN
architecture that was also inspired by FBCSP and similar
to Deep Convnet, implemented a temporal CNN which was

followed by a spatial convolution [4]. By implementing the
depth-wise spatial convolution, EEGNet was constructed to
learn separate spatial filters for each of the temporally filtered
signals. Resenting yet more similarity with FBCSP, EEGNet
also achieved better results than both Deep and Shallow
Convnets. However, both Deep Convnet and EEGNet lack
the explicit multi-view EEG representation and variance-
based feature extraction which are core characteristics of
FBCSP. In this work, FBCNet incorporates these two missing
components.

III. METHODOLOGY

A. Proposed Architecture : Filter-Bank Convolutional Net-
work

FBCNet is designed to effectively extract the spectro-
spatial discriminative information which is a signature of MI
while avoiding the problem of overfitting in the presence of
small datasets. There are four main components of FBCNet,
viz., 1. The multi-view representation of the EEG data that
is obtained by spectrally filtering the raw EEG with multiple
narrowband filters, 2. The spatial CNN layer that learns
discriminative spatial patterns, 3. The variance layer, which
computes temporal variance of input signal representing the
power in the signal, 4. The final fully connected (FC) layer
that classifies features from the Variance layer into given
classes. The multi-view EEG representation followed by the
spatial filtering allows extraction of spectro-spatial features
and Variance layer provides a compact representation of the
temporal information. With this brief design philosophy, this
section provides details of the FBCNet architecture and the
architecture is presented in Fig. 1.

1) Data Representation: FBCNet uses the multi-view
representation of the EEG data in which each view represents
a narrowband localised EEG. Consider a set of single-trial
epoched raw EEG data with C channels and T time points
from Nc classes that is represented as x ∈ RC×T and its
corresponding label to be y ∈ {0,1, ..,Nc} . FBCNet utilises
the multi-view representation of the EEG data, xFB, which
is generated by spectrally filtering the raw EEG x with a
filter bank F = { fi}Nb

i=1 consisting of Nb number of narrow
band temporal filters. Following the filtering operation, xFB
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Fig. 2. Average accuracy in the binary classification of right hand vs left hand MI using 10-fold cross-validation. (sorted by FBCSP-SVM acc.)

belongs in a RC×T×Nb space where the time-series along the
second dimension is spectrally localised.

In this particular work, as proposed in the FBCSP al-
gorithm, the filter bank F was constructed using Nb = 9
non-overlapping frequency bands, each of 4Hz bandwidth,
spanning from 4 to 40 Hz (4-8, 8-12, ..., 36-40 Hz). The
filtering is done using Chebyshev Type II filter with transition
bandwidth of 2Hz and stopband ripple of 30dB.

2) Architecture: The convolutional layer of FBCNet con-
sists of Nb parallel Spatial Convolution Blocks (SCB).
Each convolutional block is composed of a spatial CNN
module (Conv2D) having m filters of size (C,1), a Batch-
normalisation layer, and finally, an Exponential Linear Unit
(ELU) activation function all arranged in a sequential man-
ner. Each SCB receives one view of the multi-view EEG
representation i.e. the kth SCB receives xFB:,:,k ∈ RC×T×1

as an input. Owing to the kernel that spans across all the
channels, each SCB acts as a spatial filter and outputs m
time-series xSCB:,:,k ∈ Rm×T×1. The output of a SCB is then
passed to a Variance layer (VL) which computes the temporal
variance of the individual time-series as given by equation 1
in the forward pass.

xV Li,−,k =
1
T

T

∑
j=1

(xSCBi, j,k −µi,−,k)
2 (1)

where, µi,−,k is the temporal mean of xSCBi,:,k
Following the VL, features from all parallel branches are

concatenated and given to a FC layer with linear activation.
The output of the FC is then passed through the softmax
layer to get the output probabilities of each class.

In this experiment, the value of m was set to 4 which also
corresponds to the number of CSP filters extracted from each
filter band in FBCSP.

B. Training

The FBCNet architecture was trained using Adam op-
timiser at default settings [9]. Log-cross-entropy loss was
used for gradient updates. L2 norm of network weights was
constrained to 2 to avoid the problem of exploding weights.
Training was performed with the early stopping criteria
whereby the validation set loss was monitored and training
was stopped if there is no decrease in the validation loss for
last 200 epochs. After reaching the stopping criteria, network
parameters with best validation loss were restored [3].

TABLE I
AVERAGE CLASSIFICATION RESULTS (MEAN ± STD)

Algorithm Accuracy (%) Sensitivity (%) Specificity (%)

FBCSP-SVM 65.32 ± 16.85 64.98 ± 17.02 65.67 ± 17.21
Deep Convnet 65.72 ± 13.96 65.89 ± 17.56 65.56 ± 17.88
EEGNet-8,2 66.75 ± 14.25 64.11 ± 16.95 69.39 ± 12.67
FBCNet 73.44 ± 14.37 76.37 ± 12.63 70.50 ± 18.47

C. Dataset

We evaluate the performance of FBCNet on a 54 subject
MI dataset from Korea university [8]. The dataset consists
of binary classification of left hand vs right hand MI. In
this work, we have used the data from the first session
that consists of 200 EEG trials, each of 4s in length. As
done in the original work [8], here we have selected 20
channels in the motor region for the classification task (FC-
5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6). Also, the
data is down-sampled by factor of 4 to have a sampling
frequency of 250 Hz.

D. Experiment

We calculate the average subject-specific classification
accuracy in 10-fold cross-validation (CV) settings to evaluate
the performance of FBCNet and other baseline methods. In
a 10-fold CV, every time 8 folds were used for training,
1 fold for testing and 1 for validation. The trials were
randomly allocated to a particular fold and this allocation
was maintained constant while evaluating the results across
all the methods. We compare the results of FBCNet with
three baseline methods, viz. FBCSP-SVM [2], Deep Convnet
[3] and EEGNet-8,2 [4]. All the methods were used in the
most optimal settings as recommended by respective authors.

IV. RESULTS & DISCUSSION

Table I presents the average classification results for the
proposed and baseline methods. It can be observed that all
baseline methods achieved very similar classification accu-
racy when averaged over all subjects. FBCNet outperformed
all methods by a large margin by achieving +8.1%, +7.7%,
and +6.7% classification accuracy in comparison to FBCSP-
SVM, Deep Convnet, and EEGNet-8,2 respectively. Also, the
difference in classification accuracy between FBCNet and
all baseline methods was statistically significant (3 pairwise



Fig. 3. Visualisation of EEG features for one subject in 2 dimensions
using t-SNE. Part (a) is the visualisation of the raw EEG data. Part (b), (c),
and (d) present the visualisation of EEG features at the input of the final
fully connected layer in trained Deep Convnet, EEGNet-8,2, and FBCNet
respectively. Due to the clear superiority of FBCNet in the extraction
of highly generalizable features, FBCNet achieved 98.5% classification
accuracy for this subject, whereas Deep Convnet, and EEGNet-8,2 resulted
in 58.0% and 72% respectively.

Wilcoxon Signed-Rank tests, all p < 0.05). Moreover, FBC-
Net was able to achieve this performance while having only
a fraction of learnable parameters (ln = 902) compared to
Deep Convnet (ln = 283,577) and EEGNet (ln = 3,114).

Fig. 2 presents the classification accuracy (10-folds av-
eraged) for every subject. The graph is sorted according
to the results achieved by FBCSP-SVM algorithm. It can
be observed from the figure that the baseline deep learning
architectures achieve significantly less accuracy for subjects
wherein FBCSP attains >80% ’classification accuracy (avg.
acc.: 65%, 67% vs 91%) and FBCNet matches the accuracy
of the FBCSP for these subjects (90% vs 91%) resulting
in far better performance than that of other deep learning
architectures. On the lower end of the distribution, where
FBCSP-SVM is struggling with <60% accuracy (avg. 52%),
deep learning architectures perform far better (both 64%) and
FBCNet matches the accuracy of deep learning architectures
in this region (64%). This indicates that, by incorporation
of neurophysiological priors in the network architectures, as
done in FBCNet, we can bring the benefits of deep learning
methods to the BCI domain.

Next, we compare the capabilities of deep learning ar-
chitectures in extraction of generalizable features from the
noisy EEG data. Fig. 3 presents the visualisation of extracted
features from all trials in the testing phase for one subject in
2 dimensions using t-SNE algorithm [10]. Fig. 3(a) expresses
the non-separability of MI classes from the raw EEG data
and highlights the necessity of effective feature extraction.
Fig. 3(b), and 3(c) display a 2D representation of a feature
map at the FC layer of Deep Convnet, and EEGNet-8,2
and points towards their inability in extraction of separable

features. Lastly, the clearly separable features presented
in Fig. 3(d) are extracted by FBCNet. This indicates the
superiority of FBCNet in extraction of generalizable features
and it explains the higher classification results achieved by
FBCNet.

Finally, the shallow nature of FBCNet also enables direct
interpretation of learned filters. Similar to the CSP feature
visualization, the CNN filters can be directly inspected to
understand the knowledge extracted by FBCNet. In the
future, we will explore these features to offer more insights
about FBCNet learning. Lastly, the novel variance layer is the
other important part of FBCNet. While acting as a temporal
information aggregator, it produces a compact representation
of the time-series and extracts a feature that is proportional
to the power in the time-series. We will investigate the exact
working and the mathematical analysis of the variance layer
in the future.

V. CONCLUSION

This paper proposed a neurophysiologically motivated
CNN architecture for classification of motor imagery EEG
data. While being completely interpretable, proposed archi-
tecture offered a significant increase of +6.7% in classifica-
tion accuracy. Moreover, visualization of extracted features
demonstrated the superiority of the proposed architecture in
the extraction of highly generalizable discriminative features.
Overall, the results indicate that inclusion of neurophysio-
logical priors while designing deep learning architectures, as
done in this work, may offer better classification results in
the field of brain-computer interfacing.
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