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Pham QC, Hicheur H. On the open-loop and feedback processes that
underlie the formation of trajectories during visual and nonvisual
locomotion in humans. J Neurophysiol 102: 2800–2815, 2009. First
published September 9, 2009; doi:10.1152/jn.00284.2009. We inves-
tigated the nature of the control mechanisms at work during goal-
oriented locomotion. In particular, we tested the effects of vision,
locomotor speed, and the presence of via points on the geometric and
kinematic properties of locomotor trajectories. We first observed that
the average trajectories recorded in visual and nonvisual locomotion
were highly comparable, suggesting the existence of vision-indepen-
dent processes underlying the formation of locomotor trajectories.
Then by analyzing and comparing the variability around the average
trajectories across different experimental conditions, we were able to
demonstrate the existence of on-line feedback control in both visual
and nonvisual locomotion and to clarify the relations between visual
and nonvisual control strategies. Based on these insights, we designed
a model in which maximum-smoothness and optimal feedback control
principles account, respectively, for the open-loop and feedback
processes. Taken together, the experimental and modeling findings
provide a novel understanding of the nature of the motor, sensory, and
“navigational” processes underlying goal-oriented locomotion.

I N T R O D U C T I O N

The study of human locomotion includes different levels of
analysis from the neuronal discharges governing the muscular
activity (see Capaday 2002 for a review) to the mechanical
forces exerted on the ground, allowing the propulsion of the
body. While the understanding the locomotor behavior per se
greatly benefited from such analyses, only few studies were
devoted to clarify the relations between the mechanical, sen-
sorimotor aspects of locomotion and its “navigational,” cogni-
tive components (see Hicheur et al. 2005a for a review). Yet it
is critical to provide an integrative view of locomotion, asso-
ciating our knowledge of the mechanical, sensorimotor, and
navigational components of locomotion within a unifying
framework: indeed, these different components are necessarily
taken into account by the central nervous system (CNS) for the
production of the locomotor commands.

It is well known in the field of motor control that the same
shape can be implemented by various effectors (the “principle
of motor equivalence”) (see Bernstein 1967). For example, one
can draw the letter A with the finger, the hand, or even by
running on a flat surface. Following this idea, we have previ-
ously tested the hypothesis that the control of locomotor

trajectories obey the same laws as those originally formulated
for hand movements, such as the 2/3 power law relating the
path curvature to the tangential velocity of the body (Hicheur
et al. 2005b; see also Olivier and Crétual 2007; Vieilledent
et al. 2001). While this hypothesis could be partially supported,
more general principles accounting for the formation of whole-
body trajectories remained to be investigated in particular those
based on the optimal nature of motor control.

We have thus recently undertaken the study of goal-oriented
locomotion in a task involving walking toward and through a
distant doorway (Arechavaleta et al. 2006; Hicheur et al.
2007). While neither the paths nor the walking speeds were
constrained, we observed that humans generated stereotyped
trajectories at both the geometric (the paths) and kinematic (the
velocity and turning profiles) levels, which contrasted with a
large variability of feet placements (Hicheur et al. 2007). This
indicated that locomotion is not controlled as a mere sequence
of steps: rather higher-level cognitive strategies govern the
formation of whole-body trajectories. While providing an in-
tegrative view on human locomotion by addressing both its
step- and trajectory-related aspects, this approach also brought
about a new understanding of locomotion that takes advantage
of the recent theoretical advances in computational motor
control (for reviews, see Jordan and Wolpert 1999; Todorov
2004). A further step in this direction was made when, based
on the observation that locomotor trajectories were particularly
smooth, we reported that a maximum-smoothness model, orig-
inally formulated for hand movements (Flash and Hogan
1985), could also predict locomotor trajectories with great
accuracy (Pham et al. 2007).

Our ambition in the present article is to further develop this
integrative and computational approach to provide a deeper
understanding of the control mechanisms at work during the
production of locomotor trajectories in a goal-oriented task.
For instance, the maximum smoothness model, which is de-
terministic, could not explain the variability around the aver-
age trajectories. Yet the analysis of movement variability is
crucial for the understanding of human movements. In the
particular case of locomotion, Winter and Eng (1995) showed,
by studying the variability of the knee and hip angles, that the
“controlled variable” is rather the sum of these two angles than
any of them taken separately (in other words, a synergetic
control of the joint angles). More recently, the optimal feed-
back control theory, which specifically relies on the analysis of
movement variability, was proposed as a general theory of
human movements (Todorov and Jordan 2002).
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In the present article, we therefore not only study the
average locomotor trajectories but also the variability profiles
(how variability evolves in time). To discover the fine structure
of these variability profiles, we adopted a differential ap-
proach, where variability profiles in different experimental
conditions were compared. In particular, we varied the visual
condition (walking with eyes open or closed), the speed con-
dition (walking at normal or fast speed), and the presence of
via points along the locomotor path. Yet the comparison of the
variability in two different conditions can only be fruitful if this
variability is structured around the same average behavior. We
thus conducted a first experiment where we tested, for a large
range of spatial targets, whether the average trajectories in
visual and nonvisual locomotion were similar or not. In the
subsequent experiments, we used a more restricted number of
spatial targets but a larger number of repetitions per target to
examine and compare with better confidence the variability
profiles.

A basic assumption of our study is that, theoretically, the
control mechanism governing the formation of locomotor tra-
jectories may be divided in two parts (Fig. 1): an open-loop
process, which can be executed independently of sensory
feedbacks, and a feedback module, which can modify the
open-loop process based on sensory feedbacks to correct the
random perturbations that may occur during task execution.
Based on the experimental results, we argue that on-line
feedback control is present in both visual and nonvisual loco-
motion and suggest the relations between the visual and non-
visual control strategies. We then investigate the precise nature
of the on-line feedback control and discuss two competing
hypotheses: the “desired trajectory” hypothesis, which assumes
two separate stages in the production of a movement: a plan-
ning stage when a desired optimal trajectory is computed and
an execution stage when this desired trajectory is implemented
with “trajectory tracking” mechanisms correcting any devia-
tion away from the desired trajectory; and the optimal feedback
control hypothesis (Todorov and Jordan 2002), which states
that “deviations from the average trajectory are corrected only

when they interfere with task performance” (goal-directed
corrections, as opposed to desired-trajectory-related correc-
tions).

To test these hypotheses in a direct way, we also consider
several models of trajectory formation relying on either purely
open-loop or optimal feedback control. By analyzing and
comparing the models’ predictions with experimental data (in
terms of both average trajectories and variability profiles), we
provide evidence that locomotor trajectories, even in the ab-
sence of vision, are controlled in an optimal way.

E X P E R I M E N T A L M E T H O D S

Four experiments were conducted involving a total of 22 healthy
subjects. Subjects gave their informed consent prior to their inclusion
in the study. The experiments conformed to the Code of Ethics of the
Declaration of Helsinki. In experiment 1, we studied the effect of
vision on the average trajectories and on the magnitude of the
variability around the average trajectory. Experiment 2 was designed
to more specifically examine the time course of the variability (vari-
ability profile) in the visual (VI) and nonvisual (NV) conditions.
Experiment 3 addressed the influence of speed and experiment 4
aimed at assessing the desired trajectory hypothesis in the context of
locomotion.

Materials

A number of light-reflective markers were attached to the subject:
42 in experiments 1–3 (allowing full-body movement capture), and 2
in experiment 4 (the 2 shoulder markers). The three-dimensional (3D)
positions of these markers were recorded at a 120-Hz sampling
frequency using an optoelectronic Vicon V8 motion-capture system
wired to 12 cameras. To study whole-body trajectories in space, we
used the midpoint between the left and right shoulder markers that
were located on the left and right acromions, respectively (see Hicheur
et al. 2007). In experiment 2, we used in addition the left and right heel
markers to compute the number of steps.

In all trials, the target was indicated by a cardboard arrow of
dimension 1.20 ! 0.25 m (length and width, respectively). The arrow
was placed at a specific (x,y) position in the motion capture space with
an orientation ! (Fig. 2, A–C).

Goal

Goal

?

Open−loop process

Sensory feedback (visual, vestibular, proprioceptive...)

Movement

Online feedback
component

Optimal feedback control
Trajectory tracking / ? FIG. 1. Sketch of a general controller, including

an open-loop process and a feedback module. The
question marks indicate some of the issues investi-
gated in the present article: namely, does on-line
feedback control exist in visual and nonvisual loco-
motion and what is the precise nature of the feed-
back control scheme, trajectory tracking or optimal
feedback control?
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Experiments 1–3 took place in a laboratory of dimensions "10 !
10 ! 5 m (length, width, and height, respectively). Experiment 4 was
carried out in a smaller laboratory ("6 ! 8 ! 4 m).

Experiment 1

Fourteen male subjects participated in this experiment. The mean
age, height, and weight of the subjects were, respectively, 24.6 # 3.2
yr, 1.80 # 0.04 (SD) m, and 73.3 # 5.7 kg.

In each trial, the subject had to start from a fixed position in the
laboratory and to walk toward a distant target indicated by an arrow
(Fig. 2A). We constrained the subject’s initial walking direction by
asking him to start at position (0,$1 m) and to walk the first meter
[from (0,$1 m) to (0,0)] orthogonally to the x axis (Fig. 2, A–C). After
crossing the x axis, no specific restriction relative to the path to follow
was provided to the subject. We imposed the subject’s final walking
direction by asking the subject to enter the arrow by the shaft and to
stop walking above the arrowhead.

The subject walked either with eyes open (VI) or closed (NV). In
this experiment, he was asked to walk at his preferred normal speed.
In condition VI, the arrow was visible throughout the whole move-
ment. In condition NV, the subject first observed the arrow while
standing at the starting position. This observation period typically
lasted %3 s. When the subject was ready, he closed his eyes and
attempted to complete the task without vision. The subject was asked
to complete the task with the same initial and final constraints as in
condition VI—namely, walk the first meter orthogonally to the x axis,
enter the arrow by the shaft, and stop above the arrowhead. Right after
the observation period, the experimenter removed the arrow to avoid
tactile feedbacks. Once the subject had completely stopped, he was
asked to keep his eyes closed while the experimenter took his hand
and guided him randomly for a few seconds in the laboratory before
stopping at a random position. The subject was then allowed to
re-open his eyes and to go back to the starting position. This procedure
prevented the subject from acquiring visual feedbacks during both
task and posttask periods (avoiding in this way spatial calibrations of
the room using kinesthetic cues). The trials were randomized to avoid
learning effects for a particular condition or target. The subject
completed two to three trials before the experiment actually started to
be familiar with the task and to dispel any fear of hitting the walls
during the nonvisual trials (the distance between the most distant
target and the wall was "3 m).

The angular displacement of the body in space induced by the
different orientations of the arrow ranged between $180 and 180°

(Fig. 2B). Three targets were placed straight ahead of the subject
(straight targets), while the others were placed on the side (angled
targets).

The three straight targets were used for all subjects. A subgroup of
six subjects walked toward the angled targets located on the left, while
the remaining eight subjects walked toward the angled targets on the
right. Thus each subject generated 66 trajectories corresponding to 11
spatial targets (3 straight & 8 angled) ! two conditions (VI and
NV) ! 3 trials so that a total of 924 trajectories (14 subjects ! 66
trials) were recorded for this experiment.

Experiment 2

The methodology used in this experiment was the same as in
experiment 1 except that here we examined specifically the time
course of the variability profiles in conditions VI and NV. We
increased the number of repetitions to eight per condition and target.
This allowed us to study intrasubject variability profiles with a greater
reliability.

This experiment was realized in the same laboratory as experiment
1. We tested five male subjects, four of whom had already participated
in experiment 1, which took place 12 mo before. The mean age,
height, and weight of the subjects were, respectively, 29.2 # 4.2 yr,
1.80 # 0.06 m, and 68.8 # 5.1 kg.

We reduced the number of targets to five: two straight targets and
three angled targets (Fig. 2C). Thus each subject executed 80 trials (2
visual conditions ! 5 targets ! 8 repetitions). As in experiment 1, the
trials were randomized to reduce learning effects. A total of 400
trajectories (5 subjects ! 80 trials) were recorded.

Experiment 3

The methodology and the protocol used in this experiment were the
same as in experiment 2 except that we varied the speed instruction:
subjects were asked to walk either at their preferred speed (normal
speed, NS) or at a higher speed (fast speed, FS). Vision was available
in both speed conditions.

We tested five male subjects in this experiment, three of whom had
already participated in experiment 1, which took place 12 mo before.
The mean age, height, and weight of the subjects were, respectively,
equal to 25.8 # 3.6 yr, 1.80 # 0.02 m, and 75.9 # 3.7 kg. As in
experiment 2, a total of 400 trajectories (5 subjects ! 2 speed
conditions ! 5 targets ! 8 repetitions) were recorded.
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FIG. 2. A: experimental protocol: the subject had

to start from a fixed position in the laboratory and
walk toward a distant arrow placed on the ground. He
had to enter the arrow by the shaft and stop above the
arrow head. B: spatial layout of the 19 targets in
experiment 1: each target was referred to by a number
(1–7) indicating its position and by a letter (N: north,
S: south, E: east, W: west) indicating its orientation.
C: spatial layout of the 5 targets in experiment 2.
D: the instantaneous trajectory deviation [TD(t)] mea-
sures the variability of actual trajectories around the
average trajectory (Eq. 1). E: the instantaneous ve-
locity deviation [VD(t)] measures the variability of
actual velocity profiles around the average velocity
profile (Eq. 5).
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Experiment 4

This simple experiment adapted a hand movement experiment from
(Todorov and Jordan 2002) to the context of locomotion to test the
“desired trajectory” hypothesis (see INTRODUCTION).

The experiment was divided in three sessions separated by several
hours. In the first session, the task was the same as in the previous
experiments, namely, walking toward a distant arrow. We used only
one target, similar to target 5 in Fig. 2C. The subject performed 10
trials in this session all with vision and at normal speed. We then
computed the average trajectory [xav(t),yav(t)], 0 " t " 1 across these
10 trials. We denoted, respectively, by P1, P2, and P3 the spatial positions
[xav(0.33),yav(0.33)], [xav(0.5),yav(0.5)], and [xav(0.67),yav(0.67)].

In the second session, we placed a piece of black tape on the ground
at position P2. The subject was then asked, as in the first session, to
walk toward the distant arrow. In addition, he had now to go through
the via point indicated by the piece of black tape. Again the subject had
to perform 10 repetitions. The third session was similar in all aspects to the
second session except that the subject had to go successively through
the three via points, P1–P3.

We tested five subjects, three males and two females. None had
participated in the previous experiments. The mean age, height,
and weight of the subjects were, respectively, equal to 30.2 # 3.8
yr, 1.74 # 0.08 m, and 68.0 # 11.9 kg. A total of 150 trajectories
(5 subjects ! 3 sessions ! 10 repetitions) were recorded.

Data analysis

All the data analyses below were performed with the free software
GNU Octave unless otherwise stated.

Computation of the trajectories

The beginning (t ' 0) of each trajectory was set to the time
instant when the subject crossed the x axis. To have the same
criterion for the VI and NV conditions, the end of each trajectory
(t ' 1) was set to the time instant when the subject’s speed became
%0.06 m/s (this value was %5% of the average nominal walking
speed). We chose this strictly positive threshold because even
when the subject had completely stopped, the speed of their
shoulders’ midpoint was not exactly zero due to the small residual
movements of the upper body.

When a derivative of the position (velocity, acceleration, etc.) was
needed, a second-order Butterworth filter with cut-off frequency 6.25
Hz was applied before the derivation.

Average trajectories, variability profiles, velocity profiles

For a given target, the average trajectory [xav(t), yav(t)] was defined
by

xav(t) #
1

N
!
i'1

N

xi(t); yav #
1

N
!
i'1

N

yi(t) (1)

where N corresponds to the number of trajectories recorded for this
target (n ' 42 for the intersubject analysis of experiment 1; n ' 8, 8,
and 10, respectively, for the intrasubject analyses of experiments 2–4).

To measure the variability of actual trajectories around the average
trajectory, we defined the instantaneous trajectory deviation (TD) at
time t as (see Fig. 2E for illustration)

TD(t) # " 1

N $ 1
!
i'1

N

*xi(t) $ xav(t)+
2 % *yi(t) $ yav(t)+

2 (2)

We then defined the maximum trajectory deviation (MTD) by

MTD(t) # max
0"t"1

TD(t) (3)

Variance ellipses were calculated by principal component analysis:
the variance ellipse at time t is centered at [xav(t), yav(t)] and its
orientation and size indicate how the [xi(t), yi(t)] (i ' 1, . . . , N) are
distributed around [xav(t), yav(t)]. Note that r1(t)2 & r2(t)2 ' TD(t)2

where r1 and r2 are the lengths of the ellipse’s semi major and semi
minor axes (Pham et al. 2007).

The variability profiles and the variance ellipses of experiment 4
were computed differently, in a manner similar to that described in the
legend of Fig. 5 in Liu and Todorov (2007). This was done to better
assess the effects of the spatial via points.

If a set of trajectories have similar geometric paths, it makes sense
to study also the variability of their velocity profiles. For this, we
defined the normalized velocity profile vi and the average normalized
velocity profile vav as follows

vi #
"ẋi

2 % ẏi
2

#
0

1

"ẋi
2 % ẏi

2dt

; vav #
1

N
!
i'1

N

vi (4)

Next, the instantaneous velocity deviation (VD) can be defined by

VD(t) # " 1

N $ 1
!
i'1

N

*vi(t) $ vav(t)+
2 (5)

Note that because the velocity profiles were normalized, vi and VD
have no units.

Comparison of trajectories in two conditions

For comparing the average trajectories recorded in two different
conditions, say A and B, we defined, for each target, the instantaneous
trajectory separation (TS) by

TSA/B(t) # "*xA(t) $ xB(t)+2 % *yA(t) $ yB(t)+2 (6)

where (xA,yA) and (xB,yB) denote the average trajectories respectively
in condition A and in condition B.

We then defined the maximum trajectory separation (MTS) by

MTSA/B(t) # max
0"t"1

TSA/B(t) (7)

Targets pooling in experiment 1

In experiment 1, six subjects walked toward targets located on their
left and eight subjects walked toward targets located on their right (see
Fig. 2B). We found no significant effect of the side on the parameters
of interest: for instance, the MTSL/R (MTS between the average
trajectory of the left trajectories and that of the right trajectories) was
smaller than the MTDR (MTD of the right trajectories) in both
conditions VI and NV. In the two-way ANOVA test with replications
where the factors were the measure (MTSL/R vs. MTDR) and the
visual condition, the effect of the measure was significant [F(1,40) '
37.4, P % 0.05], and there was no significant interaction effect
[F(1,40) ' 2.82, P , 0.05]. Thus for all the following analyses, we
flipped the left trajectories toward the right and pooled them together
with their symmetrical trajectories (trajectories of target 4 with those
of target 6, trajectories of target 5 with those of targets 7).

Step-level analysis in experiment 2

In Hicheur et al. (2007), we carried out an extensive step-level
analysis to compare the variability of feet placements with that of
whole-body trajectories. Here the purpose of the step-level analysis
was solely to assess whether the subjects used a steps-counting
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strategy in the nonvisual trials, which may consist of count the number
steps executed in one visual trial and reproduce the same number of
steps in the corresponding nonvisual trials.

For this, we considered the z coordinates of the left and right heel
markers as functions of time. The total number of local maxima of
these two signals then gave the number of steps (SN, steps number)
executed by the subject. The trial-to-trial variability of this quantity
was given by the steps number deviation (SND)

SND # " 1

N $ 2
!
i'2

N

(SNi $ SNav)
2 (8)

where N is the number of repetitions (n ' 8 here). Note that we
discarded the first trial in the computation of both the average and the
SD of the SNs. The discard was done to include only the nonvisual
trials that were preceded by at least one visual trial (this is required by
the steps-counting strategy, see preceding text). For symmetry, we
discarded also the first visual trial.

Linearity coefficient

To measure how close a variability profile is from a linear profile,
we defined a linearity coefficient (LC). The LC of a time series [yi(ti),
1 " i " N] quantifies the distance between this time series and its best
linear approximation y ' ct, with 0 " LC "1 and LC ' 1 for a linear
profile. First, the optimal coefficient c was computed by

c # $!
i'1

T

yiti%&$$!
i'1

T

ti
2% (9)

Next, the squared approximation error was given by

ESS # !
i'1

T

(yi $ cti)
2 (10)

Finally, the LC was given by

LC # 1 $ ESS/Var(y) (11)

Statistical tests

Student’s t-test and ANOVA tests were performed with Gnumeric
(GNOME Foundation, Cambridge, MA) while Tukey tests were
performed with Matlab (The MathWorks, Natick, MA). The level of
significance of the tests was set to P % 0.05.

In experiment 1, paired t-test were performed to compare the MTDs
in conditions VI and NV or the MTD in condition VI with the
MTSVI/NV. In both cases, the values to be compared were paired with
respect to the target (df ' 10).

In experiment 2, we used two-way ANOVA tests with replica-
tions (or 2-way repeated-measures ANOVA) to assess the effect of
the visual condition on the MTDs and on the SNDs. The first factor
of the test was the visual condition (df ' 1), and the second factor
was the target (df ' 4).

Two-way ANOVA tests with replications were used to assess the
effect of the speed instruction on the actually measured average
speeds or the MTDs. The first factor of the test was the speed
condition (df ' 1), and the second factor was the target (df ' 4). We
also compared the MTD in condition NS with the MTSNS/FS using a
similar two-way ANOVA test.

In experiment 4, we used a one-way ANOVA test with replications
to assess the effect of the via-point condition (no, 1, or 3 via points)
on the MTDs. If a significant effect was found, we performed post hoc
Tukey tests to assess the effect of the via-points within each pair of
conditions.

E X P E R I M E N T A L S T U D Y

Results

VISION DOES NOT AFFECT THE AVERAGE TRAJECTORIES (EXPERI-

MENT 1). Average trajectories in the VI and NV conditions
were similar both at the geometric level (the paths) and the
kinematic level (the velocity profiles): see Fig. 3, A, 1 and 2, B,
1 and 2, and C, 1 and 2. Specifically, the NV trajectories
displayed all the typical features observed in the VI trajecto-
ries: straight paths for straight targets, smoothly curved paths
for angled targets, inverse relationship between velocity and
curvature. The similarity was particularly striking even for the
most angled targets such as 4W, 5W, 4S, and 5S.

More quantitatively, the average MTSVI/NV across targets was
0.30 # 0.10 m (or 5.7 # 2.9% of trajectory length). There was no
statistically significant difference between the MTSVI/NV and the
MTDVI, which was 0.31 # 0.10 m (paired 2-tailed t-test, df ' 10,
t ' $0.18, P , 0.05). In other words, the difference between the
average trajectories in the two conditions was of the same mag-
nitude as the variability within condition VI.

VISION AFFECTS THE VARIABILITY AROUND THE AVERAGE TRA-
JECTORIES (EXPERIMENTS 1 AND 2). Intersubject variability
(experiment 1). While the average trajectories in the VI and
NV conditions were similar, the absence of visual feedbacks
yielded large differences in terms of the variability profiles. In
experiment 1, the average MTDNV across targets was equal to
0.74 # 0.13 m, which was significantly larger than the MTDVI
(paired 1-tailed t-test, df ' 10, t ' 16.0, P % 0.05). Moreover,
the shapes of the intersubject variability profiles differed
greatly between the two conditions (this is further discussed
later).

Intrasubject variability (experiment 2). The preceding obser-
vation that the intersubject variability was larger in nonvisual
locomotion than in visual locomotion was confirmed in experi-
ment 2 on an intrasubject basis (Fig. 4C). In the two-way ANOVA
test where the factors were the visual condition and the target, the
main effect of the visual condition on the MTD was found to be
significant [F(1,40) ' 86.1, P % 0.05], and there was no signif-
icant interaction effect [F(4,40) ' 0.61, P , 0.05].

We noted, however, that the difference between the average
trajectories of conditions VI and NV in experiment 2 was larger
than the corresponding values reported in experiment 1: here the
average MTSVI/NV across targets and subjects was 0.54 # 0.25 m
(Fig. 4C), whereas the average MTSVI/NV across targets was
0.30 # 0.10 m in experiment 1. This difference could be explained
by the fact that in experiment 2, the average trajectories were
computed across 8 trials (intrasubject average), whereas in exper-
iment 1, these were computed across 42 trials (intersubject aver-
age). Had we grouped together the five subjects of experiment 2
(thus averaging across 40 trials), this would yield a value of
0.35 # 0.12 m for MTSVI/NV, a value comparable to that of
experiment 1 given in the preceding text.

NO STEPS-COUNTING STRATEGY IN NONVISUAL TRIALS (EXPERI-

MENT 2). It could be argued that despite the randomized order
of the trials, the subjects may have used a steps-counting
strategy (see METHODS). Such a strategy would imply a low
trial-to-trial variability in the number of steps in condition NV.
We observed, on the contrary, that the average SND across
targets and subjects was 0.79 in condition NV, which was
higher than in condition VI (SND ' 0.54), where arguably no
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steps-counting strategy was used. In the two-way ANOVA test
where the factors were the visual condition and the target, the
main effect of the visual condition on the SND was found to be
significant [F(1,40) ' 7.6, P % 0.05], and there was no
significant interaction effect [F(4,40) ' 0.82, P , 0.05].

BUMP-SHAPE OF THE VARIABILITY PROFILES IN VISUAL LOCOMOTION

(EXPERIMENT 2). We noted that in both conditions VI and NV,
the variability was low at the beginning of the movement. This

is related to the fact that for given a target, the subject started
all the trials from the same starting position.

In condition VI, the variability was also close to zero at the end
of the movement. This is because when vision was available, the
subject could complete all the trials successfully by stopping at the
requested final position. Regarding the middle part of the vari-
ability profiles, one may distinguish between the straight targets
and the angled targets. For the former, the variability was close
to zero during the whole movement (see the plain lines in Fig.
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FIG. 3. Experiment 1: comparison of lo-
comotor trajectories in the visual (VI: plain
lines) and nonvisual (NV: dashed lines) con-
ditions. A: comparison for target 4E. A1:
geometric paths of the average trajectories.
Variance ellipses around the average trajec-
tory at every time instant (see METHODS) are
shaded in dark gray (VI) and light gray (NV).
A2: average velocity profiles. The velocity
profiles were normalized so that their aver-
age values over the movement duration
equals 1 (see METHODS). SDs around the
average velocity profiles are shaded in dark
gray (VI) and light gray (NV). A3: variability
profiles [TD(t)]. B: same as in A but for
target 5W. C: same as in A but for target 5S.
D: maximal trajectory deviation/separation
(MTD/MTS) in meters: MTD in condition
VI (dark gray bars), MTD in condition NV
(light gray bars), MTS between the average
trajectory of VI and NV (black bars).
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FIG. 4. Experiment 2: comparison of vari-
ability profiles in the VI (plain lines) and NV
(dashed lines) conditions. A: variability pro-
files for subject LH. A1: target 1 . A5: target 5.
B: same as in A but for subject NV. C: average
MTD across targets in condition VI (dark gray
bars) and in condition NV (light gray bars),
average MTS across targets between condi-
tions VI and NV (black bars). Here the MTD
and MTS were computed in an intrasubject
fashion. First, for each subject, a MTD (or
MTS) was computed over the 8 trials corre-
sponding to this subject, then the average val-
ues and SDs of the MTD (or MTS) across the
5 subjects were plotted. D: linearity coeffi-
cients LC (0 "L C " 1 and LC ' 1 for a linear
function, see METHODS).
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4, A, 1 and 2, and B, 1 and 2), whereas for the latter, the
variability was higher around the middle of the movement than
around the ends, yielding a “bump-shape” variability profile
(A, 3–5, and B, 3–5).

SPECIAL SHAPES OF THE VARIABILITY PROFILES IN NONVISUAL LO-
COMOTION (EXPERIMENT 2). In condition NV, the variability did
not decrease toward zero at the end of the movement as in
condition VI. For the straight targets (targets 1 and 2), the
variability increased approximately linearly with time so that
the variability profiles could be approximated by a straight line
(Fig. 4, A, 1 and 2, and B, 1 and 2, dashed lines). This was
confirmed by the calculation of the average LC across subjects,
which were close to 1 for these targets (Fig. 4D).

For the most angled targets (targets 4 and 5), the variability
profiles were not linear: the average LC across subjects was
"0.65 for these targets. Indeed the variability profiles corre-
sponding to these targets were clearly composed of two parts:
a first part where the variability increased linearly and a second
part where the variability remained constant (see the dashed
lines in Fig. 4, A4 and B4) or even decreased (A5 and B5). We
propose in Variability around the average trajectory a hypoth-
esis accounting for this interesting property.

WALKING SPEED AFFECTS NEITHER THE AVERAGE TRAJECTORIES
NOR THE VARIABILITY PROFILES (EXPERIMENT 3). The speed in-
struction was well respected: subjects did walk faster in con-
dition FS than in condition NS. The average speed across
targets, subjects and trials was 1.34 # 0.11 m/s in condition NS
and 1.60 # 0.16 m/s in condition FS. From condition NS to FS,
the subjects increased their speed by between 13 and 30%. In
the two-way ANOVA test where the factors were the speed
condition and the target, the main effect of the speed condition
was significant [F(1,40) ' 55.1, P % 0.05], and there was no
significant interaction effect [F(4,40) ' 0.09, P , 0.05].

The average trajectories were also similar in the two speed
conditions (Fig. 5C). The average MTSNS/FS computed across
targets and subjects was 0.18 # 0.06 m, whereas the average
MTDNS was 0.18 # 0.08 m. In the two-way ANOVA test

where the factors were the speed condition and the target, the
main effect of the speed condition was not significant
[F(1,40) ' 0.01, P , 0.05]. However, the interaction effect
was significant [F(4,40) ' 5.7, P % 0.05]. In other words, the
difference between the average trajectories in the two condi-
tions was globally of the same magnitude as the variability
within condition NS, but target-wise, there were differences
between MTSNS/FS and MTDNS. However, for the most inter-
esting targets (targets 4 and 5), we found that MTSNS/FS %
MTDNS (Fig. 5C).

The variability profiles measured in the two speed conditions
were very similar, in terms of both shape and magnitude (see
Fig. 5, A and B, for typical variability profiles). For the straight
targets, the variability was low throughout the movement, and
for the angled targets, bump-shaped variability profiles were
consistently observed in both speed conditions. In the two-way
ANOVA test where the factors were the speed condition and
the target, the main effect of speed condition on the MTDs was
not significant [F(1,40) ' 0.006, P , 0.05], neither was the
interaction effect [F(4,40) ' 1.2, P , 0.05].

PRESENCE OF VIA-POINTS AFFECTS THE VARIABILITY PROFILES (EX-

PERIMENT 4). We noted first that the average trajectories re-
corded in the three sessions were very similar, as we could
expect from the experimental setup. For instance, the MTS
between the average trajectory of session 1 (no-via-point) and
that of session 2 (1-via-point) was 0.12 # 0.07 m. Similarly,
the MTS between the average trajectory of session 1 (no-via-
point) and that of session 3 (3-via-points) was 0.11 # 0.06 m.

Consistently with the previous results, the variability
profiles observed in the no-via-point condition were bump-
shaped (Fig. 6, A1 and B). By contrast, the variability profiles
in the 1-via-point condition were clearly two-peaked with a
local minimum occurring around t ' 0.5 (Fig. 6, A2 and B).
The variability profiles in the 3-via-points condition displayed
smaller variations than in the two previous conditions. In
particular, we observed no significant peaks or valleys (Fig.
6A3 and B).
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FIG. 5. Experiment 3: comparison of variability
profiles in the normal speed (NS: plain lines) and
fast speed (FS: dashed lines) conditions. For details,
see legend of Fig. 4. A: variability profiles for
subject B. B: same as in A but for subject RK. C:
average MTD across targets in condition NS (dark
gray bars) and in condition FS (light gray bars),
average MTS across targets between conditions NS
and FS (black bars).
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Quantitatively, the MTD in the 1-via-point (0.06 # 0.02 m)
and the 3-via-points (0.05 # 0.008 m) conditions were lower
than the MTD in the no-via-point condition (0.18 # 0.06 m).
The one-way ANOVA test revealed that the number of via
points (0, 1, or 3) has a significant effect on the MTDs
[F(2,12) ' 16.3, P % 0.05]. The post hoc Tukey tests revealed
that this effect was significant between the 0- and 1-via-point
conditions and between the 0- and 3 via-points conditions but
not between the 1- and 3-via-points conditions.

Variability around the average trajectory: combination of
two independent components

HYPOTHESIS ON THE STRUCTURE OF THE VARIABILITY PROFILES. We
propose to study now in more detail the structure of the
variability profiles observed in the nonvisual condition, based
on the results of experiment 2. In this experiment, two param-
eters were varied: the presence or absence of visual feedbacks
and the “complexity” of the target; that is, specifically, whether
the target was “straight” or “angled.” We make the hypothesis
that these two parameters independently contribute to the
variability profiles.

More precisely, our hypothesis states that the variability
recorded for the different targets and visual conditions results
from the combination of the variabilities produced by two
mutually independent sources. The first source is vision-depen-
dent and “trajectory complexity”-independent: that is, indepen-
dent of whether the target is straight or angled. The second
source is trajectory complexity-dependent and vision-indepen-
dent. The psychological and physiological interpretations of
these two sources are addressed in the DISCUSSION.

The variability resulting from source 1—which is trajectory
complexity-independent—can be isolated by examining the
trials involving only straight targets: indeed, for these “easy”
trials, the contribution of source 2—which is trajectory com-
plexity-dependent—should be minimal. Now from the results
of experiment 2, we know that the variability in question is
almost zero in the visual condition and that it increases ap-
proximately linearly with time in the nonvisual condition.
Similarly, the variability resulting from source 2—which is
vision-independent—can be isolated by examining the trials
executed with vision. For the straight targets, this variability is
almost zero, whereas for the angled targets, this variability
describes, as a function of time, the shape of a bump (see
RESULTS of experiment 2 in the preceding text).

OBSERVATION SUPPORTING THE HYPOTHESIS. The proposed
“two-sources” hypothesis allows now to make the following
nontrivial observation: the special shape of the variability
profiles observed in condition NV for the angled targets can be
decomposed as the sum of a straight line (source 1) and of a
bump profile (source 2): see Table 1 for a summary.
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FIG. 6. Experiment 4: testing the desired-tra-
jectory hypothesis. A: average trajectories and
variance ellipses around the average trajectories.
A1: no-via-point condition. A2: 1-via-point con-
dition. A3: 3-via-points condition. B: average
variability profiles computed across subjects. —,
no via point; - - -, 1 via point; ! ! ! , 3 via points.
We also indicated the time instants t ' 0.33, t '
0.5, and t ' 0.67 for which the via points where
computed. C: average MTD across subjects in the
3 conditions.

TABLE 1. The two-sources hypothesis

Visual Condition/Target Straight Targets Angled Targets

Visual 0 & 0 0 & Bump
Nonvisual Line & 0 Line & Bump

In each cell, we indicate the putative contribution of source 1 (vision-
dependent, “trajectory-complexity--independent) & the putative contribution
of source 2 (vision-independent, “trajectory-complexity” dependent).

2807PROCESSES UNDERLYING GOAL-ORIENTED LOCOMOTION

J Neurophysiol • VOL 102 • NOVEMBER 2009 • www.jn.org

 on Novem
ber 4, 2009 

jn.physiology.org
Downloaded from

 

http://jn.physiology.org


To illustrate this, let us denote by TDn
VI and TDn

NV the
variability profiles corresponding to target n in condition VI
and condition NV, respectively. The preceding observation
implies that TDn

NV would be similar to the sum of the bump-
shaped variability profile observed for the same target in
condition VI (TDn

VI), plus a straight-line variability profile
(for simplicity, we chose the variability profile corresponding
to target 2: TD2

NV).
Figure 7A shows the comparison of TD4

NV with the sum
TD4

VI & TD2
NV for the five tested subjects of experiment 2.

Similarly, Fig. 7B shows the comparison of TD5
NV with the

sum TD5
VI & TD2

NV. One can observe in each case a good
match between the compared profiles.

However, this observation should not be taken literally.
While the proposed hypothesis concerns the noise sources, we
compared above the trajectory variabilities, that is, the output
of the whole trajectory generation process. In this respect, it
should be noted that, whenever the trajectory generation mech-
anisms contain nonlinearities, the additivity of the two noise
sources would not translate into the additivity of the trajectory
variability profiles. Following this remark, we did not seek to
find the best combination of the two squared variability profiles

(indeed, the variability profiles were given by the 2D SDs of the
trajectories, but for linear systems only variances add up). We
chose instead to show directly the sum of the variability profiles as
a way to hint how the special shapes of the variability profiles
observed in experiment 2 can be obtained from the combination of
a line and a bump profile. To assess the hypothesis in a more
formal way, it is necessary to evaluate the input-output relation-
ship between the incoming noise and the resulting trajectory
variability. This is addressed in the modeling study where we
propose a possible implementation of the trajectory generation
mechanism.

M O D E L I N G S T U D Y

While integrating the previous experimental findings within
a unifying framework, the following modeling study also
allows testing positively formulated control mechanisms. In
particular, we propose that the on-line control of whole-body
trajectories in visual and nonvisual locomotion may be based
on optimal feedback control. To test this idea, we designed a
simplified optimal feedback control model and compared the
predictions of this model (and those of alternative models) with
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FIG. 7. Testing the 2-sources hypothesis. A:
variability profiles for target 4 and subjects AN
(A1), DP (A2), GN (A3), LH (A4), and NV (A5).
—, variability profile for target 4 in condition
VI; - ! -, variability profile for target 2 in condi-
tion NV. Compare - - - (variability profile for
target 4 in condition NV) with ! ! ! (sum of the
— and the - ! -). B: same legend as in A but for
target 5.
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the experimentally recorded trajectories. Furthermore, as stated
previously, the model allows formally testing whether the
combination of the two sources (vision-independent and tra-
jectory-complexity-independent) could give rise to the special
shape of the variability profiles observed in experiment 2.

We first describe a modified version of the minimum jerk
model on which our optimal feedback control model is based.

Deterministic modified minimum jerk (MMJ) model

DESCRIPTION OF THE MODEL. In (Pham et al. 2007), we pre-
sented a minimum jerk model (Flash and Hogan 1985) that
could reproduce with great accuracy locomotor trajectories of
moderate curvature. However, we noticed that the original
minimum jerk model predicted velocity profiles that displayed
slightly larger variations than those experimentally observed.
For this reason, the simple minimum jerk model failed to
predict trajectories recorded in the present experiments, which
were highly curved.

To overcome this, we added an extra term that penalizes
large variations of the velocity. The influence of this term is
weighted by a constant & that we set to a unique value (& '
1,000) in all the simulations for genericity. Thus we looked for
the trajectory [x(t), y(t)], 0 " t " 1 that minimizes

#
0

1

!x2 % !y2 % y$ d

dt
"ẋ2 % ẏ2% 2

dt (12)

subject to the constraints

x(0) # x0; ẋ(0) # v0
x; ẍ(0) # a0

x; x(1) # x1; ẋ(1) # v1
x; ẍ(1) # a1

x

y(0) # y0; ẏ(0) # v0
y; ÿ(0) # a0

y; y(1) # y1; ẏ(1) # v1
y; ÿ(1) # a1

y
(13)

where the 12 boundary conditions (x0, vx
0, ax

0, . . .) were set to
the respective average experimental values. We found approx-
imated solutions by numerically solving this optimization
problem in the subspace of polynomials of degrees "7 (see
Pham et al. 2007 for more details).

Performance of the model

To assess the quality of the model’s prediction, we defined
the instantaneous trajectory error (TE) of model M (M ' j for
the original minimum jerk model and M ' m for the modified
minimum jerk model) by

TEM(t) # " *xM(t) $ xav(t)+
2 % *yM(t) $ yav(t)+

2 (14)

where [xav(t), yav(t)] is the experimentally recorded average
trajectory and ([xM(t), yM(t)] is the trajectory predicted by the
model. The maximal trajectory error (MTE) was defined by

MTEM # max
0"t"1

TEM(t) (15)

We compared, for the targets of experiment 1, the average
trajectories measured in condition VI with the predicted tra-
jectories. For clarity, we divided the targets into two groups:
group I containing straight and moderately angled targets (1N,
2N, 3N, 4N, 5N, 4E, 5E) and group II containing highly angled
targets (4W, 5W, 4S, 5S). One-way ANOVA tests with repli-
cations were then performed to compare the MTD of the

trajectories recorded in condition VI with the MTE of the
models (3 levels: MTD, MTEj, MTEm). If a significant effect
was found, we performed post hoc Tukey tests to compare
between each pair.

Result: the modified minimum jerk can accurately predict the
average trajectories for a wide range of targets

For the straight and moderately angled targets (group I:
targets 1N, 2N, 3N, 4N, 5N, 4E, 5E), the original and the
modified minimum jerk models yielded accurate predictions, in
terms of both trajectory path (Fig. 8A1) and velocity profile
(A2). The average MTEj across the targets of group I was
0.11 m, and the average MTEm was %0.14 m, while the
average MTD was 0.26 m. The difference among the three
means was significant [F(2,18) ' 10.2, P % 0.05]. The post
hoc Tukey tests revealed that the difference between MTD and
MTEj and the difference between MTD and MTEm were
significant, whereas the difference between MTEj and MTEm
was not. The last result can be explained by the fact that,
because the magnitude of the variations in the velocity profiles
predicted by the original model were not too large, the addition
of the extra term in the objective function did not affect the
predicted trajectories (Fig. 8A, 1 and 2).

By contrast, for the highly angled targets (group II: targets
4W, 5W, 4S, 5S, see Fig. 8, B2 and C2), the velocity profiles
predicted by the original minimum jerk model showed very
large fluctuations. This resulted in a larger dissimilarity be-
tween the predicted and the experimentally recorded trajecto-
ries, in terms of both velocity profile (Fig. 8, B2 and C2) and
trajectory path (B1 and C1). Quantitatively, the average MTEj
across the targets of group II was 0.54 m, the average MTEm
was 0.29 m, whereas the average MTD was 0.40 m. The
difference among the three means was significant [F(2,9) '
7.7, P % 0.05]. The post hoc Tukey tests revealed that the
difference between MTEj and MTEm was significant, meaning
that the modified minimum jerk does significantly better than
the original model. Indeed the addition of the extra term
effectively reduced the variations of the speed, so that the
velocity profiles predicted by the modified model very closely
resembled the experimentally observed ones (Fig. 8, B2 and
C2). In terms of trajectory paths, the modified model also
“bent” the minimum jerk paths toward the experimentally
observed paths, although no “instruction” about the path was
specified in this model.

Stochastic models

VISUAL (VI) CONDITION. The model given by algorithm 1 im-
plements a simplified optimal feedback control scheme (Hoff
and Arbib 1993; Todorov and Jordan 2002). Following the
experimental results, this model relies on an open-loop process
that is complemented by an on-line feedback module (see Figs.
1 and 9A for illustrations). The open-loop process is based on
the maximum-smoothness principle (see preceding text),
whereas the feedback module is based on the optimal feedback
control principle.

Algorithm 1 (see Fig. 9A for illustration)

1) Discretize the movement into n steps (10 " n " 20
depending on the target).
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2) At each step i, compute first a MMJ trajectory between
the current state s(i) (position, velocity, acceleration at time
step i) and the final state. This is the initially planned trajectory.

3) Add a random perturbation to s.(i & 1), the state of the
initially planned trajectory at step i & 1. This yields the actual
state s(i & 1).

4) Interpolate a smooth trajectory between s(i) and s(i & 1)
(for simplicity, we used a MJ trajectory because it is the
lowest-order polynomial trajectory T that satisfy T(0) ' s(i)
and T(1) ' s(i & 1): see APPENDIX in Pham et al. 2007 and
references therein). This yields the actual sub-trajectory be-
tween i and i & 1.
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FIG. 8. Modeling results for the determin-
istic modified minimum jerk model. A: mod-
eling results for target 4E. A1: geometric path
of the average trajectory (plain line) and
variance ellipses around the average trajec-
tory (gray area), geometric path of the trajec-
tory predicted by the original minimum jerk
model (dashed line) and by the modified
minimum jerk model (dotted line). A2: aver-
age normalized velocity profile (plain line),
normalized velocity profiles predicted by the
original minimum jerk model (dashed line)
and by the modified minimum jerk model
(dotted line). The normalization was done so
that the mean normalized velocity over the
whole trajectory equals 1 (see METHODS and
also Pham et al. 2007). (B) Same as in A but
for target 5W. C: same as in A but for target
5S. D: MTD in condition VI (dark gray bars),
maximal trajectory error (MTE) for the orig-
inal minimum jerk model (light gray bars),
MTE for the modified minimum jerk model
(white bars).
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5) Repeat from step 2.
We note that this model is a not a fully optimal feedback
control model in the sense of Todorov and Jordan (2002)
because in the step where we computed the (i & 1)th optimal
subtrajectory (step 2 of algorithm 1), we minimized the deter-
ministic cost instead of the “cost-to-go” (which also takes into
account the statistics of the noise) (see Todorov and Jordan
2002). However, this model preserves the main idea of optimal
feedback control, namely, that the subtrajectories are recom-
puted at every step optimally with respect to the final target and
not with respect to any intermediate representation of the task
(such as a “desired trajectory”).

The initial and final velocities and accelerations in algorithm
1 were set to the average experimental values as in the
deterministic model. To reproduce the small baseline variabil-
ity present at the beginning and at the end of the movement, the
initial and final positions were chosen from a 2D Gaussian
distribution with SD ('baseline

x ' 0.027 m; ''baseline
y ' 0.027

m) and centered around the actual starting position and the
actual target’s position.

Regarding the perturbations added at step 3 of the algo-
rithm, Harris and Wolpert (1998) argued that the amount of
execution noise (see DISCUSSION) is likely an increasing
function of the “motor commands.” However, because we
did not model directly the whole locomotor apparatus but
only its outcome (the locomotor trajectory), it is unclear
how execution noise may be “converted” into trajectory
perturbations. Here, in the context of locomotion, a series of
observations suggest that the magnitude of the trajectory
perturbations caused by execution noise is likely determined
by the instantaneous trajectory curvature and not by, for
instance, velocity or acceleration. First, trajectory variabil-
ity was higher for the angled targets, which impose curved
trajectories, than for the straight targets (experiments 1 and
2). This rules out velocity as a determining factor, because
velocity was usually lower for curved trajectories. Second,
the variability profiles were the same in the NS and FS
conditions (experiment 3) although the kinematic quantities,
such as velocity or acceleration, were larger in condition FS
than in condition NS. By contrast, the observed geometric
paths (hence the curvature distributions) were the same in
the two conditions.

We thus set the magnitude of the trajectories perturbations to
be an increasing affine function (van Beers et al. 2004) of the
absolute value of the curvature (in a different context, the
absolute value of the curvature was used in a model of
locomotor trajectories formation) (see Arechavaleta et al.
2008). The total trajectory perturbation is then the sum of a
constant perturbation and a signal-dependent perturbation that
scales linearly with the absolute value of the curvature

'exec
x (t) # 'exec

y (t) # 'const % '((t)''sd (16)

where 'const ' 0.03 m and 'sd ' 0.14 m2 for all targets.
Finally, it should be noted that our method of adding

noise directly to the states (and not to the commands)
constitutes a simplification. A more rigorous version of our
model would require reformulating the MMJ optimization
into a dynamical model, as Hoff and Arbib (1993) did for
the original MJ optimization. However, in our case, the

addition of the & term in the MMJ made such a reformula-
tion much more difficult.

NV CONDITION. To understand the variability patterns ob-
served in condition NV, we evaluate two competing control
schemes: a purely open-loop control scheme and an on-line
feedback control scheme with state estimation errors.

Purely open-loop control (models OL). Here we model three
possible purely open-loop control schemes, which are specified
in terms of the time series of velocity, acceleration, or jerk.

We computed first the deterministic MMJ trajectory between
the initial and final states (see preceding text). We then com-
puted, by successive differentiations, three 2D time series
[vx(i),vy(i)], [ax(i),ay(i)], and [jx(i),jy(i)], representing respec-
tively the velocity, acceleration and jerk profiles corresponding
to this MMJ trajectory.

In model OLv, we added Gaussian random perturbations
with SD 'v(i) to vx(i) and vy(i) (i ' 1,. . ., N) to obtain a random
time series [v*x(i),v*y (i)]. Note that 'v(i) was also an affine
function of the instantaneous trajectory absolute curvature (the
coefficients were the same as in the preceding text, but appro-
priately rescaled to match the experimental variability at t '
1). The time series [v*x(i),v*y (i)] was finally integrated with
respect to time to yield a random trajectory.

In models OLa (respectively, OLj), instead of adding the
perturbation to the velocity vectors, we added Gaussian ran-
dom perturbations with SD 'a(i) [respectively, 'j(i)] to the
acceleration (respectively, jerk) vectors. These random vectors
were then integrated twice (respectively, 3 times) to yield a
random trajectory.

On-line feedback control (model OF). This model was
based on the simplified optimal feedback control model used
for condition VI (algorithm 1). Remark first that in the VI
model, the subject’s state s(i) (position, velocity, accelera-
tion) was assumed to be perfectly known to the subject at
every time step. To model the absence of vision in condition
NV, we introduced perturbations in the subject’s estimation
of his state. For simplicity, we assumed that these pertur-
bations yielded errors in terms of subject’s estimated orien-
tation and distance to target [the reduction of the state to the
pair (distance, orientation) is rather classical in studies of
nonvisual locomotion] (see for instance Glasauer et al.
2002; Loomis et al. 1993). Remark now that from a com-
putational viewpoint, these errors can be rendered, in our
model, by perturbing directly the target’s orientation and
position in space [however, in relation with the discussion
on egocentric and allocentric strategies for navigation (Bur-
gess et al. 2002), it should be noted that the physiological
mechanisms underlying the errors in the estimation of self’s
state and of the target’s state may completely differ].

To make this clear, consider for instance that the subject
makes an error ) in the estimation of his orientation. This is
equivalent to assume that he actually makes no error in the
estimation of his orientation but that the subjects’ estimation
of the “external world” is rotated by an angle -) around the
subject. Because the external world in our model comprised
only the target, this corresponds to the following perturba-
tions of the target: a rotation centered on the subject and of
angle -) of the target’s position and a shift of -) of the
target’s angle (see Fig. 9B). Similarly, an error * in the
subject’s estimation of his distance to the target corresponds
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to a translation of the external world by -* along the
subject-target axis.

More specifically, we modified algorithm 1 by adding,
between steps 4 and 5, the following step “4b”.

Modification of Algorithm 1 for condition NV (see Fig. 9, A
and B, for illustration)

1) Draw a random distance * from a Gaussian distribution
of mean 0 and of SD '* ('* ' 0.03 m in the simulations). Shift
the target’s position by -* along the subject-target axis.

2) Draw a random angle ) from a Gaussian distribution of
mean 0 and of SD ') (') ' 1.8° in the simulations). Rotate the
target’s position by -) around the subject. Shift the required
final velocity (v1

x, v1
y) and acceleration (a1

x, a1
y) angle by -).

There exist several other possibilities to model the absence
of vision. One can for instance add an extra 2D-Gaussian
perturbation to the target’s position at each time step to
simulate the spatial memory decay. One can set '* and ') as
functions of the execution noise intensity. The estimation
process can also be more complex, for instance, combining
optimally vestibular and proprioceptive measurements with
internal predictions (see the state estimation literature for hand
movements reviewed in e.g., Jordan and Wolpert 1999). How-
ever, we chose to follow the simple approach above in this first
modeling study. It will be necessary in future works to design
new experiments and refine this part of the model to study in
detail the effects and the interactions of spatial memory decay
and of the different sensory signals (e.g., visual, vestibular and
proprioceptive) on the variability of nonvisual trajectories.

Result: plausibility of optimal feedback control

In condition VI, the sample trajectories predicted by the optimal
feedback control model were globally similar to the trajectories
observed in one typical subject (Fig. 10A). The variability profiles
produced by the model also reproduced the typical features of

actual variability profiles, namely: low and approximately
constant profile for the straight targets (target 2: Fig. 10B1) and
bump-shaped profile for the angled targets (target 5: B2).

In condition NV, the sample trajectories predicted by model
OF (on-line feedback control) were also globally similar to the
trajectories observed in one typical subject (Fig. 10C). Regard-
ing the variability profiles, for the straight targets, the sample
variability profile produced by model OF has the form of a
straight sigmoid, which was very close to a straight line
(dashed line, Fig. 10D1). For the angled targets, the sample
variability profile produced by model OF increased approxi-
mately linearly until t ' 0.8 and then slightly decreased
(dashed line, Fig. 10D2).

By contrast, this nonmonotonicity, which is a characteristic
property of actual variability profiles (see the results of exper-
iment 2), could not be reproduced by none of the OL (purely
open-loop) Models. Indeed in all of these models, the variabil-
ity profiles were always increasing (OLv: dashed-triply-dotted,
OLa: dashed-dotted, OLj: dotted lines, Fig. 10D2).

D I S C U S S I O N

Visual and nonvisual locomotion share the same open-
loop process

Our experimental observations first showed that to reach a
distant target, subjects produced very similar average trajecto-
ries in the VI and NV conditions. If we consider only the final
part rather than the entire trajectory, this finding implies that
the average final position and final walking direction in con-
dition NV are close to those in condition VI, which in turn
correspond to the target’s position and orientation because in
condition VI, the task’s final constraints were well respected.
In earlier studies of nonvisual locomotion (see for instance
Loomis et al. 1992; Thomson 1983), it was also reported that
in a task where the subject had to walk without visual feed-
backs to a previously seen targets, the average final position of
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0
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VI, target 5
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VI, target 5
(simulated) FIG. 10. Modeling results for the stochastic

models. A: trajectories in the VI condition. A1: 8
actual trajectories of subject NV for target 5. A2:
8 sample trajectories simulated by the stochastic
model for target 5. B: variability profiles in
condition VI. B1: variability profiles for target 2.
—: average variability profile across subjects.
- - -: variability profile computed over 20 simu-
lated trajectories. B2: same as in B1 but for target
5. C: trajectories in the NV condition. C1: 8
actual trajectories of subject NV for target 5. C2:
8 sample trajectories simulated by model OF
(stochastic MMJ & state estimation error) for
target 5. D: variability profiles in condition NV.
D1: variability profiles for target 2. —: average
variability profile across subjects. - - -: variabil-
ity profile computed over 20 sample trajectories
(model OF). D2: variability profiles for target 5.
—: average variability profile across subjects.
- - -: variability profile computed over 20 sample
trajectories (model OF). - ! ! ! -: model OLv
(open-loop control, noisy velocity). - ! ! ! -. Model
OLa (open-loop, noisy acceleration). ! ! ! : model
OLj (open-loop, noisy jerk).
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the subject almost coincides with the actual position of the
target. This precise average response was interpreted as reflect-
ing the veridicality of the subjects’ visual space perception (see
Loomis et al. 1992). However, in these studies, the targets
consisted of spots placed at various distances in front of the
subject. Using targets defined in both position and orientation
and placed at various off-axis positions, our study confirms and
generalizes the earlier results mentioned in the preceding text.
It also suggests that the notion of visual space perception
veridicality may not be limited to straight-ahead distances but
may be also valid for the perception of off-axis distances and
of changes in the body orientation.

But more importantly, not only the average final positions
and orientations were similar in the VI and NV conditions, but
also the entire average trajectories that the subjects had to
produce to reach these positions and orientations. Because the
average trajectory is obtained by indeed “averaging out” all
the fluctuations, it reflects the open-loop process that governs
the subject’s movements in absence of perturbations (Todorov
and Jordan 2002). Thus the similarity of the average trajecto-
ries implies that the control mechanisms in visual and nonvi-
sual locomotion share a common open-loop process. This idea
may have a deep theoretical implication. Indeed a number of
neuroscientists believe that our representation of the space is
strongly related to our movements (see for instance Berthoz
and Petit 2006), a notion that can be summarized by the
following statement of the great French mathematician Henri
Poincaré: “To localize an object in space is to build a repre-
sentation of the movements one has to make to reach it”
(Poincaré 1902; chapter 4). Following this line of thinking, the
proposed common open-loop process may represent the phys-
iological basis of the psychological notion of veridicality of
visual space perception.

In a recent article, Fajen and Warren (2003) challenged the
very existence of an open-loop process in the control of
locomotion. Based on a simulation study where the targets
were modeled by attractors, the obstacles by repellers and the
subject by a simple second-order dynamical system evolving in
a field of attractors and repellers, these authors argued that “the
[subject] adopts a particular route through the scene on the
basis of local responses to visually specified [targets] and
obstacles. The observed route is not determined in advance
through explicit planning, but rather emerges in an on-line
manner from the [subject’s] interactions with the environ-
ment.” It should also be remarked that these interactions, which
are crucial in Fajen and Warren’s approach, are fundamentally
based on the availability of visual inputs. In opposition to this
view, the similarity of the average trajectories in the VI and
NV condition reported in the present article suggests that the
formation of locomotor trajectories is not exclusively driven by
vision. Rather as formalized in our experimentally-confirmed
model, a combination of open-loop and on-line control mech-
anisms underlies goal-oriented locomotion.

In the present study, we did not address the physiology
underlying the on-line control mechanisms. For instance, in
condition VI, how optic-flow-based (Warren et al. 2001) or
gaze-direction-based (Rushton et al. 1998) information is
combined and processed in the on-line feedback module
could not be answered in our study. Similarly, in condition
NV, the specific contributions of vestibular and propriocep-
tive feedback and of efference copy/corollary discharge

could not be discriminated here; this may be done through
clinical studies, involving for instance patients with vestib-
ular disorders (Glasauer et al. 2002).

Origin of the variability and nature of the control
mechanisms in visual locomotion

EXECUTION NOISE IN LOCOMOTION. In contrast with the similar-
ity of the average trajectories, we reported large differences in
terms of variability profiles in conditions VI and NV. Before
addressing this aspect, we first discuss in more detail the origin
and nature of the variability in visual locomotion.

Within the theoretical framework of computational motor
control as it has been developed for hand reaching movements,
it was proposed that movement variability may arise during
three processes: target localization, movement planning, and
movement execution (Schmidt et al. 1979; van Beers et al.
2004). We assume here that this three-sources distinction also
holds for “locomotor reaching.” Given this, we argue that the
variability profiles observed in the visual conditions of exper-
iments 2–4 mostly resulted from execution noise. Indeed
regarding first the target localization process, the target was
clearly visible and remained so during the whole movement.
Second, because we conducted an intrasubject analysis, the
contribution of planning variability to the overall variability
was reduced: indeed, a large part of planning variability arises
from differences in subjects’ morphologies or personal prefer-
ences. Finally, we reason by analogy with hand movements
and follow van Beers and colleagues (2004) who demonstrated
that—for hand movements—“in general, execution noise ac-
count for at least a large proportion of movement variability.”

In hand movements, execution noise may arise at different
levels (Faisal et al. 2008; van Beers et al. 2004): motor
commands (the elaboration and the transmission of the neural
signals may be corrupted at any stage of the neural chain, from
cortical structures to motoneurons), muscle contractions (the
motor response of a muscle to a given neural signal is inher-
ently variable), etc. Because locomotion involves the produc-
tion of muscle contraction patterns (lower-body muscles for
forward propulsion, but also arm and trunk muscles for stabil-
ity and neck muscles for steering), execution noise can also
step in at all these levels. However, because the number of
muscles involved in locomotion is much larger than in hand
movements, the exact relationship between whole-body trajec-
tory variability and the muscles’ execution noises is harder to
establish.

As evoked in the INTRODUCTION, locomotion involves also a
“navigational” aspect in addition to the purely motor aspect.
Indeed, locomotion is the only motor activity in which the spatial
position and orientation (in conditions other than straight-ahead
locomotion) of the body and of the sensory systems change
throughout movement execution. In this respect, special atten-
tion should be devoted to the references frames that are used
for the perception of movement (Berthoz 1991): in contrast
with the case of hand movements, these reference frames move
during the locomotor task. For instance, the manipulation of
changing points of view over time may introduce errors in the
recovering of the heading from retinal flow. In any case, the
errors in the updating of the body’s position and orientation
may in turn contribute to the variability of the trajectory during
movement execution. Other cognitive processes, such as the

2813PROCESSES UNDERLYING GOAL-ORIENTED LOCOMOTION

J Neurophysiol • VOL 102 • NOVEMBER 2009 • www.jn.org

 on Novem
ber 4, 2009 

jn.physiology.org
Downloaded from

 

http://jn.physiology.org


fixation of various objects in the environment (see for instance
Turano et al. 2001), may also introduce perturbations at this
level. To study in detail the specific contribution of the motor
and “navigational” levels to execution noise, a differential
analysis may be conducted, for example, by comparing the
variability observed during navigation in virtual environments
with that observed during real-world locomotion.

ON-LINE FEEDBACK CONTROL OF LOCOMOTION IN VISUAL LOCOMO-
TION. To fully explain the variability of locomotor trajecto-
ries, one has to understand not only the nature of the noise but
also that of the control mechanisms at work for the form of the
variability arises from the interplay between these two ele-
ments. A given noise pattern may indeed give rise to different
variability profiles depending on the control scheme used by
the subject.

More precisely, we have distinguished in the INTRODUCTION

two families of control schemes: purely open-loop control and
on-line feedback control. As already mentioned, in a purely
open-loop control scheme, there are no feedback corrections
during task execution. The errors can hence only accumulate,
leading to monotonically increasing variability (see also
Todorov and Jordan 2002). This observation was confirmed by
the modeling study: the purely open-loop models all produced
monotonically increasing variability profiles. By contrast, the
results of experiments 1–3 showed that, for the “angled”
targets, the variability profiles in condition VI always increased
at the beginning of the movement but then decreased toward
zero at the end of the movement, yielding bump-shaped pro-
files. From a computational perspective, these variability pro-
files were well reproduced by the on-line feedback model
corresponding to condition VI. Taken together, these observa-
tions indicate that on-line feedback control is present in visual
locomotion. This is not surprising because in general, purely
open-loop control exists only in very fast, ballistic movements
such as fast hand reaching. Here, since the movements we
studied lasted from 3 to 10 s, this allowed the detection of the
errors and the implementation of on-line corrections if
necessary.

ON THE “DESIRED TRAJECTORY” HYPOTHESIS FOR LOCOMOTION. The
precise nature of the on-line feedback control cannot however
be determined solely from the variability profiles recorded in
experiments 1–3. Indeed both the “desired trajectory” hypoth-
esis and the fully optimal control hypothesis can yield bump-
shaped variability profiles in the limited conditions of these
experiments. However, the results of experiment 4 are incom-
patible with a basic desired trajectory control scheme. Indeed
as indicated in the INTRODUCTION, the desired trajectory hypoth-
esis implies that during the planning stage, a desired optimal
trajectory is computed. Empirically, this desired trajectory can
be assimilated to the average trajectory computed across a
large number of trials. Then during the execution stage, a
trajectory tracking mechanism is used to achieve the desired
trajectory. In experiment 4, because the average trajectories
were forced by the experimental protocol to be very similar in
the three conditions (0, 1, and 3 via points), the desired
trajectory hypothesis would predict practically no difference
between the statistics of the trajectories performed in these
conditions. Thus the large differences we reported regarding
the variability profiles in the three conditions indicated that the
desired trajectory hypothesis should be rejected.

We note nonetheless that the results of experiment 4 cannot
rule out a variation of the desired trajectory hypothesis, which
consists of 1) constructing several desired subtrajectories (2
subtrajectories in the 1-via-point condition —the 1st trajectory
between the starting position and the via point, the 2nd trajec-
tory between the via point and the final position—and 4
subtrajectories in the 3-via-points conditions) and 2) tracking
sequentially these subtrajectories. While this variation may
seem unlikely (indeed, in postexperiment interviews, the sub-
jects reported that they conceived the trajectory as a whole and
not as a sequence of subtrajectories glued together at the via
points), it cannot be theoretically ruled out. This remark also
applies for the original experiment of Fig. 3 in (Todorov and
Jordan 2002) which inspired our experiment 4.

A more likely explanation for the results of experiment 4
involves an optimal feedback control scheme. Within this
scheme, on-line corrections would be made with respect to the
task goal [namely, go through the via points (if present) and
reach the targets] and not with respect to any intermediate
representation (e.g., a desired trajectory). In the no-via-point
condition, because no other constraints than the goal was
specified, random deviations away from the average trajectory
were not corrected if they did not interfere with this task,
allowing variability to accumulate around the middle of the
trajectory, thus yielding bump-shaped variability profiles. By
contrast, when via-points were imposed, the corrections were
made to ensure that the trajectory go through these via-points,
resulting in low variability around the via-points (see also the
discussion about trajectory redundancy in Todorov and Jordan
2002).

On-line control of locomotor trajectories in
nonvisual locomotion

While it is easy to conceive that on-line feedback control is
present in normal visual locomotion, the fact that such a
mechanism may also be present when vision is totally excluded
during task execution may be more surprising. Yet we ob-
served in experiment 2 that the nonvisual variability profiles
were not always monotonic: for “angled” targets, the variabil-
ity decreased near the end of the trajectory. The same argu-
ments as previously then imply that on-line control is also
present in nonvisual locomotion.

The idea that on-line control may be present in nonvisual
locomotion had been proposed earlier in the literature. For
instance, in Farrell and Thomson’s (1999) experiment, the
subject had to walk with or without vision toward a previously
seen target placed at eight paces, eight paces minus 40 cm, or
eight paces plus 40 cm in front of him. He had to start with his
right foot and to land on the target with his left foot. The
authors showed that in both conditions, the subject functionally
adjusts the lengths of his final steps, on a trial-to-trial basis, to
land on the target with the specified foot.

The precise nature of that on-line control has however
remained unclear. For instance, while Farrell and Thomson
rightly remarked that, in the nonvisual condition, “[the sub-
jects] adjust their step lengths in a way similar to that seen in
the visual condition,” they did not provide an interpretation of
the nature of the processes common or specific in visual and
nonvisual locomotion.
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Here, the two-sources hypothesis (see Variability around the
average trajectories), directly addressed the nature of this
on-line control. Indeed we showed that the variability in the
nonvisual condition results from the combination of a vision-
dependent component and a trajectory-complexity-dependent
component.

The first component—the contribution of which is zero in
condition VI and an increasing linear function of time in
condition NV—can be interpreted as resulting from the errors
in the subject’s estimation of his state, which, in turn, are
caused by the absence of visual feedbacks. This was confirmed
by the modeling study, where the perturbation of the subject’s
state estimation at each step could reproduce the variability
profiles experimentally observed in condition NV.

The second component—the contribution of which is zero
for “straight” targets and bump-shaped for “angled” targets—
can be interpreted as resulting from the interplay between
execution noise and optimal feedback control, as explained
previously in the case of visual locomotion. The fact that this
component is present also in nonvisual locomotion, under
almost the same form (see also the modeling study), thus
suggests that the very control mechanisms that governs visual
locomotion underlie nonvisual locomotion as well.

Whether our conclusions about the control mechanisms at
work during nonvisual locomotion also hold in adventitiously
and congenitally blind subjects remains yet to be investigated.
We believe indeed that a better understanding of the control
mechanisms governing nonvisual locomotion and navigation
can help develop new tools assisting visually impaired indi-
viduals in their daily activities.
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