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Abstract— The panorama of probabilistic completeness re-
sults for kinodynamic planners is still confusing. Most exist-
ing completeness proofs require strong assumptions that are
difficult, if not impossible, to verify in practice. To make
completeness results more useful, it is thus necessary to estabish
a classification of the various types of constraints and planning
methods, and then attack each class with specific proofs and
hypotheses that can be verified in practice. We propose such a
classification, and provide a proof of probabilistic completeness
for an important class of planners, namely those whose steering
method is based on the interpolation of system trajectories
in the state space. We also provide design guidelines for the
interpolation function and discuss two criteria arising from our
analysis: local boundedness and acceleration compliance.

I. INTRODUCTION

A deterministic motion planning algorithm (or planner)
is said to be complete if it returns a solution to a motion
planning problem whenever one exists (see e.g., [1]). A
randomized planner is said to be probabilistically complete
if the probability of returning a solution tends to one as
execution time goes to infinity. The concepts of complete-
ness and probabilistic completeness, although theoretical by
nature, are also of practical interest: proving them requires
one to specify what assumptions are needed for a planner
to find solutions, i.e., what types of problems can be solved.
This provides more general guarantees than empirical results.
Experiments can show that a planner works for a given
combination of robot, environment, task, (set of tweaks and
heuristics), but a proof of completeness is a certificate that
the planner works for a whole set of problems, the size of this
set being determined by the assumptions required to make
the proof (the weaker the assumptions, the larger the set of
solvable problems).

While the probabilistic completeness of randomized plan-
ners has been well established for systems with geometric
constraints (such as obstacle avoidance), proofs for systems
with kinodynamic constraints [2], [3], [4] have not yet
reached the same level of generality: in many proofs, the
assumptions made are quite strong and difficult to verify on
practical systems (as a matter of fact, none of the previously
mentioned works verified their hypotheses on non-trivial
systems). One of the reasons for this lies in the very large
variety of kinodynamic constraints and of planning methods.

To make completeness proofs more useful in practice, it
is thus necessary to estabish a classification of the different
types of constraints and planning methods, and then attack

1Department of Mechano-Informatics, University of Tokyo, Japan
2School of Mechanical and Aerospace Engineering, Nanyang Technolog-

ical University, Singapore

each class with specific proofs and hypotheses that can
be more easily checked. In section II, we propose such a
classification of kinodynamic constraints (as non-holonomic
or dynamics-bound-based) and of planning methods (based
on their underlying steering methods: analytic, control-based,
or state-based). We also discuss the shortcomings of ex-
isting completeness proofs. Then, in section III, we prove
a completeness result for the class of state-based steering
planners for systems subject to dynamics bounds. Finally, in
section IV, we conclude by discussing the implications of
our results as well as future research objectives.

II. CLASSIFICATION OF KINODYAMIC CONSTRAINTS
AND STEERING METHODS

A. Classification of Kinodynamic Constraints

Motion planning was first concerned only with geometric
constraints such as obstacle avoidance or those imposed by
the kinematic structures of manipulators [5], [6], [4], [2].
More recently, kinodynamic constraints, which stem from the
dynamical equations the systems are subject to, have also
been taken into account (see e.g., [7], [2], [8]).

Kinodynamic constraints are more difficult to deal with
than geometric constraints because they cannot in general
be expressed using only configuration-space variables –
such as the joint angles of a manipulator, the position and
the orientation of a mobile robot, etc. They indeed involve
higher-order derivatives of the configuration-space variables.
However, the way these derivatives appear in the constraints
is not uniform, and can in fact be classified into two main
classes involving very different types of difficulties:

1) Non-holonomic constraints are non-integrable equal-
ity constraints on higher-order derivatives of the
configuration-space variables. They can be of the first-
order, as found in wheeled vehicles (see e.g., [9]), or
of the second-order, as found in underactuated manip-
ulators (see e.g., [10]) or space robots (see e.g., [11].

2) Bounds on dynamics quantities are inequality con-
straints on higher-order derivatives of the configuration-
space variables. These include torque bounds for ma-
nipulators (see e.g., [12]), ZMP constraints for walking
robots (see e.g., [13]), friction constraints in grasp
synthesis (see e.g., [14]), etc.

Some authors have considered systems that are subject
to both types of constraints, for instance under-actuated
manipulators with torque bounds [15].

The completeness results of section III of the present paper
concern systems subject to the second type of constraints



only, more precisely holonomic (fully-actuated) systems
with inequality constraints on their first and/or second-order
derivatives.

B. Structure of Randomized Planners

The expansion step, as given by Algorithm 1, forms the
core of most randomized planners, such as Probabilistic
Roadmaps (PRM) [6] or Rapidly-exploring Random Trees
(RRT) [2]. This step in turn involves three sub-routines (see
Fig. 1 for an illustration):

• Sampling SAMPLE(S): randomly samples from a
set S;

• Antecedent selection PARENTS(x′, V ): returns a set of
states x belonging to the roadmap (or the tree) V , from
which steering towards x′ will be attempted;

• Local steering STEER(x, x′): tries to steer the system
from x towards x′. If successful, returns a new node
xsteer ready to be added to the roadmap.

Algorithm 1 Expansion step in randomized planners
Require: initial node xinit, number of iterations N

1: (V,E)← ({xinit}, ∅)
2: for N steps do
3: xrand ← SAMPLE(Xfree)
4: Xparents ← PARENTS(xrand, V )
5: for xparent in Vparents do
6: xsteer ← STEER(xparent, xrand)
7: if xsteer is a valid state then
8: V ← V ∪ {xsteer}
9: E ← E ∪ {(xparent, xsteer)}

10: end if
11: end for
12: end for
13: return (V,E)

init

goal

x

x'
STEER
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Fig. 1. Illustration of the expansion routine of randomized planners. The
sampled node x′ = SAMPLE(Xfree) is shown in blue. Purple edges and
nodes show steering attempts resulting from the STEER(x, x′) method,
where antecedents x ∈ PARENTS(x′, V ) are pictured in green.

It is easy to see that the design of each sub-routine
greatly impacts the quality and even the completeness of
the resulting planner.

In the literature, SAMPLE is usually implemented as
uniform random sampling. Some authors have suggested to
use adaptive sampling to improve the performance of RRT
or PRM planners [16], [17].

In geometric planners, PARENTS is usually implemented
by defining a metric (e.g., the `2 norm) in the configuration
space, and using nearest-neighbors as antecedents. Such a
choice results in the so-called Voronoi bias of RRTs [2]. Both
experiments and theoretical analysis support this choice for
geometric planning. However, when moving to kinodynamic
planning, designing a metric that yields good antecedents
becomes as challenging as the motion planning problem
itself, and the Euclidean norm becomes highly inefficient
(see e.g., [18] for an illustration in the case of the actuated
pendulum subject to torque bounds).

The next section discusses the various implementations of
the steering sub-routine.

C. Classification of Steering Methods

We propose to classify existing steering methods into three
categories.

1) Control-based steering: compute a control function
u : [0, T ]→ Uadm and apply them to the system, simulating
with forward dynamics. Stop after a given duration or if
the system reached a state close enough to x′. To compute
u, [2], [8] sample functions from a family of primitives
(e.g., piecewise constant functions), try a certain number of
them, and eventually choose the one that drives the system
closest to x′. Linear-Quadratic Regulation (LQR) [19], [20]
also falls in this category: in this case, u is computed as
the optimal policy for a linear approximation of the system
given a quadratic cost function.

2) State-based steering: compute a trajectory γ̃ :
[0,∆t̃]→ C, then try to find a control that follows this trajec-
tory. For instance, one can interpolate third-order polynomi-
als in t verifying (γ̃(0), ˜̇γ(0)) = x and (γ̃(∆t), ˜̇γ(∆t)) = x′.
Since the interpolated trajectory may not respect control
constraints, it needs to be checked (using inverse dynamics)
or adapted (e.g., using a dynamics filter). See Algorithm 2.

Algorithm 2 STEER(x, x′)

1: γ̃ ← INTERPOLATE(x, x′)
2: ũ := t 7→ f(γ̃(t), ˜̇γ(t), ˜̈γ(t))
3: if Im(ũ) ⊂ Uadm then
4: return the last state of γ̃
5: end if
6: return failure

The INTERPOLATE routine computes a trajectory as
described previously. It can also include a correction step,
like the dynamics filter used in [21] (for balance correction of
humanoid motions) or the Admissible Velocity Propagation
(AVP) that we introduced in [22].



3) Analytical steering: with control-driven steering, it
is easy to respect differential constraints but difficult to
control position. Conversely, with state-based steering, it is
easy to control position but difficult to enforce differential
constraints. However, for some systems, a steering function
satisfying both requirements is known, e.g., Reeds and Shepp
curves for cars. When it is the case, the problem can either
be reduced to path planning [23] or additional optimality
guarantees can be provided [24].

D. Previous Proofs of Probabilistic Completeness

Randomized planners such as Rapidly-exploring Random
Trees (RTT) and Probabilistic Roadmaps (PRM) are popular
because they are grounded on an intuitive idea and simple
to implement. Proofs of probabilistic completeness come as
another indicator in their favor. However, one should beware
of general conceptions such as “RRT is probabilistically
complete”: as we will see, it is not always true for kino-
dynamic planning.

Probabilistic completeness is a scalability property: if
the local planners used for extension are suitable, then the
overall planner will explore its environment exhaustively.
The assumptions made to achieve this scalability play a
crucial role: as they become stronger, proofs of completeness
become easier, but the link with the motion planning problem
vanishes. In particular, it is not possible to check some
assumptions made in the literature on actual systems.

Completeness of RRT planners has been established for
path planning [2], [3], [4]. In their proof, Hsu et al. quantified
the problem of narrow passages in configuration space with
the notion of (α, β)-expansiveness [4]. The two constants
α and β express a geometric lower bound on the rate of
expansion of reachability areas. The authors later extended
their solution to kinodynamic planning [8], using the same
notion of expansiveness, but this time in the X × T (state
and time) space with control-based steering. They established
that, when α > 0 and β > 0, their planner is probabilistically
complete. However, whether α > 0 or α = 0 in the X × T
space remains undiscussed, and the problem of evaluating
(α, β) is deemed as difficult as the initial planning problem
[4].

LaValle et al. provided a completeness argument for
kinodynamic planning [25]. In their proof, they assumed the
existence of an attraction sequence, which is a covering of
the state space where two major problems of kinodynamic
planning, namely steering and antecedent selection (see
Section II-C), are already solved. However, conditions of
existence of such a sequence are not discussed.

These two examples highlight our concern about com-
pleteness proofs: in both cases, probabilistic completeness
is established under assumptions whose verification is at
least as difficult as the motion planning problem itself. This
observation does not question the quality of the associated
planners, which have also been checked experimentally.
Rather, it hints that too much of the complexity of kino-
dynamic planning has been abstracted into hypotheses. As a

result, these completeness proof do not help us understand
why these planners work (or don’t work) in practice.

Karaman et al. introduced their path planning algorithm
RRT* in [3] and extended it to kinodynamic planning with
differential constraints in [24], providing a sketch of proof for
the completeness of their solution. However, they assumed
that their planner had access to the optimal cost metric
and optimal local steering (i.e., STEER(x1, x2) returns
the optimal trajectory starting from x1 and ending at x2),
which restricts the analysis to systems for which these ideal
solutions are known.

The same authors tackled the problem from a slightly
different perspective in [26]. They now assumed that the
PARENTS function computes w-weighted boxes, which are
abstractions of the system’s local controlability. It remains
unclear to us how these boxes can be computed or approx-
imated in practice, given that their definition involves the
joint flow of vector fields spanning the tangent space of the
system’s manifold. Although their set of assumptions is of
primary concern to us since we follow a similar approach
in Section III, they did not prove their theorem, arguing that
the reasoning was similar to the one in [3] for kinematic
systems.

To the best of our knowledge, as of yet there is no com-
pleteness proof for kinodynamic planners using state-based
steering. We will establish such a result in the following
section.

III. COMPLETENESS OF STATE-BASED STEERING
KINODYNAMIC PLANNERS

A. Terminology

A function is smooth when all its derivatives exist and are
continuous. A function f : A→ B between metric spaces is
Lipschitz when there exists a constant Kf such that

∀(x, y) ∈ A, ‖f(x)− f(y)‖ ≤ Kf‖x− y‖.

Throughout the present paper, we will work within normed
vector spaces and ‖ · ‖ will refer to the Euclidean norm
‖ · ‖2. We will also consistently denote by Kf the (smallest
possible) Lipschitz constant of any Lipschitz function f .

Let C denote n-dimensional configuration space, where
n is the number of degrees of freedom of the robot. We
will call state space the 2n-dimensional manifold X of
configuration and velocity coordinates. In the present paper,
we only consider fully actuated systems. Let the control
input space (“control space” for short) be an n-dimensional
manifold U . The dynamics of the robot follow the equations
of motion, which can be written in generalized coordinates
as

M(q)q̈ + C(q, q̇)q̇ + g(q) = u. (1)

Equivalently, the robot’s dynamics follow the time-invariant
differential system

ẋ(t) = f(x(t), u(t)), (2)

where x(t) ∈ X and u(t) ∈ U . We will assume that f is
Lipschitz continuous in both of its arguments. The set Uadm



of admissible controls is assumed to be a compact subset of
U .

A trajectory is a continuous function γ : [0, T ] → C. A
path is the image of a trajectory. An admissible trajectory is
a solution to the differential system 2. The kinematic motion
planning problem is to find a path in the collision-free subset
Cfree ⊂ C from an initial configuration qinit to any configu-
ration qgoal in a set of goals. Meanwhile, the kinodynamic
motion planning problem is to find an admissible trajectory
from qinit to qgoal, both avoiding obstacles and following the
system’s dynamics.

A control function t 7→ u(t) is said to have δ-clearance
when its image is in the δ-interior of the set of admissible
controls, i.e., for any time t, B(u(t), δ) ⊂ Uadm.

We define the distance between a state x ∈ X and the
curve γ as:

distγ(x) := min
t∈[0,T ]

‖(γ, γ̇)(t)− x‖

1) Notations: whenever considering two states x and x′,
we will write:{

x =: (q, q̇)
x′ =: (q′, q̇′)

 ∆x := x′ − x
∆q := q′ − q
∆q̇ := q̇′ − q̇

Similarly, for two time instants t < t′, we will write ∆t :=
t′ − t and ∆g := g(t′)− g(t) for any function g.

B. Completeness theorem

Our model for an X -state randomized planner is given
by Algorithm 1 using the state-based steering described in
Algorithm 2. We make the following three assumptions on
the system:

Assumption 1: The system is fully actuated.
Assumption 2: The set of admissible controls Uadm is

compact.
Assumption 3: The inverse of the differential constraint f

from Equation (2), i.e., the function f−1 s.t. u = f−1(x, ẋ),
is Lipschitz in both of its arguments.

Assumption 1 is a pre-requisite for the function f−1 used
in Assumption 3 to be well-defined. The latter assumption
is satisfied when f is given by the dynamics equations 1 as
long as the matrices M(q) and C(q, q̇) have bounded norm,
and the gravity term g(q) is Lipschitz. Indeed, for a small
displacement between x and x′,

‖u′ − u‖ ≤ ‖M‖ ‖q̈′ − q̇‖+‖C(q, q̇)‖ ‖q̇′ − q̇‖+Kg ‖q′ − q‖

Example: Assumption 3 is satisfied for the fully-actuated
double pendulum shown in Figure 2. When links have
mass m and length l, the gravity term g(θ1, θ2) =
mgl
2 [sin θ1 + sin(θ1 + θ2) sin(θ1 + θ2)] is Lipschitz with

constant Kg = 2mgl. Meanwhile, ‖M‖ (θ1, θ2) ≤ 3ml2

and, when joint angular velocities are bounded by ω, the
norm of the Coriolis tensor is bounded by 2ωml2.

Regarding Assumption 2, since torque constraints are our
main concern, we will make our proof of completeness for

Fig. 2. A fully-actuated double pendulum with torque bounds must swing
back and forth several times in order to reach the inverted position (lighter
images represent earlier states in time).

(note that the comparison is component-wise)

Uadm := {u ∈ U , |u| ≤ τmax} ,

which is indeed compact. The generalization to an arbitrary
compact set presents no technical difficulty.

Let us now turn to the design of the interpolation routine.
We make the following three hypotheses:

Assumption 4: Interpolated trajectories γ̃ are smooth Lip-
schitz functions, and their time-derivatives ˜̇γ (i.e., interpo-
lated velocities) are also Lipschitz.

Assumption 5 (Local boundedness): We suppose
that there exists a constant η such that, for any
(x, x′) ∈ X 2, the interpolated trajectory γ̃ : [0,∆t̃] →
C = INTERPOLATE(x, x′) is such that

∀τ ∈ [0,∆t̃], (γ̃(τ), ˜̇γ(τ)) ∈ B(x, η ‖x′ − x‖).
Assumption 6 (Acceleration compliance): The accelera-

tion of interpolated trajectories uniformly converges to the
discrete velocity derivative, i.e., there exists some ν > 0 such
that, if γ̃ : [0,∆t̃]→ C results from INTERPOLATE(x, x′),
then

∀τ ∈ [0,∆t̃],

∥∥∥∥˜̈γ(τ)− ‖q̇‖
‖∆q‖

∆q̇

∥∥∥∥ ≤ ν ‖∆x‖
Assumption 4 is is easy to satisfy in practice. Assumption

5 bounds the position and velocity of interpolated trajectories
with respect to the neighborhood of x and x′. Meanwhile,
Assumption 6 bounds their acceleration with respect to the
discrete derivative of the velocity between x and x′.

Note that these three assumptions rely only on the topol-
ogy of the state space. They are independent from the
instance of the motion planning problem (f , Uadm, ...). We
can therefore consider them as design guidelines for the
interpolation functions.

We can now state our main theorem:
Theorem 1: Consider a time-invariant differential system

(2) with Lipschitz-continuous f and full actuation over a
compact set of admissible controls Uadm. Suppose that the
kinodynamic planning problem between two states xinit and
xgoal admits a smooth Lipschitz solution γ : [0, T ]→ C with
δ-clearance in control space. Let K denote a randomized
motion planner (Algorithm 1) using state-based steering
(Algorithm 2) and a locally bounded, Lipschitz, acceleration-
compliant interpolation primitive. K is probabilistically com-



plete.

C. Preliminary lemmas

Let us start with a simple upper bound on the difference
between the variation rate and derivative of a Lipschitz.

Lemma 1: Let g : [0, T ]→ Rk denote a smooth Lipschitz
function. Then, for any (t, t′) ∈ [0, T ]2,∥∥∥∥ġ(t)− g(t′)− g(t)

|t′ − t|

∥∥∥∥ ≤ Kg

2
|t′ − t|.

Proof: We can suppose without loss of gen-
erality that t′ > t. Then,

∥∥∥ġ(t)− g(t′)−g(t)
t′−t

∥∥∥ ≤
1

t′−t

∥∥∥∫ t′

t
(ġ(t)− ġ(w)) dw

∥∥∥ ≤ 1
t′−t

∫ t′

t
‖ġ(t)− ġ(w)‖ dw ≤

Kg

t′−t

∫ t′

t
|t− w|dw ≤ Kg

2
(t′ − t).

As an important first step, we show that, given the exis-
tence of a solution γ with δ-clearance in control space, we
can suppose without loss of generality that velocities ‖γ̇‖
and accelerations ‖γ̈‖ along the curve are lower bounded by
a strictly positive constant. This observation is formalized by
the two following lemmas. Detailed proofs are provided in
the supplementary material.

Lemma 2: If there exists a trajectory γ with δ-clearance
in control space, then there exists δ′ < δ and a trajectory γ′

with δ′-clearance in control space such that inft ‖γ̈′(t)‖ > 0.
Proof: [Sketch of proof] If there is a time interval [t, t′]

on which γ̈ ≡ 0, one can leverage full actuation and δ-
clearance in control to increment each coordinate with a
small wave function δγ̈i of amplitude δq̈i and zero integral
over [t, t′]. The amplitude δq̈i is chosen so as to guarantee
δ′-clearance in control space, for some δ′ < δ.1

We can therefore assume that w.l.o.g. that the roots of
γ̈ form a discrete set. Let t0 be such a root. Again, δ-
clearance in control and full actuation can be leveraged into
adding a small perturbation δγ̈i to each coordinate around
t0. To ensure that γ̈(t0) becomes non-zero without creating
new roots at other time instants, one needs to ensure that
the coordinate perturbations are not time-correlated, which
is easy to do, for instance using sine waves with different
different periods. Special care needs to be taken if the root is
at the first (or last) time instants of the trajectory. However,
since we do not require accelerations (nor controls) to be
continuous, one can simply shift the wave so as to start with
(resp. end on) a non-zero value.

Lemma 3: If there exists a trajectory γ with δ-clearance
in control space, then there exists δ′ < δ and a trajectory γ′

with δ′-clearance in control space such that inft ‖γ̇′(t)‖ > 0.
Proof: [Sketch of proof] The argument is the same as

in the proof for Lemma 2: add a small perturbation wave of
controlled amplitude to the velocity coordinates. However,
the system is controlled in acceleration and not velocity. To
overcome this, one can use sine waves as a basis family
for the perturbations: their derivatives are cosine waves of
controlled amplitude, which can be added to the acceleration

1In the presence of C-space obstacles or velocity limits, one can refine this
wave as δγ̈i(w) = δq̈i sin

(
kw
t′−t

)
, where the period t′−t

k
is chosen so as

to bound the deviation in velocity and position incurred by the perturbation.

coordinates using full actuation and reducing the δ-clearance
in control. Boundary values for these perturbations will be
non-zero, which is not a problem since we do not require
acceleration nor control to be continuous.

D. Proof of Theorem 1

Let γ : [0, T ] → C, t 7→ γ(t) denote a smooth Lipschitz
admissible trajectory from xinit to xgoal with δ-clearance in
control space. We can define:{

Ṁ := maxt ‖γ̇(t)‖
ṁ := mint ‖γ̇(t)‖

{
M̈ := maxt ‖γ̈(t)‖
m̈ := mint ‖γ̈(t)‖

From lemmas 2 and 3, ṁ > 0 and m̈ > 0. Consider two
states x and x′ and the corresponding time instants on the
trajectory{

t := argmint ‖(γ(t), γ̇(t))− x‖ ,
t′ := argmint ‖(γ(t), γ̇(t))− x′‖ .

We can suppose w.l.o.g. that t < t′. First, note that there
exists δt1 > 0 such that, for any ∆t ≤ δt1,

‖∆γ‖
∆t

≥ ṁ

2
,
‖∆γ̇‖
∆t

≥ m̈

2
,
‖∆γ̇‖
‖∆γ‖

≤ 2M̈

ṁ
.

Proof: The three functions ∆t 7→ ‖∆γ‖
∆t , ∆t 7→ ‖∆γ̇‖

∆t

and ∆t 7→ ‖∆γ̇‖
‖∆γ‖ . are continuous over the compact set [0, T ],

hence uniformly continuous, and their limits when ∆t → 0

are respectively ‖γ̇(t)‖ ≥ ṁ, ‖γ̈(t)‖ ≥ m̈ and ‖γ̈(t)‖
‖γ̇(t)‖ ≤

M̈
ṁ .

In what follows, we will suppose that ∆t < δt1.
Let γ̃ : [0,∆t̃] → C denote the result of

INTERPOLATE(x, x′). For τ ∈ [0,∆t̃], the torque required
to follow the trajectory γ̃ is ũ(τ) := f(γ̃(τ), ˜̇γ(τ), ˜̈γ(τ)).
Since Im(u) ⊂ intδ(T ),

|ũ(τ)| ≤ |ũ(τ)− u(t)|+ |u(t)|

≤
∣∣∣f(γ̃(τ), ˜̇γ(τ), ˜̈γ(τ))− f(γ(t), γ̇(t), γ̈(t))

∣∣∣
+ (1− δ) τmax,

where the comparison here is component-wise. If the first
term in this upper bound is ≤ δ τmax, then the system will
be able to track γ̃ at time τ . We can rewrite it as follows:∣∣∣f(γ̃(τ), ˜̇γ(τ), ˜̈γ(τ))− f(γ(t), γ̇(t), γ̈(t))

∣∣∣
≤

∥∥∥f(γ̃(τ), ˜̇γ(τ), ˜̈γ(τ))− f(γ(t), γ̇(t), γ̈(t))
∥∥∥
∞

≤ Kf

∥∥∥(γ̃(τ), ˜̇γ(τ))− (γ(t), γ̇(t))
∥∥∥+Kf

∥∥∥˜̈γ(τ)− γ̈(t)
∥∥∥

≤ Kf [(η + ν) ‖∆x‖+ distγ(x)]︸ ︷︷ ︸
distance term (D)

+Kf

∥∥∥∥ ‖q̇‖‖∆q‖
∆q̇ − γ̈(t)

∥∥∥∥︸ ︷︷ ︸
acceleration term (A)

, (?)

where we used the triangular inequality, the Lipschitz
condition on f , as well as local boundedness (Assumption
5) and acceleration compliance (Assumption 6) of the inter-
polated trajectory. The transition from the norm ‖·‖∞ to ‖·‖
is possible because all norms of Rn are equivalent (a change
in norm will be reflected by a different constant Kf ).



1) Bounding the acceleration term: the discrete velocity
derivative ‖q̇‖

‖∆q‖∆q̇ can be further decomposed into:∥∥∥∥ ‖q̇‖‖∆q‖
∆q̇ − γ̈(t)

∥∥∥∥ ≤
∥∥∥∥∆q̇

‖q̇‖
‖∆q‖

−∆γ̇
‖γ̇(t)‖
‖∆γ‖

∥∥∥∥
+
‖∆γ̇‖
‖∆γ‖

∣∣∣∣‖γ̇(t)‖ − ‖∆γ‖
∆t

∣∣∣∣
+

∥∥∥∥∆γ̇

∆t
− γ̈(t)

∥∥∥∥ .
Let us call these three terms (A1), (A2) and (A3). From
Lemma 1,

(A2) ≤ Kγ̇

2

‖∆γ̇‖
‖∆γ‖

∆t ≤ Kγ̇M̈

ṁ
∆t

(A3) ≤ Kγ̇

2
∆t.

Then, defining δt2 := min
(
δt1,

δτmax
2Kγ̇

, δṁτmax

4M̈Kγ̇

)
, we have

that, for any ∆t < δt2, (A2) and (A3) are upper bounded by
δτmax
4Kf

.

The expression ∆q̇ ‖q̇‖
‖∆q̇‖ in (A1) represents the discrete

derivative of the velocity q̇ between q and q′ (its continuous
analog would be ‖q̇‖ dq̇

‖q̇‖ dt = dq̇
dt ). Thus, (A1) can be seen as the

deviation between the discrete accelerations of γ̃ and γ. Let
us decompose this expression in terms of norm and angular
deviation:

(A1) ≤
∥∥∥∥( ∆γ̇

‖∆γ̇‖
− ∆q̇

‖∆q̇‖

)
‖γ̇‖ ‖∆γ̇‖
‖∆γ‖

+
∆q̇

‖∆q̇‖

(
‖∆γ̇‖ ‖γ̇‖
‖∆γ‖

− ‖∆q̇‖ ‖q̇‖
‖∆q‖

)∥∥∥∥
≤ 2

‖γ̇‖ ‖∆γ̇‖
‖∆γ‖

(
1− cos ̂(∆q̇,∆γ̇)

)
︸ ︷︷ ︸

angular deviation term (θ)

+

∣∣∣∣‖γ̇‖ ‖∆γ̇‖
‖∆γ‖

− ‖∆q̇‖ ‖q̇‖
‖∆q‖

∣∣∣∣︸ ︷︷ ︸
norm deviation term (N)

Since the factor 2‖γ̇‖‖∆γ̇‖
‖∆γ‖ before the angular deviation (θ) is

bounded by 4ṀM̈
ṁ , ̂(∆q̇,∆γ̇) → 0 is a sufficient condition

for (θ) → 0. We will show that both the norm and angular
deviation terms tend to zero as ∆t→ 0.

2) Bounding the norm (N): let us suppose that distγ(x)
and distγ(x′) are ≤ 1

2ṁ∆t2 =: δρ. We can expand (N) as
follows:

(N) ≤ ‖∆γ̇‖
‖∆γ‖

|‖γ̇‖ − ‖q̇‖|+ ‖q̇‖
∣∣∣∣‖∆γ̇‖
‖∆γ‖

− ‖∆q̇‖
‖∆q‖

∣∣∣∣

(N) ≤ 2M̈

ṁ
δρ+

‖q̇‖
‖∆γ‖ ‖∆q‖

|‖∆γ̇‖ ‖∆q‖ − ‖∆q‖ ‖∆q̇‖|

≤ 2M̈

ṁ
δρ+

‖q̇‖ (‖∆γ‖+ ‖∆γ̇‖)δρ
‖∆γ‖ ‖∆q‖

≤ 2M̈

ṁ
δρ+ δρ

‖q̇‖
‖∆q‖

[
1 +

2M̈

ṁ

]

≤ 2M̈

ṁ
δρ+ δρ

‖γ̇‖+ δρ

‖∆γ‖ − δρ

[
1 +

2M̈

ṁ

]

≤

[
M̈∆t+

(ṁ+ 2M̈)(2Ṁ + ṁ∆t2)

ṁ2(1−∆t)

]
∆t

This last bound is expressed only in terms of ∆t and
constants ṁ, Ṁ and M̈ . Since it tends to zero as ∆t → 0,
there exists some duration δt3 ≤ δt2 such that, for any
∆t ≤ δt3, (N) ≤ δτmax

8Kf
.

3) Bounding the angular deviation: simple vector geom-
etry shows that

sin ̂(∆q̇,∆γ̇) ≤ distγ(x) + distγ(x′)

‖∆γ̇‖
≤ δρ

m̈∆t
≤ ṁ

2m̈
∆t.

Since 1 − cos θ < sin θ for any θ ∈ [0, π/2], there exists
a duration δt4 ≤ δt3 such that ∆t < δt4 ⇒ (θ) ≤ δτmax

8Kf
.

Combining our bounds on terms (A2), (A3), (N) and (θ),
we have showed so far that, when ∆t is small enough, the
acceleration term is upper bounded by 3

4δτmax.
4) Bounding the distance term (D): the remaining term

is proportional to

(η + ν) ‖∆x‖+ distγ(x) ≤ (2δρ+ ‖∆γ‖)(η + ν) + δρ

≤ Kγ(η + ν) + 3ṁ∆t

2
∆t

Hence, there exist a final δt ≤ δt4 such that, when ∆t < δt,
this last bound becomes ≤ δτmax

4Kf
as well. Combining all our

bounds, we have established the existence of a duration δt
such that ∆t ≤ δt⇒ |ũ(τ)| ≤ τmax.

5) Link with completeness: let us summarize our reason-
ing so far. We have iteratively constructed a duration δt and
a radius δρ, independent from t or t′, such that, as soon as
|t′ − t| < δt, distγ(x) < ρ and distγ(x′) < ρ, the system
can track the trajectory INTERPOLATE(x, x′).

The proof of completeness of the whole randomized
planner follows directly from this construction. Let us denote
by Bt := B((γ, γ̇)(t), ρ), the ball of radius ρ centered on
(γ, γ̇)(t) ∈ X . Suppose that the roadmap contains a state
x ∈ Bt, and let t′ := min(T, t+ δt). If the planner samples
a state x′ ∈ Bt′ , the interpolation between x and x′ will be
successful and x′ will be added to the roadmap. Since the
volume of Bt′ is non-zero for the Lebesgue metric, the event
{SAMPLE(Xfree) ∈ Bt′} will happen with probability one
as the number of extensions goes to infinity.

At the initialization of the planner, the roadmap is reduced
to xinit = (γ(0), γ̇(0)). Therefore, using the property above,
by induction on the number of time steps δt, the last state
(γ(T ), γ̇(T )) will be eventually added to the roadmap with



probability one, which establishes the probabilistic complete-
ness of the randomized planner. �
E. Discussion

Our proof constructs a sequence of non-empty balls that
cover a solution to the planning problem. This idea that the
solution trajectory can be included in a “tube” of non-zero
volume is not new. It appeared in [25] where LaValle et al.
hypothesized the existence of a covering called “attraction
sequence”. More recently, Karaman et al. sketched a proof in
[24] with a similar connection hypothesis: for any two states
γ(t) and γ(t′), the steering function successfully connects
γ(t) to any point in the ball of radius α ‖∆γ‖p centered on
γ(t′).

However, to the best of our knowledge, our work is
the first theoretical analysis to establish the existence and
explicitely construct such a bounding tube. This makes our
approach of more connected to reality: for a given system,
one can actually check for full actuation, compacity of the
control set and Lipschitz continuity of the dynamics function.
Similarly, when designing her interpolation function, one can
easily check for properties such as local boundedness and
acceleration compliance.

IV. CONCLUSION

The goal of the present paper is to clarify the panorama of
completeness results in randomized kinodynamic planning.
We observed that existing proofs usually rely on assumptions
too strong to be verified on practical systems. We proposed a
classification of the various types of kinodynamic constraints
and planning methods used in the field, and went on to prove
probabilistic completeness for an important class of planners,
namely those who steer by interpolating system trajectories
in the state space. On the way, our analysis also provided
some insights into the design of these interpolation functions.
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