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Abstract—To identify the joint parameters (e.g. the position
of the joint center for a spherical joint, the position and the
orientation of the joint axis for a revolute joint, etc.) from motion
capture data, existing provably-correct algorithms require that
at least three markers be attached to either of the two links
adjacent to the joint. However, as shown in this article, it turns
out that the identification of the joint parameters requires, for
most types of joints, strictly less than three markers on any
link. More precisely, we prove the structural identifiability of
joint parameters in the following cases: (a) a spherical joint with
two markers attached to each of the two adjacent links; (b) a
revolute joint with two markers attached to one of the two links,
and one marker attached to the other. We provide a practical
algorithm to do the identification in case (a). Finally, we show
that identification cannot be achieved with strictly fewer markers
than listed in (a) and (b).

I. INTRODUCTION

Recent applications of motion capture technology, such as
musculo-skeletal modeling (see e.g. [7] and references therein)
or computer animation (see e.g. [8] and references therein),
require the mapping of motion capture data (usually the 3D
positions of optical markers) onto an animated skeletal model
of the captured subject. A skeletal model usually consists of
a certain number of rigid links connected to each other by
mechanical joints: e.g. the hip, which connects the trunk and
the thigh in the manner of a spherical – or ball – joint, or the
knee, which connects the thigh and the shank in the manner of
a revolute – or hinge – joint. Since usually the markers cannot
be attached directly to the critical locations on the joint (the
joint center in a spherical joint, the joint axis in a revolute joint,
etc.), an essential task in motion capture analysis consists of
determining the joint parameters indirectly from the recorded
positions of the markers attached to its adjacent links.

In the case of spherical joints, if one link is held stationary
or if three markers are attached to one of the two adjacent
links, efficient algorithms (see a review in [2]) have been pro-
posed to determine the position of the joint centers. However,
in many applications, the links are non-stationary and the total
number of markers is limited – sometimes to as few as 16
markers in a full-body setting – making the aforementioned
algorithms inapplicable. One way to overcome this difficulty
consists of hand-adjusting the positions of the joint centers,
but this method is time-consuming and provides no guarantee
as for the correctness of the so-determined positions. Other
methods consist of solving a very large nonlinear optimization
problem [6], but such methods typically suffer from the

problem of local minima and usually involve extra penalty
costs (e.g. the distance penalty in [6], solely intended to
guarantee the convergence of the algorithm to sensible values).

In fact, as shown in this article, the identification of joint
parameters requires strictly less than three markers on any
link. More precisely, we propose to prove the structural
identifiability [1] of the joint parameters in the following
cases: (a) a spherical joint with two markers attached to
each of the adjacent links; (b) a revolute joint with two
markers attached to one of the two links, and one marker
attached to the other. By structural identifiability, we mean
that the joints and links are supposed to be strictly rigid (the
distance of a marker to the joint center or axis is strictly
constant) and that there is no measurement noise. Structural
identifiability is a necessary condition for actual identifiability:
if a system is non structurally identifiable, then no algorithm
can achieve reliable identification in practice. Note however
that the converse is not true in general. Here, in addition to
the structural identifiability results, we also present a practical
algorithm to achieve reliable identification in case (a) and
compare the performance of this algorithm with those of
existing algorithms [2, 3, 6]. Finally, we show that structural
identification cannot be achieved with strictly fewer markers
than listed in (a) and (b), establishing thereby the minimum
numbers of markers required for parameter identification of
spherical and revolute joints.

II. GEOMETRIC RELATIONS BETWEEN TWO RIGID LINKS

A. General considerations

Consider two rigid links A and B, which are connected
together by a joint (prismatic, revolute, spherical, etc.), whose
position and orientation, both in space and with respect to
A and B, are unknown. A certain number of markers are
attached to each link, say p markers A1, . . . , Ap on A and q
markers B1, . . . , Bq on B. Without loss of generality, we can
suppose p ≥ q and subsequently place ourselves in a reference
frame F where the p markers of A are fixed. Remark that, if
p ≥ 3, link A is fixed in F , whereas, if p = 2, the position and
orientation of A is only determined up to a rotation around
the axis formed by the two markers at hand.

Let us next denote the coordinates of B1, . . . , Bq in F by
Ω = (x1, y1, z1, . . . , xq, yq, zq), which we call the output of
the system. The set of all possible outputs corresponding to all
possible values of the joint is denoted by S. For each frame i
of the motion capture data, we thus have one sample output
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samples is called a N -sample, which is an element of SN .
Let Π denote a tuple of (unknown) parameters that describes

the position and orientation of the joint in F . For instance,
for a spherical joint, Π can be the Cartesian coordinates
(xJ , yJ , zJ) or the cylindrical coordinates (d, r, θ) of the joint
center J in F (see Fig. 1). Following the remark of the
previous paragraph, if p ≥ 3, then (xJ , yJ , zJ) or (d, r, θ)
are constant across the frames. By contrast, if p = 2, then
(xJ , yJ , zJ) and (d, r, θ) are not constant. More precisely, if
the axis of the cylindrical coordinate system coincides with
the axis formed by the two markers of A , then (d, r) are
constant across the frames and θ is variable. We then denote
by Πc the tuple of constant parameters and Πv the tuples of
variable parameters. Similarly, we denote by Σc,Σv the tuples
of (unknown) constant and variable parameters that describe
the positions and orientations of B1 . . . Bq with respect to the
joint. For instance, again in the case of spherical joint and
q = 1, Σc can consist of the distance ρ between the joint to
the marker and Σv can consist of the azimuth and inclination
angles (φ, ψ) (see Fig. 1).
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Fig. 1. Example of a spherical joint J connecting two rigid links. Two
markers A1, A2 are attached to link A and one marker B1 is attached to
link B. Note that the constant parameters (d, r, ρ), in blue, are the same for
all samples B(i)

1 , whereas the variable parameters (θ, φ, ψ), in red, change
for each B(i)

1 .

Finally, let f be the function that relates these parameters
to the output as follows

Ω = f(Πc,Πv,Σc,Σv).

Note that this function f can be computed beforehand for each
type of joint. For instance, again in the case of a spherical joint
and p = 2, q = 1, we have Ω = (x1, y1, z1), Πc = (d, r),
Πv = θ, Σc = ρ, Σv = (φ, ψ) and f is given by x1 = r cos θ + ρ cosφ sinψ

y1 = r sin θ + ρ sinφ sinψ
z1 = d+ ρ cosψ.

B. Problem definition
Suppose that we have at our disposal a N -sample

(Ω(1), . . . ,Ω(N)). By construction, the actual joint param-
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The goal of the present article – identifying the position and
orientation of the joint – can then be formulated through the
following questions

1) Is the tuple (Πc,Π
(1)
v , . . . ,Π
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v ) unique? That
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2) If the (Πc,Π
(1)
v , . . . ,Π

(N)
v ) is unique, can we determine

it from the N -sample at our disposal?
If the answers to the above two questions are positive, then

we say that the N -sample at our disposal is identifying. In the
opposite case, we say that the N -sample is non-identifying.
We can now state the following definition of identifiability

Definition 1 We say that the case (p, q) – when p markers
are attached to A and q markers are attached to B – is
N -identifiable if the set of non-identifying N -samples has
measure 0 in SN . If there is no N such that (p, q) is N -
identifiable, then the case (p, q) is said to be non-identifiable4

The practical meaning of Definition 1 is clear. If the case
(p, q) is N -identifiable then, given N random samples, almost
surely, one can determine unambiguously the joint position
and orientation in each frame. By contrast, if the case (p, q) is
non-identifiable, then no matter how many samples we have
at our disposal, we can never determine with certainty and
unambiguously the position and orientation of the joint.

Remark 1 Clearly, if the case (p, q) is N -identifiable then
so are the case (q, p) and the cases (p′, q) for all p′ ≥ p.
Similarly, if the case (p, q) is non-identifiable then so are the
case (q, p) and the cases (p′, q) for all p′ ≤ p 4

Remark 2 Why identifiability can be achieved for only
almost all and not for all N -samples? This is because of
degenerate cases when the N -samples do not excite all the
degrees of freedom of the joint. For a concrete example, see
section IV-A 4

Note that the notion of identifiability studied in this article
is not the same as the homonymous notion in control theory.
The problem of joint parameters identification is formulated
here in purely geometric terms and the actual identification
– when possible – requires only a finite number of samples.
On the other hand, this problem may also be formulated as
the identification of the parameters of a control system if one
uses the continuous time series of the positions of the markers.
However, in such a formulation, one would need to take time
derivatives, which would amplify the effect of measurement
noise.

III. IDENTIFIABILITY RESULTS FOR REVOLUTE JOINTS

A. The (2,1) case is 5-identifiable

To describe the position and orientation of the revolute joint
axis – which is basically a line – in F , we use the Denavit-
Hartenberg convention (see Fig. 2, left). Following the notation
convention of section II-A, one can note Πc = (d, r, α),
Πv = θ, Σc = (l, ρ), Σv = β. The key here is to first obtain
an equation relating Ω to the constant parameters Πc,Σc, by
eliminating the variable parameters Πv and Σv .



A1

A2

C

d

B
(1)

x

y

z
x

zα

θ

z

r

l

ρ
B

(2)

B
(5)

B
(4)

B
(3)

θ

θ

β

O(θ)

Joint axis

B

ρ

ρ'

C

C''

ρ'

A

C' D

r'

ρ'

δ

LL'

ρ

r

Fig. 2. Left: Revolute joint with two markers on one link (A1, A2 on A )
and one marker on the other link (B on B). Right: Revolute joint with one
marker on each link (A on A and B on B).

1) Eliminating the variable parameters: The Denavit-
Hartenberg matrix is given by

D =

 cos θ − sin θ cosα sin θ sinα r cos θ
sin θ cos θ cosα − cos θ sinα r sin θ

0 sinα cosα d
0 0 0 1

 .

Thus, the coordinates of Oθ in F is given by

D (0, 0, l, 1)> =

 l sin θ sinα+ r cos θ
−l cos θ sinα+ r sin θ

l cosα+ d
1

 .

To eliminate the variable parameter β, remark that, a point
(x, y, z) is on the circle of radius ρ, centered at Oθ, and
orthogonal to the joint axis (zθ) if and only if∥∥∥∥∥∥

x− l sin θ sinα− r cos θ
y + l cos θ sinα− r sin θ

z − l cosα− d

∥∥∥∥∥∥
2

= ρ2, (2)

and x− l sin θ sinα− r cos θ
y + l cos θ sinα− r sin θ

z − l cosα− d

> sin θ sinα
− cos θ sinα

cosα

 = 0. (3)

Developing condition (3) yields

x sin θ − y cos θ =
l + d cosα− z cosα

sinα
. (4)

Developing next condition (2) yields, after rearrangements,

x2 + y2 + z2 + l2 + r2 + d2 − ρ2+

2ld cosα− 2z(l cosα+ d)− 2l sinαA− 2rB = 0,

where A = x sin θ − y cos θ and B = x cos θ + y sin θ. Sub-
stituting A by the expression of equation (4) and regrouping
terms then lead to

R2 +Q− 2zd = 2rB, (5)

where R2 = x2 + y2 + z2 and Q = r2 + d2 − l2 − ρ2.
Remark next that, by the definitions of A and B, one has
A2 +B2 = x2 + y2. Equation (5) is then equivalent to

R2 +Q− 2zd = 2r

√
x2 + y2 −

(
l + d cosα− z cosα

sinα

)2

. (6)

Squaring the two sides of (6) and rearranging the terms then
gives

(M1 . . .M5)(Y1 . . . Y5)> = K, (7)

where 
M1 = −4R2z
M2 = 2R2

M3 = −4z
M4 = 1
M5 = 4z2

(8)



Y1 = d
Y2 = Q− 2r2

Y3 = Qd+ 2r2 cosα(l+d cosα)

sin2 α

Y4 = Q2 + 4r2(l+d cosα)2

sin2 α

Y5 = d2 + r2

sin2 α

(9)

and
K = −R4.

Remark that, because of the squaring operation, equation (7)
is a only a necessary (but not sufficient) condition for Ω =
f(Πc,Πv,Σc,Σv). This point will be relevant later on.

2) Obtaining a linear system: Given now a 5-sample
{(x(1), y(1), z(1)), . . . , (x(5), y(5), z(5))}, one can construct 5
equations similar to (7). Grouping these equations together,
one obtains the matrix identity

MY = K,

where Y = (Y1 . . . Y5)> and M and K are respectively
a 5 × 5 matrix and a 5 × 1 vector constructed from the
x(1), y(1), z(1), . . . , x(5), y(5), z(5).

Consider next the linear system of equations in the un-
known Z

MZ = K. (10)

By construction, this equation has at least one solution Ẑ =
Y. This solution is unique if det(M) 6= 0.

3) The set of zeros of det(M): Developing det(M)
and replacing the R(i) by their expressions in terms of
(x(i), y(i), z(i)) lead to

det(M) = P (x(1), y(1), z(1), . . . , x(5), y(5), z(5)), (11)

where P is a polynomial in 15 variables.
Let us have closer look at S. By definition, S is the set of

all (x, y, z) that satisfy equation (6). Solving equation (6) in
z then gives z as an algebraic function (with possibly zero or
multiple values) of x, y

z = g(x, y).

Replacing now z(i) by g(x(i), y(i)) in (11) then gives the
following identity

det(M) = h(x(1), y(1), . . . , x(5), y(5)),

where h is an algebraic functions (with possibly zero or
multiple values) in 10 variables. Furthermore, h is not
the zero function (we have verified this by computing the
value of h for a particular 5-sample). Therefore, by a
well-known result on algebraic functions, the set of ze-
ros of h has measure 0 in R10. As a consequence, the



set of (x(1), y(1), z(1), . . . , x(5), y(5), z(5)) in S5 such that
det(M) = 0 also has measure 0.

4) Determining the joint parameters: Given now a
5-sample {(x(1), y(1), z(1)), . . . , (x(5), y(5), z(5))} such that
det(M) 6= 0, one can solve system (10) to obtain a unique
Ẑ. Letting Ẑ = (Z1, . . . , Z5)T , one has to solve the following
systems to recover Πc and Σc

d = Z1

Q− 2r2 = Z2

Qd+ 2r2 cosα(l+d cosα)

sin2 α
= Z3

Q2 + 4r2(l+d cosα)2

sin2 α
= Z4

d2 + r2

sin2 α
= Z5

(12)

The first equation of the system gives d = Z1. Solving the
remaining equations of the system by substitution leads to the
following third-degree polynomial equation in Q

−Q3 + aQ2 + bQ+ c = 0, (13)

where a = 2(Z5 − Z2
1 ) + Z2 + 2Z2

1 , b = −4Z1Z3 + Z4,
c = 2Z2

3 − Z4(2(Z5 − Z2
1 ) + Z2).

Equation (13) has 3 solutions (including possibly non-real
solutions) Q1, Q2, Q3. For each k = 1, 2, 3, one can next
compute 

rk =
√

Qk−Z2
2

αk = asin
(√

Qk−Z2

2(Z5−d2)

)
lk = Z3−Qkd

2(Z5−d2) cosαk
− d cosαk

ρk =
√
r2k + d2 − l2k −Qk.

Remark that one of the Qk corresponds to the extraneous
solution added when squaring (5). This solution can be easily
discarded by checking whether (5) is true for all samples. Next,
a second Qk is usually associated with non-real values for
rk, αk, lk, ρk, and can also be discarded. Thus, there remains
a unique Qk, associated with unique values of r, α, l, ρ.

Finally, for each sample i, one can recover a unique θ(i) by
solving (4), and next a unique β(i) by a similar procedure.

B. The (1,1) case is non-identifiable

Here, Πc consists of a single parameter r, which is the
distance between the joint axis and the marker of A (see
Fig. 2, right). Likewise, Σc consists of a single parameter ρ,
the distance between the joint axis and the marker of B.

Assume that we are given r, ρ, whose associated set of
outputs is denoted S. Our aim is to show that there exists
r′, ρ′ with r′ 6= r such that S ′ ∩ S has measure > 0, where
S ′ is the set of outputs associated with r′, ρ′.

Consider indeed r′ = r − δ, ρ′ = ρ′ + δ (for some small
δ > 0) and the set S∆ ⊂ S consisting of samples whose
distance from A is larger than some ∆ > 0. Note first that
the measure of S∆ is > 0. Consider next an arbitrary sample
B ∈ S∆ and a line L such that d(B,L) = ρ and d(A,L) = r,
where d denotes the distance between a line and a point. Such
a line exists because B ∈ S. Based on Fig. 2, one can construct
another line L′, such that d(B,L′) = ρ′ and d(A,L′) = r′,
proving thereby that B ∈ S ′. Since B was chosen arbitrarily
in S∆, one has S∆ ⊂ S ′.

IV. IDENTIFIABILITY RESULTS FOR SPHERICAL JOINTS

A. The (3,1) case is 4-identifiable

Here, since three markers are attached to link A , it is fixed
in the coordinate frame F , and so is the joint center J . Thus,
following the notation convention of section II-A, one has
Πc = (xJ , yJ , zJ), Σc = ρ, Σv = (φ, ψ) (see Fig. 3, left).

B
(3) B

(1)

B
(2)

φ
ψ

ρ

J

A1

A2
x

y

z

A3

B
(4)

B
(3) J' B

(1)

B
(2)

B
(4)

A1

A2

A3

J

Fig. 3. Spherical joint with three markers on one link (A1, A2, A3 on A )
and one marker on the other link (B on B). Left: Non-degenerate 4-sample.
Given any four non-coplanar samples {B(1), B(2), B(3), B(4)}, the rotation
center can be determined unambiguously. Right: A degeneracy arises when
the samples are coplanar.

Remark that the set S of all possible outputs is actually
a sphere of center J and of radius ρ. Given now 4 random
samples {B(1), B(2), B(3), B(4)} (i.e. 4 random points on a
fixed – but unknown – sphere), almost surely they are non-
coplanar, and therefore, there exists a unique sphere that
contains them. The center of this sphere, J = (xJ , yJ , zJ), can
be determined by computing the intersection of the mediating
planes of (B(1), B(2)), (B(2), B(3)), and (B(3), B(4)). The
radius of this sphere, ρ, can next be determined by computing
the distance between the center and any sample B(i). This
establishes the 4-identifiability of the (3,1) case.

Degenerate cases A degeneracy arises when the 4 samples
happen to be on the same plane (see Fig. 3, right). In such a
case, any point J ′ belonging to the line perpendicular to this
plane and going through J is equidistant from the samples and
can thus play the role of a possible spherical joint. However, as
remarked earlier, such a case occurs with probability 0 when
the joint behaves as a real spherical joint, covering all the
directions in space.

B. The (2,1) case is non-identifiable

As already detailed in section II-A, one has in this case
Ω = (x, y, z), Πc = (d, r), Πv = θ, Σc = ρ, Σv = (φ, ψ) (see
Fig. 1 and Fig. 4, left).

Assume that we are given d, r, ρ, whose associated set of
outputs is denoted S. As in section III-B, our aim here is to
show that there exist r′, ρ′ with r′ 6= r such that S ′ ∩ S has
measure > 0, where S ′ is the set of outputs associated with
d, r′, ρ′.

Denote by Γ the circle of radius r, perpendicular to the
axis (A1, A2) and of z-coordinate d (see Fig. 4). Let r′, ρ′ be
defined as follows: r′ = r − δ, ρ′ = ρ′ + δ for some small
δ > 0. Consider next an arbitrary B ∈ S. By definition, there
is a J on the circle Γ such that ‖BJ‖ = ρ. One can then show
that the circle Γ′, of radius r′ and z-coordinate d, intersects
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Fig. 4. Left: Spherical joint with two markers on one link (A1, A2 on A )
and one marker on the other link (B on B). Right: Spherical joint with two
markers on each link (A1, A2 on A and B1, B2 on B)

the sphere of center B and radius ρ′ at at least one point J ′.
This shows that B ∈ S ′, and since B was chosen arbitrarily
in S, one has S ∩ S ′ = S, which has measure > 0.

C. The (2,2) case is 9-identifiable

Following the notation convention of section II-A, one has
here (see Fig. 4, right) Πc = (d, r), Πv = θ, Σc = (ρ1, ρ2),
Σv = (φ, ψ, ξ), where the three angles φ, ψ, ξ describe the
orientation of the segment B1B2 around J .

Following the same line of reasoning as in section III-A,
one first determines an equation relating d, r, ρ1, ρ2 and the
outputs B1 = (x1, y1, z1) and B2 = (x2, y2, z2) as below

H2(x22+y22)+G2(x21+y21)−2HG(x1x2+y1y2)−r2δ2 = 0, (14)

where δ = x1y2 − x2y1, and{
H = 1/2(x21 + y21 + (z1 − d)2 + r2 − ρ21)
G = 1/2(x22 + y22 + (z2 − d)2 + r2 − ρ22).

(15)

One can next transform equation (14) into a linear equation

(M1 . . .M9)(Y1 . . . Y9)> = K, (16)

where M1, . . . ,M9,K are constructed from the
x1, y1, z1, x2, y2, z2, and

Y1 = d2 + r2 − ρ21
Y2 = d2 + r2 − ρ22
Y3 = d
Y4 = (d2 + r2 − ρ21)(d2 + r2 − ρ22)
Y5 = (d2 + r2 − ρ21)d
Y6 = (d2 + r2 − ρ22)d
Y7 = (d2 + r2 − ρ21)2

Y8 = (d2 + r2 − ρ22)2

Y9 = r2.

(17)

Finally, one can construct a linear system by grouping
together 9 equations similar to (16) obtained from a 9-sample,
and prove the 9-identifiability using the same arguments as
in III-A.

V. ALGORITHMS AND DISCUSSION

A. Identifying the hip joint using two markers per link

In sections III-A and IV-C, we have established the struc-
tural identifiability respectively in the (2,1) case for revolute
joints and in the (2,2) case for spherical joints. Here we present

practical algorithms to do such identifications in concrete
settings.

We focus on the hip joint in humans, which can be modeled
by a spherical joint linking the trunk and the thigh. A human
subject performed a jumping motion from the floor onto a
horizontal platform at ∼0.5m from the ground (see Fig. 5,
right). Three markers were attached to the trunk: one on
the fifth lumbar vertebra (L5: A1), one on the left superior
anterior iliac spine (LPELVIS: A2) and one on the right
superior anterior iliac spine (RPELVIS: A3). Two markers
were attached to the right thigh: one on the greater trochanter
(RHIP: B1) and one on the lateral epicondyle of the femur
(RKNEE: B2).
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Fig. 5. Left: Identifying the hip joint position in a jumping motion (22
frames). Three markers were attached to the trunk (L5, LPELVIS, RPELVIS,
forming the blue triangle, with the segment LPELVIS–RPELVIS in cyan) and
two markers were attached to the thigh (RHIP and RKNEE, forming the green
segment). For the Gamage-Lasenby method, all the 5 markers were used. The
estimated joint position was plotted in red. For the new method we proposed,
RPELVIS was excluded. The estimated joint position was plotted in magenta.
Right: 16 markers are theoretically sufficient to identify all joints parameters
in a 14-links, 31-dof, human model (the joints are depicted by violet dots and
the markers by brown dots).

First, we extended the Gamage-Lasenby (GL) method [4, 2]
to the case when both links are moving (the original GL
algorithm assumes that one link is fixed in space). We used
22 frames taken every 95ms. In each frame i, we used the
3 trunk markers to compute an orthonormal reference frame
Fi as follows: the origine of F (i)

GL was A
(i)
1 ; the first two

vectors of the basis (u1,u2) were obtained by orthonor-
malizing {A(i)

2 − A
(i)
1 , A

(i)
3 − A

(i)
1 }; the third vector of the

basis was defined by u3 = u1 × u2. Because of non strict
rigidity and measurement noise, the positions A1, A2, A3 were
not completely fixed in F (i)

GL: instead, only A1 was fixed,
whereas A2 and A3 displayed some small variations. Next,
we computed the coordinates of B(i)

1 , B
(i)
2 in F (i)

GL and gave
these coordinates as input to the GL algorithm as described
in [4]. This algorithm outputted the positions J (i)

GL of the joint
center in each frame.

We now describe a new algorithm [S22: Spherical joint,
(2,2) case], which identifies the position of the joint center



using only two markers per rigid link: A1, A2, B1, B2. In each
frame, we computed an orthonormal reference frame F (i)

S22 as
follows: the origine of F (i)

S22 was still A(i)
1 ; the first two vectors

of the basis (u1,u2) were obtained by orthonormalizing
{A(i)

2 − A
(i)
1 ,v}, where v is a random vector non-collinear

with A(i)
2 −A

(i)
1 ; the third vector of the basis was still defined

by u3 = u1×u2. Next, as in section IV-C, we place ourselves
in the reference frame F (i)

S22.
Remark that, if a tuple (d, r, ρ1, ρ2) is the correct answer

and if there is no noise, the joint center would be given by
the intersection of the circle Γ(d, r) and Γ′(B1, B2, ρ1, ρ2)
(cf. section IV-C and Fig. 4, right). Following this remark, we
computed, in each frame i, the point J (i)

opt that minimized the
sum d(J,Γ(d, r)) + d(J,Γ′(B

(i)
1 , B

(i)
2 , ρ1, ρ2)). Next, the cost

associated with (d, r, ρ1, ρ2) was defined by

C(d, r, ρ1, ρ2) =
∑
p=1,2

var(‖JoptAp‖) +
∑
q=1,2

var(‖JoptBq‖),

where var is the variance computed across the frames. Note
that the index p runs only from 1 to 2 because A3 (RPELVIS)
was excluded. Finally, we ran a global minimum search
algorithm to find the optimal (d, r, ρ1, ρ2), which in turn is
associated with a certain position J

(i)
S22 of the joint center in

each frame.
To assess the quality of this algorithm, we compare CS22

and CGL, where the two measures were defined by

CS22 =
∑

p=1,2,3

var(‖JS22Ap‖) +
∑
q=1,2

var(‖JS22Bq‖)

CGL =
∑

p=1,2,3

var(‖JGLAp‖) +
∑
q=1,2

var(‖JGLBq‖).

Note that the index p runs from 1 to 3 in both measures.
For the jumping motion of Fig. 5, we found that

√
CS22 =

9.18mm and that
√
CGL = 9.65mm, while the average dis-

tance across the frames between J (i)
S22 and J (i)

GL was 43.26mm.
In other words, our algorithm using only two markers on
each link outperformed the extension of the GL method using
three markers on one link and two markers on the other. Note
however that there may exist better ways to extend the GL
method to the case of two moving links (based e.g. on [5]).
Also, the GL method gives a closed-form solution while our
method must rely on an iterative minimum search (the closed-
form solution given by the formulae of section IV-C is too
sensitive to noise and non strict rigidity). We are currently
trying to find a robust closed-form solution based on the
formulae of section IV-C.

In contrast with the optimization technique of [6], which
uses a distance penalty unrelated to the problem at hand
and solely intended to guarantee the convergence of the
algorithm to sensible values, our method involves no such
extra, arbitrary, constraint. Furthermore, the issue of local
minima is considerably alleviated since the dimension of our
optimization problem is 4 (d, r, ρ1, ρ2), which is much smaller
than that in [6], which is 3N , where N is the number of
frames.

B. Joint parameter identification in full-body motion capture
Using the results just established, it is theoretically possible

to identify all joint parameters in a 14-links, 31-dof, human
model using just 16 markers as illustrated in Fig. 5, right panel.

One starts with 3 markers on the trunk, which allow
determining completely the position and orientation of the
trunk in space. Next, using the marker on the thigh, one can
identify the position of the hip joint [spherical joint, (3,1)
case]. The position of the hip joint together with the thigh
marker thus provides two “markers” on the thigh. Next, using
these two “markers” and the shank marker, one can identify
the parameters of the knee joint [revolute joint, (2,1) case].
The position and orientation of the knee joint in turn gives
the full position and orientation of the thigh and the shank.
Finally, the parameters of the ankle joint can be determined
using the shank full position and orientation together with the
foot marker [spherical joint, (3,1) case]. The same procedure
can be repeated for the remaining leg and the two arms. The
neck joint parameters can finally be identified using the trunks
markers and the head marker [spherical joint, (3,1) case].

C. Conclusion
We have studied the minimum number of markers that are neces-

sary to identify the parameters of revolute and spherical joints and
have presented a practical algorithm to do the identification in the
case of a spherical joint with two markers attached to each of the
adjacent link. Our current research focuses on the implementation of
the identification of joint parameters using a minimum number of
markers in a full-body setting.
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