
Regularity Properties and Deformation of
Wheeled Robots Trajectories

Quang-Cuong Pham and Yoshihiko Nakamura

Abstract— Our contribution in this article is twofold. First,
we identify the regularity properties of the trajectories of planar
wheeled mobile robots. By regularity properties of a trajectory
we mean whether this trajectory, or a function computed from
it, belongs to a certain class Cn (the class of functions that are
differentiable n times with a continuous nth derivative). We
show that, under some generic assumptions about the rotation
and steering velocities of the wheels, any non-degenerate
wheeled robot belongs to one of the two following classes.
Class I comprises those robots whose admissible trajectories
in the plane are C1 and piecewise C2; and class II comprises
those robots whose admissible trajectories are C1, piecewise
C2 and, in addition, curvature-continuous. Second, based on
this characterization, we derive new feedback control and gap
filling algorithms for wheeled mobile robots using the recently-
developed affine trajectory deformation framework.

I. INTRODUCTION

The movements of any wheeled robot in the plane are
restricted by nonholonomic constraints, which arise from
the rolling-without-slipping constraint at work at the robot’s
wheels. A large body of work has been devoted to the plan-
ning and control of wheeled robots under such nonholonomic
constraints, see e.g. [1] for a review. For instance, a number
of articles built upon the pioneering results of Dubins [2]
to construct optimal trajectories for car-like robots as a
concatenation of line segments and circular arcs. However,
as remarked by Boissonnat et al. [3] and Fraichard and
Scheuer [4], the curvature of such paths is discontinuous
at the transitions between line segments and circular arcs,
or between circular arcs of different radii, such that a car-
like robot that follows such paths would need to stop at the
transition points in order to reorient its wheels (since the
orientations – or steering angles – of the wheels are related
to the path curvature). As a consequence, these authors de-
veloped methods to plan curvature-continuous paths, which
can hence be followed without stopping by car-like robots.

We say that a trajectory (x, y) of a wheeled robot is non-
halting if the linear velocity

√
ẋ2 + ẏ2 is always strictly

positive. In particular, according to the previous paragraph, a
non-halting trajectory for a car-like robot should not contain
any point of discontinuous curvature. In section II, we study
a more general question: for a given wheeled robot, what are
the non-halting trajectories that it can execute in the plane?
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We characterize such admissible trajectories by their regular-
ity properties, that is, by whether these trajectories, or some
functions computed from them, belong to certain classes Cn

(Ci is the class of functions that are differentiable i times
with a continuous ith derivative). Our work mainly builds
upon the general classification of planar wheeled robots
obtained by Campion et al. [5]. Note that the trajectories
we are interested in are the (x, y) trajectories of a given
fixed point on the robot’s frame, and not the trajectories
of the robot’s full posture (x, y, θ). The former problem
is sometimes referred to as the point tracking problem, as
opposed to the posture tracking problem [6].

Next, based on that characterization of admissible trajec-
tories, we derive in section III new feedback control and
gap filling algorithms for wheeled robots using the frame-
work of affine trajectory deformations [7]. This recently-
developed framework allows making corrections to a pre-
viously planned trajectory in order to deal with unexpected
disturbances (such as a change of the target position or the
appearance of an unforeseen obstacle), without having to
recompute the entire trajectory. In contrast with previous
trajectory deformation methods [8], [9], affine-geometry-
based algorithms are exact (given by closed-form formulas),
can be executed in one step, and do not require any trajectory
re-integration [7]. The new feedback control and gap filling
algorithms we propose thus naturally inherit these computa-
tional advantages.

II. REGULARITY PROPERTIES OF WHEELED ROBOTS
TRAJECTORIES

A. Model description, admissible commands

At the kinematic level, any non-degenerate wheeled robot
whose wheels obey the rolling-without-slipping constraints
can be modeled by [5]{

ξ̇ = B(ξ,β)η

β̇ = ζ

where ξ = (x, y, θ)⊤ is the posture of the robot and
β = (β1 . . . βh)

⊤ contains the steering angles of the centered
orientable conventional wheels (h = 0 if there are no such
wheels, see the top diagram in Fig. 1 for illustration). The
control inputs, or commands, to the system are given by η
and ζ.

Before proceeding further with the regularity constraints
on the commands, let us define some notations.

Regularity classes: For convenience, we shall denote by
Dn the class of functions that are Cn−1 and piecewise Cn.
For instance, a D0 function is piecewise continuous (but not



necessarily continuous), while a D1 function is continuous
and piecewise differentiable (see [7]). △

The commands ζ = (ζ1 . . . ζn) correspond to the steering
velocities of the robot’s centered orientable conventional
wheels. We make the assumption that the ζi’s (or equiva-
lently, the β̇i’s) are D0, which means that they can contain
discontinuities. Such discontinuities would correspond to e.g.
hard turns of the steering wheel in a car. This assumption
is often implicitly made in the literature: for instance, the
derivative of the curvature of the trajectories that are con-
structed for car-like robots in [4] are discontinuous (see e.g.
Fig. 2 of [4]), which corresponds to a discontinuous steering
velocity of the wheels (from the relation κ ∝ tanβ in the
car, where κ is the trajectory curvature).
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Fig. 1. Top: centered orientable and off-centered orientable conventional
wheels. Bottom: examples of wheeled robots of each type (following [5]).

On the other hand, the commands η control the ranges
of movement of the robot that can be made without steering
any of its wheels (see section IV.B of [5] for details). In fact,
one has (see equation 32 of [5])

ϕ̇ = E(β,βoc)η, (1)

where βoc contains the steering angles of the off-centered
orientable conventional wheels (see the top diagram in Fig. 1
for illustration) and ϕ = (ϕ1 . . . ϕH) contains the rotation
angles of all the wheels of the robot. Next, we make the
assumption that the ϕ̇i’s are D1, meaning that they must
be continuous. Note that this contrasts with the previously
discussed case of the steering angles, where the β̇i’s can
contain discontinuities. This assumption is also often made
implicitly in the literature: for instance, when authors assume
that the velocity of a car-like robot is continuous. Thus, from
equation (1), one can deduce that the admissible commands
ηi’s are also D1. Note however that the η̇i’s (or equivalently,
the ϕ̈i’s) can contain discontinuities. Such discontinuities
would correspond to hard presses on the throttle or on the
brake pedal in a car.

In summary, the space of admissible commands η is D1

and the space of admissible commands ζ is D0.

B. Admissible trajectories

As shown in [5], any planar wheeled mobile robot can be
described by one out of the five sets of “forward” kinematic

equations of Table I (see also Fig. 1, bottom panel), given a
suitable choice of a reference point and of a basis attached
to the robot frame.

For each type of robot, we now characterize the admissible
trajectories given the sets of admissible commands assumed
in the previous section. The reader is referred to Table I for
the notations and equations.

1) Type (3,0): Consider (η1, η2, η3) ∈ D1. The third
“forward” kinematic equation (θ̇ = η3) implies that θ ∈ D2.
The first and the second forward equations then imply that
x ∈ D2 and y ∈ D2.

Conversely, consider a trajectory C = (x, y) ∈ D2. One
can choose an arbitrary function θ ∈ D2 and then compute
(η1, η2, η3) ∈ D1 by the “reverse” equations.

In summary, a trajectory of a (3,0) wheeled robot is
admissible if and only if it belongs to D2.

2) Type (2,0): Consider (η1, η2) ∈ D1. As previously, the
forward equations imply that x and y belong to D2.

Conversely, consider a trajectory C = (x, y) ∈ D2. Since
the trajectory is non-halting (ẋ2+ ẏ2 > 0), one can compute
θ by the first reverse equation θ = arctan2(ẏ, ẋ), where

arctan2(b, a) =

{
π/2 if a = 0 and b ≥ 0
−π/2 if a = 0 and b < 0

arctan(b/a) if a ̸= 0
.

Remark that the so-calculated θ belongs to D1, but not
necessarily to D2. Next, one can compute η2 by the third
reverse equation. For η2 to be in D1, one would need
θ ∈ D2. As just remarked, the latter condition is not
automatically guaranteed by C = (x, y) ∈ D2. On the other
hand, demanding that C = (x, y) ∈ D3 would be unduly
restrictive. Thus the condition θ = arctan2(ẏ, ẋ) ∈ D2 must
be specified as an independent supplementary condition.
Note that the condition arctan2(ẏ, ẋ) ∈ D2 is equivalent
to requiring the path curvature to be continuous [3], [4].

In summary, a trajectory C of a (2,0) robot is admissi-
ble if and only if it belongs to D2, and if the function
arctan2(ẏ, ẋ) also belongs to D2.

3) Type (2,1): Consider (η1, η2) ∈ D1 and ζ ∈ D0. The
third and fourth forward equations imply that θ and β belong
respectively to D2 and D1. Next, the first and second forward
equations imply that x and y belong to D2.

Conversely, consider a trajectory C = (x, y) ∈ D2. One
can choose an arbitrary function θ ∈ D2 and then compute
successively β ∈ D1, (η1, η2) ∈ D1, and ζ ∈ D0 by the
reverse equations.

In summary, as for (3,0) robots, a trajectory of a (2,1)
robot is admissible if and only if it belongs to D2.

4) Type (1,1): As previously, a necessary condition for
the admissibility of a trajectory is that it belongs to D2.
Conversely, consider C = (x, y) ∈ D2. The first reverse
equation allows to compute θ ∈ D1. Remark that, as for
(2, 0) robots, the so-calculated θ does not necessarily belong
to D2. Next, β can be computed from the second reverse
equation. Remark that the derivative of θ is used in the
computation of β, such that β belongs to D0, but not
necessarily to D1. However, in order to compute next ζ, one
needs β ∈ D1, and consequently θ = arctan2(ẏ, ẋ) ∈ D2.



TABLE I
FORWARD AND REVERSE KINEMATIC EQUATIONS FOR PLANAR WHEELED ROBOTS

Type Examples “Forward” kinematic equations (cf [5]) “Reverse” equations Admissibility cond.

(3,0)
Omnidirectional

robots
(see Fig. 1, bottom panel)

ẋ = η1 cos θ − η2 sin θ
ẏ = η1 sin θ + η2 cos θ

θ̇ = η3

θ ∈ D2 (arbitrary)
η1 = ẋ cos θ + ẏ sin θ
η2 = −ẋ sin θ + ẏ cos θ

η3 = θ̇

(x, y) ∈ D2

(2,0)
Two-wheel
differential

drive

ẋ = −η1 sin θ
ẏ = η1 cos θ

θ̇ = η2

θ = arctan2(ẏ, ẋ)

η1 =
√

ẋ2 + ẏ2

η2 = θ̇

(x, y) ∈ D2

arctan2(ẏ, ẋ) ∈ D2

(2,1) Unicycle

ẋ = −η1 sin(θ + β)
ẏ = η1 cos(θ + β)

θ̇ = η2

β̇ = ζ1

θ ∈ D2 (arbitrary)
β = arctan2(ẏ, ẋ) − θ

η1 =
√

ẋ2 + ẏ2

η2 = θ̇

ζ1 = β̇

(x, y) ∈ D2

(1,1) Bicycle,
car-like robot

ẋ = −η1L sin θ sin β
ẏ = η1L cos θ sin β

θ̇ = η1 cos β

β̇ = ζ1

θ = arctan2(ẏ, ẋ)

β = arctan2(ẏ/(L cos θ), θ̇)

η1 =
√

ẋ2 + ẏ2/(L sin β)

ζ1 = β̇

(x, y) ∈ D2

arctan2(ẏ, ẋ) ∈ D2

(1,2) Kludge robot
(cf [5])

ẋ = −η1(2L cos θ sin β1 sin β2

+L sin θ sin(β1 + β2))
ẏ = −η1(2L sin θ sin β1 sin β2

−L cos θ sin(β1 + β2))

θ̇ = η1 sin(β2 − β1)

β̇1 = ζ1
β̇2 = ζ2

θ ∈ D2 (arbitrary)
β1 = arctan2(ẋ cos θ + ẏ sin θ,

2Lθ̇ − ẋ sin θ + ẏ cos θ)
β2 = arctan2(ẋ cos θ + ẏ sin θ,

−2Lθ̇ − ẋ sin θ + ẏ cos θ)

η1 = θ̇/ sin(β2 − β1)

ζ1 = β̇1

ζ2 = β̇2

(x, y) ∈ D2

In summary, as for (2,0) robots, a trajectory C of a (1,1)
robot is admissible if and only if it belongs to D2, and if
the function arctan2(ẏ, ẋ) ∈ D2 also belongs to D2.

5) Type (1,2): This type of robots can be treated in the
same way as (3,0) and (2,1) robots. A trajectory of a (1,2)
robot is admissible if and only if it belongs to D2.

6) Summary: From the previous development, one can
divide wheeled robots into two classes. Class I comprises
robots of type (3,0), (2,1), and (1,2), or in other words, those
whose degree of maneuvrability [5] equals 3. A trajectory for
robots of this class is admissible if and only if it belongs to
D2.

Class II comprises robots of type (2,0) and (1,1), or in
other words, those whose degree of maneuvrability equals 2.
A trajectory C = (x, y) for robots of this class is admissible if
and only if it belongs to D2 and if the function arctan2(ẏ, ẋ)
also belongs to D2 (i.e. the path is curvature-continuous).
Note that the last condition is not required for robots of
class I since, for these robots, θ is not directly related to
(x, y) by θ = arctan2(ẏ, ẋ).

Important remark: From a computational viewpoint, if
one obtains an admissible trajectory C′(t)t∈[0,T ] (for instance
by deforming a given C(t)t∈[0,T ]), the reverse equations
allow to easily compute the commands that generate that tra-
jectory by some differentiations and elementary operations.
△

Physical constraints: In this article, we have been only
concerned with the differential constraints that stem from
the nonholonomic nature of the wheeled robots. In prac-
tice, other constraints, such as upper limits on the absolute
acceleration or on the trajectory curvature, further restrict
the set of admissible trajectories. These constraints cannot
be dealt with by studying the regularity properties of the
trajectories alone: other specific methods are thus required

at the trajectory planning stage in addition to the methods
discussed here (see also the discussion of section III-B). △

III. AFFINE DEFORMATION OF WHEELED ROBOTS
TRAJECTORIES AND APPLICATIONS

A. Affine deformation framework

In [7] we developed a method based on affine transfor-
mations to correct the trajectories of nonholonomic mobile
robots, such as planar wheeled robots or 3D underwater
vehicles, while respecting their nonholonomic constraints.
We now briefly recall some features of affine trajectory
corrections for 2D mobile robots. For a general presentation,
the reader is referred to [7].

Let A be the affine plane. An element w ∈ R2 transforms
a point P ∈ A into another point P ′ by P ′ = P +w, which
can also be noted

−−→
PP ′ = w.

Given a point O ∈ A (the origin), an affine transformation
F can be defined by a couple (w,M) where w ∈ R2 andM
is a nonsingular linear map R2 → R2. The transformation
F acts on A by

∀P ∈ A F(P ) = O +M(
−−→
OP ) +w.

If P0 is a fixed-point of F , then F can be written in the
form

∀P ∈ A F(P ) = P0 +M(
−−→
P0P ).

Note that the affine transformations of the plane form a
Lie group, denoted GA2, of dimension 6: 2 coordinates for
the translation and 4 coordinates for the linear map.

Let C(t)t∈[0,T ] be a trajectory in the affine plane A and
τ ∈ [0, T ], a given time instant. We say that a transformation
F occurring at τ deforms C(t)t∈[0,T ] into C′(t)t∈[0,T ] if

∀t < τ C′(t) = C(t)
∀t ≥ τ C′(t) = F(C(t)). (2)



Given an admissible trajectory C and a time instant τ , an
affine transformation F is said to be admissible if F deforms
C at time τ into an admissible trajectory.

B. Affine deformations for wheeled robots

We have seen in section II that, regarding the conditions
of admissibility of trajectories, wheeled robots are divided
into two classes: class I in which a trajectory is admissible
if and only if it belongs to D2, and class II in which a
trajectory (x, y) is admissible if and only if it belongs to
D2 and if the function θ = arctan2(ẏ, ẋ) also belongs
to D2. Thus, as long as we are interested in admissible
trajectories and in affine trajectory corrections, there is no
difference between any robot of class I and the unicycle,
nor is there any difference between any robot of class II
and the bicycle. The only difference appears at the stage
of calculating the commands corresponding to the deformed
trajectory. However, for each type of robot, this can be done
easily using the reverse equations of Table I.

We now briefly recall the results obtained in [7] regarding
affine corrections for the unicycle (which thus also apply for
robots of class I) and for the bicycle (which thus also apply
for robots of class II).

Unicycle: Let C(t)t∈[0,T ] be an admissible trajectory for a
unicycle in the plane. At each time instant τ where C(τ) is
not an inflection point, the admissible affine deformations
form a Lie subgroup of dimension 2 of GA2. Using an
admissible affine transformation at τ , it is thus possible to
correct the final position towards any desired position in the
plane. It is also possible to correct the final orientation of
the unicycle, or, using two successive deformations, avoid
obstacles. △

Bicycle: Let C(t)t∈[0,T ] be an admissible trajectory for a
bicycle in the plane. At each time instant τ where C(τ) is
not an inflection point, the admissible affine deformations
form a Lie subgroup of dimension 1 of GA2. There are thus
less “freedom” to make corrections. However, if the set of
tangents to the initial trajectory is rich enough, it is possible
to correct the final position or the final orientation of the
bicycle towards a large range of values. △

Physical constraints: As mentioned earlier, other con-
straints than the differential constraints we considered, such
as upper limits on the absolute acceleration or on the tra-
jectory curvature, could further restrict the set of admissible
trajectories and hence the set of admissible affine deforma-
tions. This can be dealt with by observing that the changes in
acceleration or curvature from the original trajectory can be
computed from the affine transformation at hand (see also
[10]). The integration of such constraints into the current
framework represents an important task (see e.g. [4], [11]).
△

C. Position and orientation correction for the bicycle using
three affine deformations

In addition to the results just recalled, we now show
that, for robots of class II, composing three successive
deformations allows reaching any desired final position Pd

and orientation, as long as the initially planned trajectory is
not a straight line, as follows

1) select three (non-inflection) time instants τ1, τ2, and τ3
with τ1 < τ2 < τ3, such that the velocity vectors v(τ1),
v(τ2) and v(τ3) are pairwise non-collinear. Such three
time instants exist since C is not a straight line;

2) apply a first deformation on C at τ3 to obtain C′, with
C′(T ) = C(T ) +α3v(τ3), where α3 is a coefficient to
be tuned later;

3) decompose
−−−−−→
C′(T )Pd in the basis {v(τ1),v(τ2)} as−−−−−→

C′(T )Pd = α1v(τ1) + α2v(τ2);
4) apply a second deformation on C′ at τ2 to obtain C′′,

with C′′(T ) = C′(T ) + α2v(τ2);
5) apply a third deformation on C′′ at τ1 to obtain C′′′,

with C′′′(T ) = C′′(T ) + α1v(τ1). By construction
C′′′(T ) = C′(T ) + α2v(τ2) + α1v(τ1) = Pd.

Remark that the final orientation of C′′′ depends on α3 as
shown in Fig. 2. The formula to algebraically compute α3

as a function of the desired final orientation can be obtained
in a similar way as in [7].
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Fig. 2. Position and orientation correction using three successive affine
deformations. The original trajectory (C) is in red. The resulting trajectories
after the first, second and third deformations are respectively in blue (C′),
green (C′′) and magenta (C′′′). The left and right plots correspond to two
different values of α3. Remark that the trajectory C′′′ (magenta) ends at the
same position (Pd = (20, 40)) in the left and right plots, but that its final
orientation differs significantly between the two plots. By varying α3, it is
thus possible to cover a large range of possible desired final orientations
while keeping the desired final position fixed.

Finally, remark that one can also set the final linear speed
to arbitrary values while keeping the final position and
orientation unchanged by using the extension technique of
section III-E.

D. Feedback control

So far, we have been focusing on perturbations affecting
the state of the target (position and/or orientation) or the
environment (unexpected appearance of obstacles). Here we
show, through a simplified feedback control algorithm, how
affine corrections can also be used to deal with perturbations
affecting the robot’s own state.

Consider the example of the bicycle or car-like robot
(robots of class II), of equation

ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇ =
v tan(β)

L
β̇ = ζ

, (3)



which can be put easily in the form of a robot of type (1,1).
For convenience, we assume here that the control inputs are
(a, ζ) ∈ D0 (instead of v ∝ η1 ∈ D1 and ζ ∈ D0, which is
equivalent).

Assume that a trajectory has been initially planned (black
trajectory in Fig. 3A), in terms of the time series of the con-
trol inputs (aplan(t)t∈[0,T ], ζplan(t)t∈[0,T ]). Assume now that
these control inputs are corrupted by random perturbations

∀t ∈ [0, T ]

{
a(t) = aplan(t) + ξ1(t)
ζ(t) = ζplan(t) + ξ2(t)

,

where ξ1 and ξ2 two piecewise constant random functions.
The red trajectories in Fig. 3A represent several trajectories
of the robot corresponding to different realizations of the
perturbations ξ1 and ξ2. One can notice that the perturba-
tions make the final positions of the red trajectories deviate
randomly from the target (denoted by the magenta dot). This
can also be noted from the variability profile (red curve in
Fig. 3B), which is nonzero at the end of the movement.
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Fig. 3. Feedback control using affine corrections for a car-like robot. A:
uncorrected sample trajectories (red curves), corrected using at most one
correction (blue curves, S = 1 in text) or at most five corrections (green,
S = 5 in text). The initially planned trajectory is in black. B: variability
profiles computed across 2000 realizations of the random perturbations
ξ1 and ξ2. C: statistics of the feedback control algorithm across 2000
realizations of the random perturbations ξ1 and ξ2. The X-axis represents
the maximum number of corrections allowed S. The horizontal lines report
the values corresponding to the uncorrected trajectories (S = 0).

We propose the following feedback control algorithm
inspired from [12], [13]. The algorithm maintains at every
step two time series (acur(t)t∈[0,T ], ζcur(t)t∈[0,T ]) termed
“currently planned control inputs”. These time series are
initialized at the values of (aplan(t)t∈[0,T ], ζplan(t)t∈[0,T ]).
The movement time T is divided in S + 1 equal parts. At
each time instant ti = iT/(S + 1), i = 1 . . . S, the robot is
given the possibility to make a correction as follows

1) compute the final position of the robot, had the con-
trol inputs (acur(t)t∈[ti,T ], ζcur(t)t∈[ti,T ]) been applied
starting at the current state C̄(ti) and until the end
of the movement. Denote this final simulated position
(xsim, ysim);

2) compute appropriate trajectory deformations with
τ > ti to correct the final position from
(xsim, ysim) towards (xtarget, ytarget). This gives rise

to new time series of control inputs, denoted
(anew(t)t∈[ti,T ], ζnew(t)t∈[ti,T ]);

3) if the new control inputs are acceptable (i.e. do not
imply too large accelerations or too sharp turns), set
acur(t)t∈[ti,T ] ← anew(t)t∈[ti,T ] and ζcur(t)t∈[ti,T ] ←
ζnew(t)t∈[ti,T ]. Otherwise, keep the current values of
acur and ζcur.

Figure 3A shows the results of the feedback control
algorithm for S = 1 (blue curves) and S = 5 (green curve).
Note that the blue and green curves are driven by the same
realizations of the perturbations as the red curves (uncor-
rected trajectories). However, the blue and green curves end
up much closer to the target position. Figure 3B confirms this
observation: the final variabilities of the corrected trajectories
(blue and green profiles) at T are much lower (∼1.3m) than
that of the uncorrected trajectories (∼6m).

One could ask: why make multiple corrections (green)
while making one unique correction (blue) yields approx-
imately the same final average error? Figure 3C shows that
S = 1 is associated with larger values of a, ζ and β than S =
5. This is because when the robot is allowed to make multiple
corrections, the changes to a and ζ are distributed instead
of being concentrated in one single large correction near the
end of the trajectory. Figure 3B confirms this observation: the
green variability profile (S = 5) starts decreasing before the
blue variability profile (S = 1). Note however that choosing
S > 5 does not improve the algorithm.

Finally, note that this algorithm is not a trajectory-tracking
algorithm but rather a simplified implementation of “optimal
feedback control” [12], [13].

E. Gap filling for sampling-based kinodynamic planners

Gap reduction techniques are a core component of any
sampling-based kinodynamic planner [14]. As an example,
consider the approach proposed in [15], which consists of
growing two rapidly-exploring random tree (RRT) rooted
respectively at the initial state and at the target state –
a solution trajectory is obtained when these two trees in-
tersect. When nonholonomic constraints are present, exact
intersections of the trees occur with probability zero, such
that one usually assumes intersection when the trees are
within a nonzero distance of each other, yielding thereby
a gap in the solution trajectory. As the performance of the
planner critically depends on the permitted gap size (the
larger the permitted gap size, the quicker the growing trees
find an “intersection”, but also the more difficult filling the
gaps), efficient gap reduction techniques have been shown to
dramatically improve the performance of the planner [14].

We now show how affine corrections can be used to fill
trajectory gaps. Consider two trajectories C1(t)t∈[0,T1] and
C2(t)t∈[0,T2] of a car-like robot (respectively in red and cyan
in Fig. 4) separated by a gap. We first “prepare” the two
trajectories as follows

1) grow a first stub with time duration ∆a at the end
of C1. Using the time interval [T1, T1 + ∆a], bring
the steering angle β1 to 0 by “counter-steering” (i.e.



turning the steering wheel back to the straight-ahead
position);

2) grow a second stub with time duration ∆b at the end
of the extended C1(t). During this time interval, the
steering angle β1 is kept to 0, resulting in a straight
segment. One can easily verify that the (doubly) ex-
tended trajectory C1(t)t∈[0,T1+∆a+∆b] is admissible.
The two stubs are shown by dashed red lines in Fig. 4;

3) similarly, grow two other stubs at the beginning of C2
(shown by dashed cyan lines in Fig. 4).

After this “preparation”, we have two trajectories which
respectively ends and begins by straight segments. The
lengths of the added stubs depend on the ∆’s and can be
made relatively short if the β’s are small and large braking
and counter-steering rates are permitted. We can now use
the position and orientation algorithms given in the previous
sections to bring the end of the extended C1 towards the
beginning of the extended C2. Fig. 4 shows an example of
such correction using three successive affine deformations
(cf. section III-B). The admissibility conditions are verified
by observing that

• since affine transformations preserve collinearity [7],
the corrected extended trajectory C′′′1 (magenta) also
ends by a straight segment. When this straight segment
connects with the straight segment at the beginning of
the extended C2, the continuity of β is guaranteed;

• regarding the continuity of v, one can use the straight
parts around the connection point to modulate the
speed profile to make it continuous without altering the
geometric path: see the yellow lines in the plots of a
and v in Fig. 4.
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Fig. 4. Filling trajectory gaps for a car-like robot. Left: geometric paths.
The original trajectories to be connected are shown in plain red line (C1) and
plain cyan line (C2). These trajectories are first “prepared” by growing stubs
at their extremities (red and cyan dashed lines). The extended C1 is then
corrected into C′′′

1 (magenta) by three successive affine deformations (the
blue and green lines represent the intermediate trajectories C′

1 and C′′
1 ). Note

that C′′′
1 smoothly connects with C2. Right: profiles of the other variables.

The yellow lines in the plots of a and v show the modifications that make
v continuous without changing the geometric paths.

IV. CONCLUSION

Because of the nonholonomic constraints induced by the
rolling-without-slipping constraint at work at its wheels, a
wheeled robot cannot execute every trajectory in the plane. In
this article, we have identified the conditions for a trajectory
to be an admissible trajectory for a given wheeled robot,
based on some generic and usually made assumptions about

the rotation and steering velocities of the wheels. For robots
of class I (whose degree of maneuvrability is 3, e.g. the
unicycle), such trajectories are C1 and piecewise C2. For
robots of class II (whose degree of maneuvrability is 2,
e.g. the bicycle or car-like robots), such trajectories are C1,
piecewise C2 and with continuous curvature. Based on these
results and on the affine trajectory deformation framework,
we have presented fast, exact, feedback control and gap
filling algorithms for wheeled robots. Our current research
focuses on testing these algorithms on actual wheeled robotic
platforms, which will probably require the joint integration
of planning and control aspects, as in e.g. [16].
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