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Abstract

In a network of dynamical systems, concurrent synchronization is a regime where
multiple groups of fully synchronized elements coexist. In the brain, concurrent syn-
chronization may occur at several scales, with multiple “rhythms” interacting and
functional assemblies combining neural oscillators of many different types. Mathe-
matically, stable concurrent synchronization corresponds to convergence to a flow-
invariant linear subspace of the global state space. We derive a general condition for
such convergence to occur globally and exponentially. We also show that, under mild
conditions, global convergence to a concurrently synchronized regime is preserved
under basic system combinations such as negative feedback or hierarchies, so that
stable concurrently synchronized aggregates of arbitrary size can be constructed.
Robustnesss of stable concurrent synchronization to variations in individual dy-
namics is also quantified. Simple applications of these results to classical questions
in systems neuroscience and robotics are discussed.
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1 Introduction

Distributed synchronization phenomena are the subject of intense research.
In the brain, such phenomena are known to occur at different scales, and are
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heavily studied at both the anatomical and computational levels. In partic-
ular, synchronization has been proposed as a general principle for temporal
binding of multisensory data [43,14,26,31,48,24,33], and as a mechanism for
perceptual grouping [52], neural computation [3,1,51] and neural communi-
cation [22,18,40,41]. Similar mathematical models describe fish schooling or
certain types of phase-transition in physics [46].

In an ensemble of dynamical elements, concurrent synchronization is defined
as a regime where the whole system is divided into multiple groups of fully
synchronized elements 1 , but elements from different groups are not necessarily
synchronized [2,53,37] and can be of entirely different dynamics [12]. It can be
easily shown that such a regime corresponds to a flow-invariant linear subspace
of the global state space. Concurrent synchronization phenomena are likely
pervasive in the brain, where multiple “rhythms” are known to coexist [22,40],
neurons can exhibit many qualitatively different types of oscillations [22,17],
and functional models often combine multiple oscillatory dynamics.

In this paper, we introduce a simple sufficient condition for a general dynamical
system to converge to a flow-invariant subspace. Our analysis is built upon
nonlinear contraction theory [28,49], and thus it inherits many of the theory’s
features :

• global exponential convergence and stability are guaranteed,
• convergence rates can be explicitly computed as eigenvalues of well-defined

symmetric matrices,
• robustness to variations in dynamics can be easily quantified,
• under simple conditions, convergence to a concurrently synchronized state

can be preserved through system combinations.

As we shall see, under simple conditions on the coupling strengths, archi-
tectural symmetries [13] and/or diffusion-like couplings create globally stable
concurrent synchronization phenomena. This is illustrated in figure 1, which is
very loosely inspired by oscillations in the thalamocortical system [26,43,24,33,40].
Qualitatively, global stability of the concurrent synchronization is in the same
sense that an equilibrium point is globally stable – any initial conditions will
lead back to it, in an exponential fashion. But of course it can yield extremely
complex, coordinated behaviors.

Section 2 recalls key concepts of nonlinear contraction theory and derives a
theoretical tool for studying global convergence to a flow-invariant subspace.
Section 3 presents the paper’s main mathematical results, relating stable con-
current synchronization to coupling structures and flow-invariant subspaces

1 In the literature, this phenomenon is often called poly-, or cluster or partial syn-
chronization. However, the last term can also designate a regime where the elements
are not fully synchronized but behave coherently [46].
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Fig. 1. An example of concurrent synchronization. Systems and connections of the
same shape (and color) have identical dynamics (except black arrows, which rep-
resent arbitrary connections, and dashed arrows, which represent diffusive connec-
tions). This paper shows that under simple conditions on the coupling strengths, the
group of (green) squares globally exponentially synchronizes (thus providing syn-
chronized input to the outer elements), and so does the group of (yellow) diamonds,
regardless of the specific dynamics, connections, or inputs of the other systems.

created by symmetries or diffusion-like couplings. Robustnesss of concurrent
synchronization to variations in individual dynamics is also quantified, show-
ing in particular how approximate symmetries lead to quasi-synchronization.
Section 4, motivated by evolution and development, studies conditions under
which concurrent synchronization can be preserved through combinations of
multiple concurrently synchronized regimes. Finally, section 5 discusses poten-
tial applications of these results to general questions in systems neuroscience
and robotics.

2 Basic Tools

2.1 Nonlinear contraction theory

This section reviews basic results of nonlinear contraction theory [28,29,44,49],
which is the main stability analysis tool used in the paper. Essentially, a
nonlinear time-varying dynamic system will be called contracting if initial
conditions or temporary disturbances are forgotten exponentially fast, i.e., if
trajectories of the perturbed system return to their nominal behavior with
an exponential convergence rate. It turns out that relatively simple algebraic
conditions can be given for this stability-like property to be verified, and that
this property is preserved through basic system combinations.

While we shall derive global properties of nonlinear systems, many of our re-
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sults can be expressed in terms of eigenvalues of symmetric matrices [15]. Given
a square matrix A, the symmetric part of A is denoted by As. The smallest and
largest eigenvalues of As are denoted by λmin(A) and λmax(A). Given these no-
tations, the matrix A is positive definite (denoted A > 0) if λmin(A) > 0, and
it is negative definite (denoted A < 0) if λmax(A) < 0. Finally, a square matrix
A(x, t) is uniformly positive definite if ∃β > 0, ∀x, ∀t : λmin(A(x, t)) ≥ β, and
it is uniformly negative definite if ∃β > 0, ∀x, ∀t : λmin(A(x, t)) ≤ −β.

The basic theorem of contraction analysis, derived in [28], can be stated as:

Theorem 1 (Contraction) Consider, in R
n, the deterministic system

ẋ = f(x, t) (1)

where f is a smooth nonlinear function. Denote the Jacobian matrix of f with
respect to its first variable by ∂f

∂x
. If there exists a square matrix Θ(x, t) such

that Θ(x, t)⊤Θ(x, t) is uniformly positive definite and the matrix

F =

(

Θ̇ + Θ
∂f

∂x

)

Θ−1

is uniformly negative definite, then all system trajectories converge exponen-
tially to a single trajectory, with convergence rate | sup

x,t λmax(F)| > 0. The
system is said to be contracting, F is called its generalized Jacobian, and
Θ(x, t)⊤Θ(x, t) its contraction metric.

It can be shown conversely that the existence of a uniformly positive defi-
nite metric M(x, t) = Θ(x, t)⊤Θ(x, t) with respect to which the system is
contracting is also a necessary condition for global exponential convergence
of trajectories [28]. Furthermore, all transformations Θ corresponding to the
same M lead to the same eigenvalues for the symmetric part Fs of F [44], and
thus to the same contraction rate | sup

x,t λmax(F)|.

In the linear time-invariant case, a system is globally contracting if and only
if it is strictly stable, and F can be chosen as a normal Jordan form of the
system with Θ the coordinate transformation to that form [28]. Contraction
analysis can also be derived for discrete-time systems and for classes of hybrid
systems [29].

Finally, it can be shown that contraction is preserved through basic system
combinations (such as parallel combinations, hierarchies, and certain types of
negative feedback, see [28] for details), a property which we shall extend to
the synchronization context in this paper (section 4).

Theorem 2 (Contraction and robustness) Consider a contracting system
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ẋ = f(x, t), with Θ = I and contraction rate λ. Let P1(t) be a trajectory of
the system, and let P2(t) be a trajectory of the disturbed system

ẋ = f(x, t) + d(x, t)

Then the distance R(t) between P1(t) and P2(t) verifies R(t) ≤ supx,t ‖d(x, t)‖/λ
after exponential transients of rate λ.

For a proof and generalisation of this theorem, see section 3.7 in [28].

2.2 Convergence to a flow-invariant subspace

We now derive a simple tool upon which the analyses of this paper will be
based. The derivation is inspired by the idea of “partial” contraction, intro-
duced in [49], which consists in applying contraction tools to virtual auxiliary
systems so as to address questions more general than trajectory convergence.

Consider again, in R
n, the deterministic system

ẋ = f(x, t) (2)

where f is a smooth nonlinear function. Assume that there exists a flow-
invariant linear subspace M (i.e. a linear subspace M such that ∀t : f(M, t) ⊂
M), which implies that any trajectory starting in M remains in M. Let
p = dim(M), and consider an orthonormal basis (e1, . . . , en) where the first
p vectors form a basis of M and the last n − p a basis of M⊥. Define an
(n − p) × n matrix V whose rows are e⊤

p+1, . . . , e
⊤
n . V may be regarded as a

projection 2 on M⊥, and it verifies [15,21] :

V⊤V + U⊤U = In VV⊤ = In−p x ∈ M ⇐⇒ Vx = 0

where U is the matrix formed by the first p vectors.

Theorem 3 Consider a linear flow-invariant subspace M and the associated
orthonormal projection matrix V. A particular solution xp(t) of system (2)
converges exponentially to M if the system

ẏ = Vf(V⊤y + U⊤Uxp(t), t) (3)

is contracting with respect to y.

2 For simplicity we shall call V a “projection”, although the actual projection
matrix is in fact V

⊤
V.
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If the above contraction condition is fullfilled for all xp, then starting from any
initial conditions, all trajectories of system (2) will exponentially converge to
M. If furthermore all the contraction rates for (3) are lower-bounded by some
λ > 0, uniformly in xp and in a common metric, then the convergence to M
will be exponential with rate λ (see figure 2).

Proof : Let zp = Vxp. By construction, xp converges to the subspace M if
and only if zp converges to 0. Multiplying (2) by V on the left, we get

żp = Vf(V⊤zp + U⊤Uxp, t) (4)

From (4), y(t) = zp(t) is a particular solution of system (3). In addition,
since U⊤Uxp ∈ M and the linear subspace M is flow-invariant, one has
f(U⊤Uxp) ∈ M = Null(V), and hence y(t) = 0 is another particular solution
of system (3). If system (3) is contracting with respect to y, then all its solu-
tions converge exponentially to a single trajectory, which implies in particular
that zp(t) converges exponentially to 0.

The remainder of the theorem is immediate. 2

shrinking length in the
orthogonal subspace 

a given trajectory

the corresponding trajec−
tory in the invariant sub−

space of dimension p

of dimension n−p

Fig. 2. Convergence to a linear flow-invariant subspace

Corollary 1 A simple sufficient condition for global exponential convergence
to M is that

V
∂f

∂x
V⊤ < 0 uniformly (5)

or more generally, that there exists a constant invertible transform Θ on M⊥

such that

ΘV
∂f

∂x
V⊤Θ−1 < 0 uniformly (6)

Proof : The Jacobian of (3) with respect to y is

V

[

∂f

∂x

(

V⊤y + U⊤Uxp(t), t
)

]

V⊤
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the proof is immediate by applying Theorem 1. 2

Remarks

• Non-orthonormal bases. In practice, the subspace M is often defined by the
conjunction of (n − p) linear constraints. In a synchronization context, for
instance, each of the constraints may be, e.g., of the form xi = xj where xi

and xj are subvectors of the state x. This provides directly a (generally not
orthonormal) basis (e′

p+1, . . . , e
′
n) of M⊥, and thus a matrix V′ whose rows

are e′
p+1

⊤, . . . , e′
n
⊤, and which verifies

V′ = TV

with T an invertible (n−p)×(n−p) matrix. We have x ∈ M ⇐⇒ V′x = 0
and

V
∂f

∂x
V⊤ < 0 ⇐⇒ V′ ∂f

∂x
V′⊤ < 0 (7)

Consider for instance three systems of dimension m and two systems
of dimension p, and assume that M = {x1 = x2,x5 = −10x4} is the
synchronization subspace of interest (with xi denoting the state of each
individual system). One has directly

V′ =







Im −Im 0 · · · 0

0 · · · 0 10Ip Ip







Note however that the equivalence in equation (7) does not yield the
same upper bound for the eigenvalues of the two matrices. Thus, in order
to compute explicitly the convergence rate to M, one has to revert to the
orthonormal version, using e.g. a Gram-Schmidt procedure [15] on the rows
of V′.

• More general invariant subspaces. This theorem can be extended straight-
forwardly to time-varying affine invariant subspaces of the form m(t) + M
(apply the theorem to x̃(t) = x(t) − m(t)). Preliminary results have also
been obtained for nonlinear invariant manifolds [36].

2.3 Global synchronization in networks of coupled identical dynamical ele-
ments

In this section, we provide by using theorem 3 a unifying and systematic
view on several prior results in the study of synchronization phenomena (see
e.g. [20,37,49,34,27] and references therein).
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Consider first a network containing n identical dynamical elements with dif-
fusive couplings [49]

ẋi = f(xi, t) +
∑

j 6=i

Kij(xj − xi) i = 1, . . . , n (8)

Let L be the Laplacian matrix of the network (Lii =
∑

j 6=i Kij , Lij = −Kij

for j 6= i), and 3

⌢

x =















x1

...

xn















,
⌢

f(
⌢

x, t) =















f(x1, t)
...

f(xn, t)















Equation (8) can be rewritten in matrix form

˙⌢x =
⌢

f(
⌢

x, t) − L
⌢

x (9)

The Jacobian matrix of this system is J =
⌢

G − L, where

⌢

G(
⌢

x, t) =















∂f

∂x
(x1, t) 0 0

0
. . . 0

0 0 ∂f

∂x
(xn, t)















Let now (e1, . . . , ed) be a basis of the state space of one element and consider
the following vectors of the global state space

⌢

e1 =















e1

...

e1















, . . . ,
⌢

ed =















ed

...

ed















,

Let M = span{⌢

e1, . . . ,
⌢

ed} be the “diagonal” subspace spanned by the
⌢

ei. Note
that

⌢

x∗ ∈ M if and only if x∗
1 = . . . = x∗

n, i.e. all elements are in synchrony.
In such a case, all coupling forces equal zero, and the individual dynamics are

3 The overscript ⌢ denotes a vector in the global state space, obtained by grouping
together the states of the elements.
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the same for every element. Hence

⌢

f(
⌢

x∗, t) − L
⌢

x∗ =















f(x∗
1, t)
...

f(x∗
1, t)















∈ M

which means that M is flow-invariant.

Consider, as in section 2.2, the projection matrix V on M⊥. λmax(V
⌢

G(
⌢

x, t)V⊤)

is upper-bounded by maxi λmax

(

∂f

∂x
(xi, t)

)

since V is built from orthonormal
vectors. Thus, by virtue of theorem 3, a simple sufficient condition for global
exponential synchronization is

λmin(VLV⊤) > sup
a,t

λmax

(

∂f

∂x
(a, t)

)

(10)

Furthermore, the synchronization rate, i.e. the rate of convergence to the syn-
chronization subspace, is the contraction rate of the auxiliary system (3).

Let us now briefly state some remarks.

(i) Undirected 4 diffusive networks. In this case, it is well known that L is
symmetric positive semi-definite, and that M is a subset of the eigenspace
corresponding to the eigenvalue 0 [7]. Furthermore, if the network is con-
nected, this eigenspace is exactly M, and therefore VLV⊤ is positive
definite (its smallest eigenvalue is called the network’s algebraic connec-
tivity [7]). Assume now that L is parameterized by a positive scalar k
(i.e. L = kL0, for some L0), and that ∂f

∂x
is upper-bounded. Then, for

large enough k (i.e. for strong enough coupling strength), all elements
will synchronize exponentially.

(ii) Network of contracting elements. If the elements xi are already contract-
ing when taken in isolation (i.e. ∂f

∂x
is uniformly negative definite), then

in presence of weak or non-existent couplings (VLV⊤ = 0), the Jacobian
matrix J of the global system will remain uniformly negative definite [49].
Thus, the projected Jacobian matrix will be a fortiori uniformly negative
definite, implying exponential convergence to the synchronized state.

One can also obtain this conclusion by using a “pure” contraction anal-
ysis. Indeed, choose a particular initial state where x1(0) = . . . = xn(0).

4 “Undirected” is to be understood here in the graph-theoretical sense, i.e. : for all
i, j, the connection from i to j is the same as the one from j to i. Therefore, an
undirected network can be represented by an undirected graph, where each edge
stands for two connections, one in each direction.
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The trajectory starting with that initial state verifies ∀t,x1(t) = . . . =
xn(t) by flow-invariance. Since the global system is contracting, any other
initial conditions will lead exponentially to that particular trajectory, i.e.,
starting with any initial conditions, the system will exponentially con-
verge to a synchronized state.

(iii) Nonlinear couplings. Similarly to [49], the above result actually ex-
tends immediately to nonlinear couplings described by a Laplacian matrix
L(

⌢

x, t). Replacing the auxiliary system (3) by

ẏ = V
⌢

f(V⊤y + U⊤U
⌢

x, t) − VL(
⌢

x, t)(V⊤y + U⊤U
⌢

x)

shows that global synchronization is achieved exponentially for

inf
⌢
x,t

λmin(VL(
⌢

x, t)V⊤) > sup
a,t

λmax

(

∂f

∂x
(a, t)

)

(iv) Leader-followers network. Assume that there exists a leader xℓ in the net-
work [49], i.e., an element which has no incoming connections from the
other elements, ẋℓ = f(xℓ, t). Convergence to M (guaranteed by satisfy-
ing (10)) then implies that all the network elements will synchronize to
the leader trajectory xℓ(t).

(v) Non-diffusive couplings. Note that the above results are actually not lim-
ited to diffusive couplings but apply to any system of the general form (9).
This point will be further illustrated in sections 3.1 and 3.2.

3 Main discussion

In nonlinear contraction theory, the analysis of dynamical systems is greatly
simplified by studying stability and nominal motion separately. We propose a
similar point of view for analyzing synchronization in networks of dynamical
systems. In section 3.1, we study specific conditions on the coupling struc-
ture that guarantee exponential convergence to a linear subspace. In section
3.2, we examine how symmetries and/or diffusion-like couplings can give rise
to specific flow-invariant subspaces corresponding to concurrent synchronized
states.
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3.1 Some coupling structures and conditions for exponential synchronization

3.1.1 Balanced diffusive networks

A balanced network [34] is a directed diffusive network which verifies the
following equality for each node i (see figure 3 for an example)

∑

j 6=i

Kij =
∑

j 6=i

Kji

Because of this property, the symmetric part of the Laplacian matrix of the
network is itself the Laplacian matrix of the underlying undirected graph to
the network 5 . Thus, the positive definiteness of VLV⊤ for a balanced network
is equivalent to the connectedness of some well-defined undirected graph.

1

1

2
3

2

2

1

2

3 4

Fig. 3. A balanced network with Laplacian
matrix

L =

















4 −2 0 −2

−3 3 0 0

−1 −1 2 0

0 0 −2 2

















0.5

0.5
1

1

2.5

1

2

3 4

Its underlying undirected graph, with
Laplacian matrix

Ls = L+L
⊤

2
=





















4 −2.5 −0.5 −1

−2.5 3 −0.5 0

−0.5 −0.5 2 −1

−1 0 −1 2





















For general directed diffusive networks, finding a simple condition implying
the positive definiteness of VLV⊤ (such as the connectivity condition in the
case of undirected networks) still remains an open problem. However, given a
particular example, one can compute VLV⊤ and determine directly whether
it is positive definite.

5 In fact, it is easy to see that the symmetric part of the Laplacian matrix of a
directed graph is the Laplacian matrix of some undirected graph if and only if the
directed graph is balanced.
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3.1.2 Extension of diffusive connections

In some applications [50], one might encounter the following dynamics











ẋ1 = f1(x1, t) + kA⊤(Bx2 −Ax1)

ẋ2 = f2(x2, t) + kB⊤(Ax1 −Bx2)

Here x1 and x2 can be of different dimensions, say d1 and d2. A and B are con-
stant matrices of appropriate dimensions. The Jacobian matrix of the overall
system is

J =







∂f1

∂x1

∂f2

∂x2





− kL, where L =







A⊤A −A⊤B

−B⊤A B⊤B







Note that L is symmetric positive semi-definite. Indeed, one immediately ver-
ifies that

∀x1,x2 :
(

x1 x2

)

L







x1

x2





 = (Ax1 −Bx2)
⊤(Ax1 − Bx2) ≥ 0

Consider now the linear subspace of R
d1 × R

d2 defined by

M =

















x1

x2





 ∈ R
d1 × R

d2 : Ax1 − Bx2 = 0











and use as before the orthonormal projection V on M⊥, so that VLV⊤ is
positive definite. Assume furthermore that M is flow-invariant, i.e.

∀(x1,x2) ∈ R
d1 × R

d2 , [Ax1 = Bx2] ⇒ [Af1(x1) = Bf2(x2)]

and that the Jacobian matrices of the individual dynamics are upper-bounded.
Then large enough k, i.e. for example

kλmin(VLV⊤) > max
i=1,2

(

sup
ai,t

λmax
∂fi
∂xi

(ai, t)

)

ensures exponential convergence to the subspace M.

The state corresponding to M can be viewed as an extension of synchroniza-
tion states to systems of different dimensions. Indeed, in the case where x1
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and x2 have the same dimension and where A = B are non singular, we are
in the presence of classical diffusive connections, which leads us back to the
discussion of section 2.3.

As in the case of diffusive connections, one can consider networks of so-
connected elements, for example :



























ẋ1 = f1(x1, t) + A⊤
B(BAx2 − ABx1) + A⊤

C(CAx3 − ACx1)

ẋ2 = f2(x2, t) + B⊤
C(CBx3 −BCx2) + B⊤

A(ABx1 − BAx2)

ẋ3 = f3(x2, t) + C⊤
A(ACx1 − CAx3) + C⊤

B(BCx2 − CBx3)

leads to a positive semi-definite Laplacian matrix















A⊤
BAB −A⊤

BBA 0

−B⊤
AAB B⊤

ABA 0

0 0 0















+















0 0 0

0 B⊤
CBC −B⊤

CCB

0 −C⊤
BBC C⊤

BCB















+















A⊤
CAC 0 −A⊤

CCA

0 0 0

−C⊤
AAC 0 C⊤

ACA















and potentially a flow-invariant subspace

M = {ABx1 = BAx2} ∩ {BCx2 = CBx3} ∩ {CAx3 = ACx1}

The above coupling structures can be implemented in nonlinear versions of
the predictive hierarchies used in image processing (e.g. [30,5,38,25,11,39]).

3.1.3 Excitatory-only networks

One can also address the case of networks with excitatory-only connections.
Consider for instance the following system and its Jacobian matrix 6











ẋ1 = f(x1, t) + kx2

ẋ2 = f(x2, t) + kx1

J =







∂f

∂x
(x1, t) 0

0 ∂f

∂x
(x2, t)





+ k







0 1

1 0







Clearly, span{(1, 1)} is flow-invariant. Applying the methodology described
above, we choose V = 1√

2
(1,−1), so that the projected Jacobian matrix is

6 For the sake of clarity, the elements are assumed to be 1-dimensional. However, the

same reasoning applies for the multidimensional case as well: instead of span
{(

1

1

)}

,

one considers span{⌢
e1, . . . ,

⌢
ed} as in section 2.3.
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1
2

(

∂f

∂x
(x1, t) + ∂f

∂x
(x2, t)

)

− k. Thus, for k > supa,t
∂f

∂x
(a, t), the two elements

synchronize exponentially.

In the case of diffusive connections, once the elements are synchronized, the
coupling terms disappear, so that each individual element exhibits its natural,
uncoupled behavior. This is not the case with excitatory-only connections.
This is illustrated in figure 4 using FitzHugh-Nagumo oscillator models (see
appendix A for the contraction analysis of coupled FitzHugh-Nagumo oscilla-
tors).
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Fig. 4. From left to right : a single oscillator, two oscillators coupled through diffusive
connections, two oscillators coupled through excitatory-only connections.

3.1.4 Rate models for neuronal populations

In computational neuroscience, one often uses the following simplified equa-
tions to model the dynamics of neuronal populations

τ ẋi = −xi + Φ





∑

j 6=i

kijxj(t)



+ ui(t)

Assume that the external inputs ui(t) are all equal, and that the synaptic con-
nections kij verify ∃c, ∀i,

∑

j 6=i kij = c (i.e., that they induce input-equivalence,
see section 3.2). Then the synchronization subspace {x1 = . . . = xn} is flow-
invariant. Furthermore, since each element, taken in isolation, is contracting
with contraction rate 1/τ , synchronization should occur when the coupling is
not too strong (see remark (ii) in section 2.3).

Specifically, consider first the case where Φ is a linear function : Φ(x) = µx.
The Jacobian matrix of the global system is then −In + µK, where K is
the matrix of kij . Using the result of remark (ii) in section 2.3, a sufficient
condition for the system to be contracting (and thus synchronizing) is that
the couplings are weak enough (or more precisely, such that µλmax(K) < 1).

The same condition is obtained if Φ is now e.g. a multidimentional sigmoid of
maximum slope µ (see remark (iii) in section 2.3).
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Besides the synchronization behavior of these models, their natural contraction
property for weak enough couplings of any sign is interesting in its own right.
Indeed, given a set of (not necessarily equal) external inputs ui(t), all trajec-
tories of the global system will converge to a unique trajectory, independently
of initial conditions.

3.2 Symmetries, diffusion-like couplings, flow-invariant subspaces and con-
current synchronization

Synchronized states can be created in at least two ways : by architectural and
internal 7 symmetries [12,13,6,37] or by diffusion-like couplings [49,21,34,27,2].
Actually, we shall see that both, together or separately, can create flow-
invariant subspaces corresponding to concurrently synchronized states.

3.2.1 Symmetries and input-equivalence

In section 2.3, we argued that, in the case of coupled identical elements, the
global synchronization subspace M represents a flow-invariant linear subspace
of the global state space. However, several previous works have pointed out
that larger (less restrictive) flow-invariant subspaces may exist if the network
exhibits symmetries [53,2,37], even when the systems are not identical [12].

The main idea behind these works can be summarized as follows. Assume that
the network is divided into k aspiring synchronized groups S1, . . . , Sk

8 . The
flow-invariant subspace corresponding to this regime (in the sequel, we shall
call such a subspace a concurrent synchronization subspace), namely

{(x1; . . . ;xn) : ∀1 ≤ m ≤ k, ∀i, j ∈ Sm : xi = xj}

is flow-invariant if, for each Sm, the following conditions are true :

(i) if i, j ∈ Sm, then they have a same individual (uncoupled) dynamics
(ii) if i, j ∈ Sm, and if they receive their input from elements i′ and j′ re-

spectively, then i′ and j′ must be in a same group Sm′ , and the coupling
functions (the synapses) i′ → i and j′ → j must be identical. If i and j
have more than one input, they must have the same number of inputs,
and the above conditions must be true for each input. In this case, we

7 Internal symmetries can easily be analyzed within our framework as leading to
flow-invariant subspaces, and we shall use this property in section 5.3 for building
central pattern generators. However, they will not be discussed in detail in this
article. The interested reader can consult [6].
8 Some groups may contain a single element, see section 4.2.3.
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say that i and j are input-symmetric, or more precisely, input-equivalent
(since formally “symmetry” implies the action of a group).

One can see here that symmetry, or more generally input-equivalence, plays
a key role in concurrent synchronization. For a more detailed discussion, the
reader is referred to [12,13].

Remark : One can thus turn on/off a specific symmetry by turning on/off
a single connection. This has similarities to the fact that a single inhibitory
connection can turn on/off an entire network of synchronized identical oscil-
lators [49].

3.2.2 Diffusion-like couplings

The condition of input-equivalence can be relaxed when some connections
within a group are null when the connected elements are in the same state.
Such connections are pervasive in the literature : diffusive connections (in
a neuronal context, they correspond to electrical synapses mediated by gap
junctions [42,10], in an automatic control context, they correspond to poursuit
or velocity matching strategies [34,27], . . . ), connections in the Kuramoto
model [19,21,46] (i.e. in the form ẋi = f(xi, t) +

∑

j kij sin(xj − xi)), etc.

Indeed, consider for instance diffusive connections and assume that

• i, i′, j, j′ ∈ Sm

• i′ → i has the form K1(xi′ − xi)
• j′ → j has the form K2(xj′ − xj) with possibly K1 6= K2

Here, i and j are not input-equivalent in the sense we defined above, but the
subspace {xi = xj = xi′ = xj′} is still flow-invariant. Indeed, once the system
is on this synchronization subspace, we have xi = xi′ , xj = xj′, so that the
diffusive couplings i′ → i and j′ → j vanish.

One can also view the network as a directed graph G, where the elements are
represented by nodes, and connections i → j by directed arcs i → j. Then,
the above remark can be reformulated as

1 : for all m, color the nodes of Sm with a color m,
2 : for all m, erase the arcs representing diffusion-like connections and joining

two nodes in Sm,
3 : check whether the initial coloring is balanced (in the sense of [12]) with

respect to the so-obtained graph.

It should be clear by now that our framework is particularly suited to analyze
concurrent synchronization. Indeed, a general methodology to show global
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exponential convergence to a concurrent synchronization regime consists in
the following two steps

• First, find an flow-invariant linear subspace by taking advantage of potential
symmetries in the network and/or diffusion-like connections.

• Second, compute the projected Jacobian matrix on the orthogonal subspace
and show that it is uniformly negative definite (by explicitly computing its
eigenvalues or by using results regarding the form of the network, e.g. remark
(i) in section 2.3 or section 3.1).

3.3 Illustrative examples

1 2

4 3 4 3

21

4

1

7

2

5

6

3

Fig. 5. Three example networks

(i) The first network has three non-trivial flow-invariant subspaces other
than the global sync subspace, namely M1 = {x1 = x2,x3 = x4}, M2 =
{x1 = x3,x2 = x4}, and M3 = {x1 = x4,x2 = x3}. Any of these
subspaces is a strict superset of the global sync subspace, and therefore
one should expect that the convergence to any of the concurrent sync
state is “easier” than the convergence to the global sync state [53,2,37].
This can be quantified from (10), by noticing that

MA ⊃ MB ⇒ M⊥
A ⊂ M⊥

B ⇒ λmin(VALV⊤
A) ≥ λmin(VBLV⊤

B) (11)

While in the case of identical systems and relatively uniform topologies,
this “percolation” effect may often be too fast to observe, (11) applies to
the general concurrent synchronization case and quantifies the associated
and possibly very distinct time-scales.

(ii) The second network has only one non-trivial flow-invariant subspace
{x1 = x2,x3 = x4}.

(iii) If the dashed blue arrows represent diffusive connections then the third
network will have one non-trivial flow-invariant subspace {x2 = x3 =
x4,x5 = x6 = x7}, even if these extra diffusive connections obviously
break the symmetry.

Let’s study in more detail this third network, in which the connections between
the round element and the square ones are modelled by trigonometric functions
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(we shall see in section 4.2.3 that their exact form has no actual influence on
the convergence rate).



















































































v̇1 = f(v1) + a1 cos(v2) + a2 sin(v3)

v̇2 = g(v2) + a4 sin(v1) + c1v6

v̇3 = g(v3) + a4 sin(v1) + b1(v2 − v3) + b2(v4 − v3) + c1v5

v̇4 = g(v4) + a4 sin(v1) + b3(v3 − v4) + c1v7

v̇5 = h(v5) + c2v2 + (d2v7 − d1v5)

v̇6 = h(v6) + c2v3 + (d2v5 − d1v6)

v̇7 = h(v7) + c2v4 + (d2v6 − d1v7)

The Jacobian matrix of the couplings is

L =











































0 a1v̇2 sin(v2) −a2v̇3 cos(v3) 0 0 0 0

−a4v̇1 cos(v1) 0 0 0 0 −c1 0

−a4v̇1 cos(v1) −b1 b1 + b2 −b2 −c1 0 0

−a4v̇1 cos(v1) 0 −b3 b3 0 0 −c1

0 −c2 0 0 d1 0 −d2

0 0 −c2 0 −d2 d1 0

0 0 0 −c2 0 −d2 d1











































As we remarked previously, the concurrent synchronization regime {v2 = v3 =
v4, v5 = v6 = v7} is possible. Bases of the linear subspaces M and M⊥

corresponding to this regime are











































1

0

0

0

0

0

0











































,











































0

1

1

1

0

0

0











































,











































0

0

0

0

1

1

1











































for M, and











































0
√

6
3

−
√

6
6

−
√

6
6

0

0

0











































,











































0

0

−
√

2
2
√

2
2

0

0

0











































,











































0

0

0

0
√

6
3

−
√

6
6

−
√

6
6











































,











































0

0

0

0

0

−
√

2
2
√

2
2











































for M⊥.
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Group together the vectors of the basis of M⊥ into a matrix V and compute

VLsV
⊤ =





















b1
2
−

√
3(2b1+b2−b3)

6
c1−2c2

4
− c1

√
3

4

−
√

3(2b1+b2−b3)
6

b1+2(b2+b3)
2

− c1
√

3
4

− c1+2c2
4

c1−2c2
4

− c1
√

3
4

2d1+d2

2
0

− c1
√

3
4

− c1+2c2
4

0 2d1+d2

2





















As a numerical example, let b1 = 3α, b2 = 4α, b3 = 5α, c1 = α, c2 =
2α, d1 = 3α, d2 = 4α and evaluate the eigenvalues of VLsV

⊤. We obtain
approximately 1.0077α for the smallest eigenvalue. Using again FitzHugh-
Nagumo oscillators and based on their contraction analysis in appendix A,
concurrent synchronization should occur for α > 10.25. A simulation is shown
in figure 6. One can see clearly that, after a transient period, oscillators 2, 3,
4 are in perfect sync, as well as oscillators 5, 6, 7, but that the two groups are
not in sync with each other.
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Fig. 6. Simulation result for network 3.

3.4 Robustness of synchronization

So far, we have been considering exact synchronization of identical elements.
However this assumption may seem unrealistic, since real systems are never
absolutely identical. We use here the robustness result for contracting sys-
tems (see theorem 2) to guarantee approximate synchronization even when
the elements are not identical.

Consider, as in section 2.3, a network of n dynamical elements

ẋi = fi(xi, t) +
∑

j 6=i

Kij(xj − xi) i = 1, . . . , n (12)
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with now possibly fi 6= fj for i 6= j. This can be rewritten as















ẋ1

...

ẋn















=















c(x1, t)
...

c(xn, t)















− L















x1

...

xn















+















f1(x1, t) − c(x1, t)
...

fn(xn, t) − c(xn, t)















(13)

where c is some function to be defined later. Keeping the notations introduced
in section 2.3, one has

˙⌢x =
⌢

c(
⌢

x, t) − L
⌢

x + d(
⌢

x, t)

where d(
⌢

x, t) stands for the last term of equation (13).

Consider now the projected auxiliary system on M⊥

ẏ = V
⌢

c(V⊤y + UU⊤⌢

x, t) −VLV⊤y + Vd(V⊤y + UU⊤⌢

x, t) (14)

Assume that the connections represented by L are strong enough (in the sense
of equation (10)), so that the undisturbed version of (14) is contracting with
rate λ > 0. Let D = sup⌢

x,t ‖Vd(
⌢

x, t)‖, where D can be viewed as a measure
of the dissimilarity of the elements. Since y = 0 is a particular solution of
the undisturbed system, theorem 2 implies that the distance R(t) between
any trajectory of (14) and 0 verifies, after a transient period, R(t) ≤ D/λ.
In the x-space, it means that any trajectory will eventually be contained in a
boundary layer of thickness D/λ around the synchronization subspace M.

The choice of c can now be specified so as to minimize D/λ. Neglecting for
simplicity the variation of λ, a possible choice for c(x, t) is then the center of
the ball of smallest radius containing f1(x, t), . . . , fn(x, t), with D being the
radius of that ball.

Consider for instance, the following system (similar to the model used for
coincidence detection in [49] and section 5.1)

ẋi = f(xi) + Ii + k(x0 − xi) where Imin ≤ Ii ≤ Imax, ∀i

In this case, choosing c(x) = f(x)+ Imax+Imin

2
, one can achieve the bound D/λ,

where λ is the contraction rate of f and D = Imax−Imin

2
.

Remark : Assume that two spiking neurons are approximately synchronized,
as just discussed. Then, since spiking induces large abrupt variations, the
neurons must spike approximately at the same time. More specifically, if the
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bound on their trajectory discrepancy guaranteed by the above robustness re-
sult is significantly smaller than spike size, then this bound will automatically
imply that the two neurons spike approximately at the same time.

4 Combinations of concurrently synchronized groups

This section shows that, under mild conditions, global convergence to a con-
currently synchronized regime is preserved under basic system combinations,
and thus that stable concurrently synchronized aggregates of arbitrary size
can be systematically constructed. The results, derived for two groups, extend
by recursion to arbitrary numbers of groups.

4.1 The input-equivalence preservation assumption

Consider two independent groups of dynamical elements, say S1 and S2. For
each group i (i = 1, 2), assume that a flow-invariant subspace Mi correspond-
ing to a concurrently synchronized regime exists. Assume furthermore that
contraction to this subspace can be shown, i.e. ViJiV

⊤
i < 0 for some projec-

tion matrix Vi on M⊥
i .

Connect now the elements of S1 to the elements of S2, while preserving input-
equivalence for each aspiring synchronized subgroup of S1 and S2. Thus, the
combined concurrent synchronization subspace M1 × M2 remains a flow-
invariant subspace of the new global space. A projection matrix on (M1 ×M2)

⊥

can be V =







W1 0

0 W2





 where each Vi has been rescaled into Wi to preserve

orthonormality.

Specific mechanisms facilitating input-equivalence preservation will be dis-
cussed in section 4.2.3.

4.2 Typology of combinations

Let us now study several combination operations of concurrently synchronized
groups and discuss how they can preserve convergence to a combined concur-
rent sync state.

In 4.2.1 and 4.2.2, the input-equivalence preservation condition of section 4.1
is implicitly assumed, and the results reflect similar combination properties
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of contracting systems [28,44,47]. More generally, as long as input-equivalence
is preserved, any combination property for contracting systems can be easily
“translated” into a combination property for synchronizing systems.

4.2.1 Negative feedback combination

The Jacobian matrices of the couplings are of the form J12 = −kJ⊤
21, with k

a positive constant. Thus, the Jacobian matrix of the global system can be
written as

J =







J1 −kJ⊤
21

J21 J2







As in equation (6) of section 2.2, consider a transform Θ over (M1 ×M2)
⊥

Θ =







I 0

0
√

kI







The corresponding generalized projected Jacobian matrix on (M1 ×M2)
⊥ is

Θ(VJV⊤)Θ−1 =







W1J1W1
⊤ 1√

k
W1(−kJ⊤

21)W2
⊤

√
kW2J21W1

⊤ W2J2W2
⊤





 < 0 uniformly

so that global exponential convergence to the combined concurrent synchro-
nization state can be then concluded.

4.2.2 Hierarchical combination

Assume that the elements in S1 provide feedforward to elements in S2 but
do not receive any feedback from them. Thus, the Jacobian matrix of the

global system is J =







J1 0

J21 J2





. Assume now that W2J21W1
⊤ is uniformly

bounded and consider the coordinate transform Θǫ =







I 0

0 ǫI





. Compute the
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generalized projected Jacobian

Θǫ(VJV⊤)Θ−1
ǫ =







W1J1W1
⊤ 0

ǫW2J21W1
⊤ W2J2W2

⊤







Since W2J21W1
⊤ is bounded, and W1(J1)W1

⊤ and W2(J2)W2
⊤ are both

negative definite, Θǫ(VJV⊤)Θ−1
ǫ will be negative definite for small enough ǫ.

Note that classical graph algorithms [23] allow large system aggregates to be
systematically decomposed into hierarchies (directed acyclic graphs, feedfor-
ward networks) of simpler subsystems (strongly connected components) [47].
Input-equivalence then needs only be verified top-down.

4.2.3 Case where S1 has a single element

Denote this element by e1 (figure 1 shows such a configuration where e1 is the
round red central element, and where S2 is the set of the remaining elements).
Connections from (resp. to) e1 will be called 1→2 (resp. 2→1) connections.
Then some simplifications can be made :

• Input-equivalence is preserved whenever, for each aspiring synchronized sub-
group of S2, the 1→2 connections are identical for each element of this
subgroup (in figure 1, the connections from e1 to the yellow diamond ele-
ments are the same). In particular, one can add/suppress/modify any 2→1
connection without altering input-equivalence.

• Since dim(M⊥
1 ) = 0 (a single element is always synchronized with itself),

one has (M1 × M2)
⊥ = M⊥

2 . Thus, concurrent synchronization (and the
rate of convergence) of the combined system only depends on the parameters
and the states of the elements within S2. In particular, it neither depends
on the actual state of e1, nor on the connections from/to e1 (in figure 1, the
black arrows towards the red central element are arbitrary).

In practice, the condition of identical 1→2 connections is quite pervasive.
In a neuronal context, one neuron with high fan-out may have 104 identical
outgoing connections.

It is therefore quite easy to preserve an existing concurrent synchonization
behavior while adding groups consisting of a single element. Thus, stable con-
current synchronization can be easily built one element at a time.
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4.2.4 The diffusive case

We stick with the case where S1 consists of a single element, but make now
the additionnal requirement that the 1→2 connections and the internal con-
nections within S2 are diffusive (so far in this section 4, we have implicitly
assumed that the connections from Si to Sj only involve the states of elements
in Si). The Jacobian matrix of the combined system is now of the form

J =





















∂g(x1,t)
∂x1

∂f1(x2,t)
∂x2

. . .

∂fq(xn,t)
∂xn





















+





















∗ ∗ ∗ ∗
k1 −k1

...
. . .

kq −kq





















−







0 0

0 Lint







where the first matrix describes the internal dynamics of each element, the
second, the diffusive connections between e1 and S2 (where S2 has q aspir-
ing synchronized subgroups), and the third, the internal diffusive connections
within S2.

Hence, the projected Jacobian matrix on (M1 ×M2)
⊥ = M⊥

2 is

V2















∂f1(x2,t)
∂x2

. . .

∂fq(xn,t)
∂xn















V⊤
2 − V2















k1

. . .

kq















V⊤
2 − V2LintV

⊤
2

An interpretation of this remark is that there are basically three ways to
achieve concurrent synchronization within S2, regardless of the behavior of
element e1 and of its connections :

(i) one can increase the strengths k1, . . . , kq of the 1→2 connections (which
corresponds to adding inhibitory damping to S2), so that each element of
S2 becomes contracting. In this case, all these elements will synchronize
because of their contracting property even without any direct coupling
among them (Lint = 0) (this possibility of synchronization without direct
coupling is exploited in the coincidence detection algorithm of [51], and
again in section 5.1 of this paper),

(ii) or one can increase the strength Lint of the internal connections among
the elements of S2,

(iii) or one can combine the two.
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4.2.5 Parallel combination

The elementary fact that, if VJiV
⊤ < 0 for a set of subsystem Jacobian

matrices Ji, then V (
∑

i αi(t)Ji)V
⊤ < 0 for positive αi(t), can be used in

many ways. Note that it does not represent a combination of different groups
as in the above paragraphs, but rather a superposition of different dynamics
within one group.

One such interpretation, as in [44] for contracting systems, is to assume that
for a given system ẋ = f(x, t), several types of additive couplings Li(x, t) lead
stably to the same invariant set, but to different synchronized behaviors. Then
any convex combination (αi(t) ≥ 0,

∑

i αi(t) = 1) of the couplings will lead
stably to the same invariant set. Indeed,

f(x, t) −
∑

i

αi(t)Li(x, t) =
∑

i

αi(t) [f(x, t) − Li(x, t)] < 0

The Li(x, t) can be viewed as synchronization primitives to shape the behavior
of the combination.

5 Examples

In conclusion, let us briefly discuss some general directions of application of the
above results to a few classical problems in systems neuroscience and robotics.

5.1 Coincidence detection for multiple groups

Coincidence detection is a classic mechanism proposed for segmentation and
classification. In an image for instance, elements moving at a common velocity
are typically interpreted as being part of a single object, and this even when
the image is only composed of random dots [26,24].

As mentioned in section 4.2, the possibility of decentralized synchronization
via central diffusive couplings can be used in building a coincidence detector.
In [51], inspired in part by [1], the authors consider a leader-followers network
of FitzHugh-Nagumo 9 oscillators, where each follower oscillator i (an element
of S2, see section 4.2.4) receives an external input Ii as well as a diffusive
coupling from the leader oscillator (the element e1 of S1). Oscillators i and j
receiving the same input (Ii = Ij) synchronize, so that choosing the system

9 See appendix A.
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output as
∑

1≤i≤n[v̇i]
+ captures the moment when a large number of oscillators

receive the same input.

However, the previous development also implies that this very network can
detect the moments when several groups of identical inputs exist. Furthermore,
it is possible to identify the number of such groups and their relative size.
Indeed, assume that the inputs are divided into k groups, such that for each
group Sm, one has ∀i, j ∈ Sm, Ii = Ij. Since the oscillators in Sm only receive
as input (a) the output of the leader, which is the same for everybody and (b)
the external input Ii, which is the same for every oscillator in group Sm, they
are input-symmetric and should synchronize with each other (cf. section 3.2
and section 4.2.4).

Some simulation results are shown in figure 7. Note that contrast between
groups could be further enhanced by using nonlinear “synapses”, e.g. intro-
ducing input-dependent delays, which would preserve the symmetries. Simi-
larly, any feedback mechanism to the leader oscillator would also preserve the
input-symmetries.

Finally, adding all-to-all identical connections between the follower oscillators
would preserve the input-symmetries and further increase the convergence
rate, but at the price of vastly increased complexity.

5.2 Fast symmetry detection

Symmetry, in particular bilateral symmetry, has also been shown to play a
key role in human perception [3]. Consider a group of oscillators having the
same individual dynamics and connected together in a symmetric manner. If
we present to the network an input having the same symmetry, some of the
oscillators will synchronize as predicted by the theoretical results of section
3.2.

One application of this idea is to build a fast bilateral symmetry detector
(figures 8, 9, 10), extending the oscillator-based coincidence detectors of the
previous section. Although based on a radically different mechanism, this sym-
metry detector is also somewhat reminiscent of the device in [3].

Some variations are possible :

(i) Other types of invariance. It is easy to modify the network in order to
deal with multi-order (as opposed to bilateral) symmetry, or other types
of invariance (translation, rotation, . . . ). In each case, the network should
have the same invariance pattern as what it is supposed to detect.

(ii) Since the exponential convergence rate is known, the network may be used
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Fig. 7. Simulation results for the coincidence detector. The network is composed
of one leader with a constant input I0 = 25, and 80 followers whose inputs vary
with time as shown in the upper figure. The lower figure plots the system output
(

∑

1≤i≤80[v̇i]
+
)

against time. One can clearly observe the existence of two succes-

sive, well separated spikes per period in a time interval around t = 250. Furthermore,
one spike is about twice as large as the other one. This agrees with the inputs, since
around t = 250, they are divided into two groups : 1/3 of them with value 37, 2/3
with value 30.

to track time-varying inputs, as in the coincidence detection algorithm
of [51].

(iii) Multidimensional inputs. Coincidence detectors and symmetry detectors
may also handle multidimensional inputs. Two approaches are possible.
One can either “hash” each multidimensional input into a one-dimensional
input, and give the set of so-obtained one-dimensional inputs to the net-
work. Or one can process each dimension independently in separate net-
works and then combine the results in a second step.

5.3 Central pattern generators

In an animal/robotics locomotion context, central pattern generators are of-
ten modelled as coupled nonlinear oscillators delivering phase-locked signals.
We consider here a system of three coupled 2-dimensional Andronov-Hopf os-
cillators [19], very similar to the ones used in the simulation of salamander
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Image to be processed

Fig. 8. A fast bilateral symmetry detector.
Every oscillator has the same dynamics as its mirror image
and the two are coupled through diffusive connection. The
inputs are provided to the detector through the bottom
(red) layer. Then “information” travels bottom-up : each
layer is connected to the layer right above it. Top-down
feedback is also possible.
Assume now that a mirror symmetric image is submitted
to the network. The network, which is mirror symmetric
by construction, now receives a mirror symmetric input.
Thus, the concurrent synchronization subspace where each
oscillator is exactly in the same state as its mirror image
oscillator is flow-invariant. Furthermore, the diffusive con-
nections, if they are strong enough (see 2.2), guarantee con-
traction on the orthogonal space. By using the theoretical
results above, one can deduce the exponential convergence
to the concurrent synchronization regime. In particular,
the difference between the top two oscillators should con-
verge exponentially to zero.

Fig. 9. Simulation on an artificial image.
We create a 56×60 pixels symmetric image from a real pic-
ture of one of the authors. We give it as input to a network
similar to the one in figure 8. The first (bottom) layer of
the network is composed of 7 × 6 = 42 FitzHugh-Nagumo
oscillators (21 pairs) each receiving the sum of the intensi-
ties of 8 × 8 = 64 pixels, thus covering at every instant an
active window of 56 × 48 pixels. The second layer consists
of 4 oscillators, each receiving inputs from 9 or 12 oscil-
lators of the first layer. The third layer is composed of 2
oscillators. At t = 0, the active window is placed on the
left of the image (red box) and, as t increases, it slides to-
wards the right. At t = T/2, where T is the total time of
the simulation, the position of the window is exactly at the
center of the image (green box) (see the simulation results
in figure 10).

locomotion [16] :



























ẋ1 = f(x1) + k(R 2π
3

x2 − x1)

ẋ2 = f(x2) + k(R 2π
3

x3 − x2)

ẋ3 = f(x3) + k(R 2π
3

x1 − x3)
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Fig. 10. Result for the simulation of figure 9. The figure shows |v1 − v2| where v1

and v2 are the voltages of the two FN oscillators in the top layer. One can clearly
observe that, around t = T/2 (T = 520 in this simulation), there is a short time
interval during which the two oscillators are fully synchronized.

where f is the dynamics of an Andronov-Hopf oscillator and the matrix R 2π
3

describes a 2π
3

planar rotation :

f







x

y





 =







x − y − x3 − xy2

x + y − y3 − yx2





 R 2π
3

=







−1
2
−

√
3

2
√

3
2

−1
2







We can rewrite the dynamics as ˙⌢x =
⌢

f(
⌢

x) − kL
⌢

x, where

L =















I2 −R 2π
3

0

0 I2 −R 2π
3

−R 2π
3

0 I2















First, observe that the linear subspace M =
{(

R2
2π

3

(x),R 2π
3

(x),x
)

: x ∈ R
2

}

is flow-invariant 10 , and that M is also a subset of Null(Ls). Next, remark that
the characteristic polynomial of Ls is X2 (X − 3/2)4 so that the eigenvalues
of Ls are 0, with multiplicity 2, and 3/2, with multiplicity 4. Now since M
is 2-dimensional, it is exactly the nullspace of Ls, which implies in turn that
M⊥ is the eigenspace corresponding to the eigenvalue 3/2.

Moreover, the eigenvalues of the symmetric part of ∂
⌢

f

∂
⌢
x
(x, y) are 1−(x2+y2) and

1−3(x2 +y2), which are upper-bounded by 1. Thus, for k > 2/3 (see equation
(10) in section 2.3), the three systems will globally exponentially converge to
a ±2π

3
-phase-locked state (i. e. a state in which the difference of the phases of

10 As it is suggested in footnote 7, the flow-invariance of M can be understood here
as beeing “created” by the internal symmetries of the oscillators’ dynamics.
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two consecutive elements is constant and equals ±2π
3

). A computer simulation
is presented in figure 11.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Oscillator 1
Oscillator 2
Oscillator 3

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Oscillator 1
Oscillator 2
Oscillator 3

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Oscillator 1
Oscillator 2
Oscillator 3

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

Oscillator 1
Oscillator 2
Oscillator 3

Fig. 11. Simulation for three coupled Andronov-Hopf oscillators. In the first two
figures, we plot yi against xi for 1 ≤ i ≤ 3. Figure a shows the behavior of the
oscillators for 0 ≤ t ≤ 3s, figure b for 5.6s ≤ t ≤ 6s. In figures c and d, we plot x1,
x2, x3 against time. Figure c for 0 ≤ t ≤ 0.5s, figure d for 0 ≤ t ≤ 6s.

Relaxing the symmetry or the diffusivity condition : In the previous
example, the flow-invariance of the phase-locked state is due to (a) the internal
symmetry of the individual dynamics f , (b) the global symmetry of the con-
nections and (c) the “diffusivity” of the connections (of the form k(Rx2−x1)).
Observe now, as in section 3.2, that this flow-invariance can be preserved when
one out of the two conditions (b) and (c) is relaxed. Consider for example the
two following systems :

• Symmetric but not “diffusive” :



























ẋ1 = f(x1) + kR 2π
3

x2

ẋ2 = f(x2) + kR 2π
3

x3

ẋ3 = f(x3) + kR 2π
3

x1

(the connections are “excitatory-only” in the sense of section 3.1.3).
• “Diffusive” but not symmetric :



























ẋ1 = f(x1) + k1(R1x2 − x1)

ẋ2 = f(x2) + k2(R2x3 − x2)

ẋ3 = f(x3) + k3(R3x1 − x3)

where the Ri represent any planar rotations such that R1R2R3 = I2 (i.e.,
any arbitrary phase-locking).

By keeping in mind that for any planar rotation R and state x, one has

f(Rx) = R(f(x)), it is immediate to show the flow-invariance of
{(

R2
2π
3

(x),R 2π
3

(x),x
)

: x ∈ R
2

}

in the first case, and of {(R1R2(x),R1(x),x) : x ∈ R
2} in the second case.

Note however that the computations of the projected Jacobian matrices are
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different, and that in the first case the limit cycle’s radius varies with k (cf.
section 3.1.3).

Finally, note that

(i) All the results of this section can be immediately extended to systems
with more oscillators.

(ii) As compared to results based only on phase oscillators, this analysis guar-
antees global exponential convergence, rather than assuming that syn-
chronization is already essentially achieved. In addition, it exhibits none
of the topological difficulties that may arise when coupling large numbers
of phase oscillators.

(iii) If f is less symmetric, only connections that exhibit the same symmetry
as f can lead to a non-trivial flow-invariance subspace.

(iv) It is also possible to extend this study to systems composed of oscillators
with larger dimensions (living in R

3 for example), although a locomotion
interpretation may be less relevant.

5.4 Filtered connections and automatic gait selection

Replacing ordinary connections in the CPG described in section 5.3 by fil-
ters enables frequency-based symmetry selection. This idea may have powerful
applications, one of which could be automatic gait selection in locomotion.

1 2

34

selector

Frequency

Fig. 12. A CPG with filtered connections.
The connections from the command box set the
same frequency for the four oscillators. The 1 ↔ 2
and 3 ↔ 4 arrows represent permanent anti-syn-

chronization connections (i.e. connection j → i is
of the form k(−xj − xi)). The 1 ↔ 3 and 2 ↔ 4
arrows represent synchronization connections and
they are high-pass filtered. Finally, the 3 → 2
and 4 → 1 arrows stand for quarter-period delay

connections (i.e. connection j → i is of the form
k(R−π

2
xj−xi), see section 5.3) and they are low–

pass filtered.

Consider for example the mechanism described in figure 12. At low frequencies,
the 1 ↔ 3 and 2 ↔ 4 connections are filtered out, so that the actual connec-
tions are 1 ↔ 2 and 3 ↔ 4 (anti-synchronization) and 3 → 2 and 4 → 1
(quarter-period delay). The only non-trivial flow-invariant subspace is then
{x1 = Rπ

2
(x3) = −x2 = R 3π

2

(x4)}. On the contrary, the 3 → 2 and 4 → 1
connections are filtered out at high frequencies, so that the flow-invariant sub-
space becomes {x1 = x3 = −x2 = −x4}.
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Similarly to section 5.3, strong enough coupling gains ensure convergence to
either of these two subspaces, according to the frequency at which the oscil-
lators are running. Note that standard techniques allow sharp causal filters
with frequency-independent delays to be constructed easily [35].

An analogy with horse gaits could be made in this simplified setup, by as-
sociating the low-frequency regime with the walk (left fore, right hind, right
fore, left hind), and the high-frequency regime with the trot (left fore and right
hind simultaneously, then right fore and left hind simultaneously). Transitions
between the two regimes would occur automatically according to the speed of
the horse (the frequency of its gait).

5.5 Temporal binding

The previous development has suggested a mechanism for stable accumulation
and interaction of concurrently synchronized groups, showing that the simple
conditions for contraction to a linear subspace, combined with the high fan-out
of typical neurons, increased the plausibility of large concurrently synchronized
structures being created in the central nervous system in the course of evo-
lution and development. The recently established pervasiveness of electrical
synapses [10] would also be consistent with such architectures.

More speculatively, different “rhythms” (α, β, γ, δ) are known to coexist in
the brain, which, in the light of the previous analysis, may be interpreted
and modelled as concurrently synchronized regimes. Since contracting systems
driven by periodic inputs will have states of the same period [28], different but
synchronized computations could be robustly carried out by specialized areas
in the brain using synchronized elements as their inputs. Such a temporal
“binding” [43,14,26,48,24,33,52,4,10] mechanism would also complement the
general argument in [45] that multisensory integration may occur through
the interaction of contracting computational systems connected through an
extensive network of feedback loops. In this context, and along the lines of
section 4.2, a translation to concurrent synchronization of recent results on
centralized contracting combinations [47] may be particularly relevant. Making
these observations precise is the subject of future research.
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A FitzHugh-Nagumo oscillators

Some of our simulations involve coupled FitzHugh-Nagumo neural oscillators
[8,32]











v̇i = vi(α − vi)(vi − 1) − wi + Ii + k(v0 − vi)

ẇi = βvi − γwi

1 ≤ i ≤ n

In this paper, we use the following parameters values : α = 6, β = 3, γ = 0.09.

The contraction analysis of FitzHugh-Nagumo oscillators can be adapted from
[49].
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