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Abstract— The algorithm for finding the time-optimal pa-
rameterization of a given path subject to dynamics constraints
developed mostly in the 80’s and 90’s plays a central role in
a number of important robotic theories and applications. A
critical issue in its implementation is associated with the so-
called dynamic singularities, i.e. the points where the maximum
velocity curve is continuous but undifferentiable and where the
minimum and maximum accelerations are not naturally de-
fined. Since such singularities arise in most real-world problem
instances, characterizing and addressing them appropriately is
of particular interest. Yet, from original articles to reference
textbooks, this has not yet been done completely correctly.
The contribution of the present article is two-fold. First, we
derive a complete characterization of dynamic singularities.
In particular, we show that not all zero-inertia points are
dynamically singular. Second, we suggest how to appropriately
address these singularities. In particular, we derive the analytic
expressions of the correct optimal backward and forward
accelerations from such points.

I. INTRODUCTION

The algorithm for finding the Time-Optimal Parameteriza-
tion of a given Path (TOPP) subject to dynamics constraints
developed in the 80’s and 90’s [1], [2], [3], [4], [5], [6]
plays a central role in a number of important theories and
applications in the field of robotics. Initially developed for
robotic manipulators subject to torque limits, it has been
subsequently extended to many other types of systems and
constraints, such as manipulators with gripper and payload
constraints [7], vehicles with friction constraints [8], hu-
manoid robots with joint velocity and acceleration limits [9]
or ZMP constraints [10]. From a theoretical viewpoint, it
serves as the foundation upon which several global (i.e.
when the path is not fixed) planning algorithms have been
developed [11], [12], [13], [14].

A critical issue in the implementation of the TOPP al-
gorithm is associated with the so-called dynamic singulari-
ties 1, i.e. the points where the maximum velocity curve is
continuous but undifferentiable and where the minimum and
maximum accelerations are not naturally defined (for more
details, see section II). Since such singularities arise in most
real-world problem instances [6], characterizing and address-
ing them appropriately is of particular interest. Yet, in most
references devoted to the TOPP algorithm, from the original
articles [3], [4], [5], [6], [9] to reference textbooks [16], this
has not yet been done completely correctly.
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1The term “dynamic singularity” must be understood here in the sense
of [5], which is different from that used in a completely different context
by [15].

In section II, we briefly review the TOPP algorithm and
highlight the difficulties associated with dynamic singular-
ities. We also outline our proposed solution and, in the
process, establish a general classification of switch points
and related notions.

Next, we detail the technical contributions of the article:
• In section III, we derive a complete characterization

of the dynamic singularities. In particular, we show
that, contrary to the statements of [3], [4], [5], [6],
[16], [9], not all zero-inertia points constitute dynamic
singularities. Furthermore, we show that there are in fact
two different types of dynamic singularities.

• In section IV, we suggest how to appropriately address
the two types of dynamic singularities. In particular, we
derive the analytic expressions of the optimal backward
and forward accelerations from such points, which differ
from the ones proposed in [5], [6].

Finally, in section V, we conclude by summarizing and
discussing the obtained results and possible extensions.

II. BACKGROUND ON THE TOPP ALGORITHM

A. Review of the Core Algorithm

Consider an n-dof manipulator with dynamics equation

M(q)q̈+ q̇>C(q)q̇+ g(q) = τ, (1)

where q is a n × 1 vector of joint values, M the n × n
manipulator inertia matrix, C the n× n× n Coriolis tensor,
g the n×1 vector of gravity forces and τ the n×1 vector of
actuator torques. Assume that this manipulator is subject to
the torque limits of the form: for every joint i ∈ [1, n] and
time u

τmin
i ≤ τi(u) ≤ τmax

i . (2)

Consider now a path P – represented as the underlying
path of a trajectory q(s)s∈[0,T ] – in the manipulator con-
figuration space. We assume that q(s)s∈[0,T ] is C1- and
piecewise C2-continuous. The TOPP algorithm, which we
summarize and reformulate below, allows to find the fastest
time-parameterization of P starting from a given velocity
vbeg and ending at a given velocity vend while respecting the
torque limits. More precisely, a time-parameterization of P –
or a time-reparameterization of q(s)s∈[0,T ] – is an increasing
function s : [0, T ′] → [0, T ]. Differentiating q(s(t)) with
respect to t yields

q̇ = qsṡ, q̈ = qss̈+ qssṡ
2, (3)

where qs =
dq
ds and qss =

d2q
ds2 . Substituting (3) into (1) then



leads to

M(q)(qss̈+ qssṡ
2) + q>

s C(q)qsṡ
2 + g(q) = τ(s). (4)

The above equation can be rewritten in the following form

a(s)s̈+ b(s)ṡ2 + c(s) = τ(s), where

a(s) = M(q(s))qs(s),

b(s) = M(q(s))qss(s) + qs(s)
>C(q(s))qs(s),

c(s) = g(q(s)).

The torque limits of (2) can now be expressed by the
following 2n inequalities: for every i ∈ [1, n]

τmin
i ≤ ai(s)s̈+ bi(s)ṡ

2 + ci(s) ≤ τmax
i .

Next, if ai(s) 6= 0 (the case ai = 0 corresponds to a zero-
inertia point, whose treatment is the topic of the present
paper, see section II-B), one can write

αi(s, ṡ) ≤ s̈ ≤ βi(s, ṡ), with

αi(s, ṡ) = (τα
i − bi(s)ṡ

2 − ci(s))/ai(s),

βi(s, ṡ) = (τβ
i − bi(s)ṡ

2 − ci(s))/ai(s),

where ταi and τβi are defined by{
τα
i = τmin

i ; τβ
i = τmax

i if ai(s) > 0,

τα
i = τmax

i ; τβ
i = τmin

i if ai(s) < 0.

Thus s̈ is bounded as follows

α(s, ṡ) ≤ s̈ ≤ β(s, ṡ), (5)

where α(s, ṡ) = maxi αi(s, ṡ) and β(s, ṡ) = mini βi(s, ṡ).
Note that (s, ṡ) 7→ (ṡ, α(s, ṡ)) and (s, ṡ) 7→ (ṡ, β(s, ṡ))

can be seen as two vector fields in the (s, ṡ) plane. One
can integrate velocity profiles following the field (ṡ, α(s, ṡ))
(from now on, α in short) to obtain minimum acceleration
profiles (or α-profiles), or following the field β to obtain
maximum acceleration profiles (or β-profiles).

Next, observe that if α(s, ṡ) > β(s, ṡ) then, from (5), there
is no possible value for s̈. Thus, to be valid, any velocity
profile must stay below the maximum velocity curve (MVC
in short) defined by

MVC(s) =

{
min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)} if α(s, 0) < β(s, 0),

0 if α(s, 0) ≥ β(s, 0).

It was shown (see e.g. [5]) that the time-minimal velocity
profile is obtained by a bang-bang-type control, i.e., whereby
the optimal profile follows alternatively the β and α fields
while always staying below the MVC. More precisely, the
algorithm is as follows:

1) In the (s, ṡ) plane, start from (s = 0, ṡ = vbeg/‖qs(0)‖)
and integrate forward following β until hitting either

(i) the MVC, in this case go to step 2;
(ii) the horizontal line ṡ = 0, in this case the path is

not dynamically traversable;
(iii) the vertical line s = send, in this case go to step 3.

2) Search forward along the MVC for the next candidate
α → β switch point (cf. section II-B). From such a
switch point:

a) integrate backward following α, until intersecting a
forward β-profile (from step 1 or recursively from
the current step 2). The intersection point constitutes
a β → α switch point;

b) integrate forward following β. Then continue as in
step 1.

The resulting forward profile will be the concatenation
of the intersected forward β-profile, the backward α-
profile obtained in (a), and the forward β-profile ob-
tained in (b).

3) Start from (s = send, ṡ = vend/‖qs(send)‖) and inte-
grate backward following α, until intersecting a forward
profile obtained in steps 1 or 2. The intersection point
constitutes a β → α switch point. The final profile will
be the concatenation of the intersected forward profile
and the backward α-profile just computed.

B. A New Classification of Switch Points

It was shown in [3], [4], [5], [6] that a given point s is
a candidate α → β switch point only in the following three
cases:

• the MVC is discontinuous at s. In this case, if s is
indeed a switch point, it is labeled as “discontinuous”;

• the MVC is continuous but undifferentiable at s. In
this case, if s is indeed a switch point, then it is
labeled as “undifferentiable” (previous works labeled
such a switch point as a “zero-inertia point” [4] or as a
“critical/singular point” [5], [6]; however we shall see
below that such terminologies are ambiguous);

• the MVC is continuous and differentiable at s and the
tangent vector to the MVC at (s,MVC(s)) is collinear
with the vector (MVC(s), α(s,MVC(s))) [or, which is
the same since we are on the MVC, collinear with the
vector (MVC(s), β(s,MVC(s)))]. In this case, if s is
indeed a switch point, it is labeled as “tangent”.

Characterizing discontinuous (respectively, tangent) switch
points does not involve particular difficulties since it suffices
to construct the MVC and examine whether it is discon-
tinuous (respectively, whether the tangent to the MVC is
collinear with α) for all discretized points s along the path.
Regarding the undifferentiable switch points, one approach
could consist of checking whether the MVC is continuous
but undifferentiable at s. However, this approach is seldom
used in the literature since it is comparatively more prone to
discretization errors. Instead, it was proposed (cf. [3], [4], [5],
[16], [9]) to equate undifferentiable points with zero-inertia
points, i.e. the points s where ak(s) = 0 for one of the
joints k, and to consequently search for zero-inertia points.
However, this method is not correct: we shall indeed show in
section III that not all zero-inertia points are undifferentiable.

It can be conversely noted that not all undifferentiable
points are caused by zero-inertia. This case occurs for
instance at s∗ where the α (or β) on the MVC is given
by αi for s < s∗ and by αj , j 6= i, for s > s∗.
Note that, as for discontinuous and tangent points, this
type of undifferentiable points does not involve particular



difficulties since α and β are well-defined at s∗ (there is no
division by 0). In practice, we have never encountered such
undifferentiable points that indeed constitute switch points:
the α (= β) vector always “traverses” the MVC at such
points.

Finally, undifferentiable points caused by zero-inertia
properly constitute dynamic singularities. We shall show
that they are in fact of two different types, which we call
respectively of type I and of type II, and which can give rise
to two different types of undifferentiable switch points (cf.
section III).

In light of the above discussion, a general classification of
switch points and related notions can be given as in Fig. 1.
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Fig. 1. Classification of switch points and related notions.

C. Previous and New Solutions to Dynamic Singularities

The next difficulty consists in the selection of the optimal
acceleration to initiate the backward and forward integrations
from a dynamic singularity s∗: indeed the fields α and β are
not naturally defined at these points because of a division
by ak(s

∗) = 0. In [3], no indication was given regarding
this matter. In [4], it was stated that “[this] acceleration
is not uniquely determined” and suggested to choose any
acceleration to initiate the integrations. In [5], [6] (and also
in [16] which reproduced the reasoning of [5], [6]), the
authors suggested to select the following acceleration to
initiate the backward integration (and a similar expression
for the forward integration):

min(α−, α+, αMVC), where (6)

α− = lim
s↑s∗

α(s,MVC(s∗)), (7)

α+ = lim
s↓s∗

α(s,MVC(s∗)),

and αMVC is computed from the slope of the MVC on the
left of s∗.

However, observing the α-profiles near the dynamic sin-
gularity of Fig. 2A, it appears that the definition of α− in
equation (7) is arbitrary. Indeed, depending on the direction
from which one moves towards (s∗,MVC(s∗)) in the plane
(s, ṡ) the limit of α is different: for instance, in Fig. 2A,
if one moves from the top left, the limit, if it exists, would
be positive, and it would be negative if one moves from

the bottom left. In this context, the choice of equation (7)
consisting of moving towards (s∗,MVC(s∗)) horizontally is
no more justified than any other choice. More generally, it is
impossible to extend α by continuity towards (s∗,MVC(s∗))
from the left because the α-profiles diverge when approach-
ing (s∗,MVC(s∗)) from the left. In fact, as we shall show
in section IV, the only way to integrate α backward from
(s∗,MVC(s∗)) is to follow the “neutral” line, indicated by
the black dashed line in Fig. 2A.

The above suggestion was first made in [9] in the particular
case of time-optimal path parameterization with velocity and
acceleration limits and paths made of straight segments and
circular arcs. The authors observed that the “neutral” line was
always horizontal and subsequently suggested to use 0 as the
acceleration to initiate the backward and forward integrations
from dynamic singularities.

As mentioned previously, we shall derive in section IV
the analytic expression for the slope of the “neutral” line,
which corresponds to the optimal forward and backward
acceleration from dynamic singularities of type I. Further-
more, we shall show that the value of this acceleration is
indeed 0 in the particular case considered in [9]. As for
dynamic singularities of type II, the optimal backward and
forward accelerations differ one from the other but can also
be analytically determined.

III. CHARACTERIZING DYNAMIC
SINGULARITIES

We first make a general assumption that there are no “de-
generacies”. An example of what we mean by “degeneracy”
is when ai(s) = 0 and aj(s) = 0 with i 6= j at the same
point s. Indeed, while zero-inertia points occur in most real-
world problem instances [6], the instances for which “there
exists an s such that ai(s) = 0 and aj(s) = 0, with i 6= j”
are extremely rare.

Throughout the rest of the development, we take the
following convention.

Convention 1: Consider a zero-inertia point s∗, and as-
sume that it is triggered by the k-th actuator, i.e. ak(s∗) = 0.
Since we have excluded degeneracies (in particular, the case
of singular arcs [5] when ak = 0 in an interval or the
case when ak is tangent to the line ṡ = 0), ak(s) must
change sign at s∗. We take the convention that ak(s) > 0
in a neighborhood to the left of s∗ and ak(s) < 0 in a
neighborhood to the right of s∗ (the case when ak switches
from negative to positive can be treated similarly by changing
signs at appropriate places in the rest of the development).

We now prove the following proposition.
Proposition 1: If τmin

k −ck(s
∗) > 0 or τmax

k −ck(s
∗) < 0,

then there exists a neighborhood ]s∗ − ε, s∗ + ε[ such that
MVC(s) = 0 for all s ∈]s∗ − ε, s∗ + ε[.

Proof : Suppose for instance that τmin
k − ck(s

∗) = η > 0.
By continuity of ck, there exists a neighborhood ]s∗−ε1, s

∗+
ε1[ such that

∀s ∈]s∗ − ε1, s
∗ + ε1[, τmin

k − ck(s) > η/2.



Consider an arbitrary small ζ. Since ak(s
∗) = 0 and that

ak(s) > 0 in a neighborhood to the left of s∗, there exists a
neighborhood ]s∗ − ε2, s

∗[ such that

∀s ∈]s∗ − ε2, s
∗[, 0 < ak(s) < ζ.

Thus, we have

∀s ∈]s∗ −min(ε1, ε2), s
∗[, α(s, 0) > η/(2ζ),

where ζ can be chosen arbitrarily small.
Recall that α = maxi αi, thus by choosing a sufficiently

small ζ, we can obtain a neighborhood where α(s, 0) =
αk(s, 0). On the other hand, since β = mini βi and that the
βi(s, 0) where i 6= k remain upper-bounded in a neighbor-
hood of s∗ (because ai(s) 6= 0 for i 6= k), β(s, 0) is also
upper-bounded in a neighborhood of s∗, say by a constant
K > 0. It suffices now to chose a sufficiently small ζ <
η/(2K) such that, for the corresponding ε = min(ε1, ε2),
we have

∀s ∈]s∗ − ε, s∗[, α(s, 0) > β(s, 0).

The latter inequality implies by definition that MVC(s) = 0
in that neighborhood.

For s > s∗, we can show using the same arguments as
above that β(s, 0) is arbitrarily small near s∗ while α is
lower-bounded. The case τmax

k − ck(s
∗) < 0 can also be

proved by a similar reasoning �
Convention 2: In light of Proposition 1, we assume from

now on that τmin
k − ck(s

∗) < 0 and τmax
k − ck(s

∗) > 0.
Before proceeding further, let us define

α̃k(s, ṡ) = max
i 6=k

αi(s, ṡ)

β̃k(s, ṡ) = min
i 6=k

βi(s, ṡ).

In other words, α̃k and β̃k would be the acceleration limits,
had the constraints associated with the k-th actuator been
removed.

We now distinguish two cases according to the sign of
bk(s

∗).

A. Case bk(s
∗) < 0

From assumption 2 and the assumption that bk(s∗) < 0,
there exists η > 0 such that, in a neighborhood to the left
of s∗

∀ṡ ≥ 0, τmax
k − ck(s)− bk(s)ṡ

2 > η.

Thus, for any K > 0, there exists a neighborhood to the left
of s∗ where

∀ṡ ≥ 0, β(s, ṡ) > K.

By choosing a sufficiently large K, one can then obtain a
neighborhood to the left of s∗ in which β(s, ṡ) = β̃k(s, ṡ)
for all ṡ, that is, in which actuator k does not contribute to
the upper acceleration limit.

Similarly, one can show that there exists a neighborhood
to the right of s∗ in which α(s, ṡ) = α̃k(s, ṡ) for all ṡ,
that is, in which actuator k does not contribute to the lower
acceleration limit.
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Fig. 2. A: α- and β-profiles (in green and red respectively) near zero-inertia
points (yellow points). The leftmost zero-inertia point is an undifferentiable
switch point of type I (cf. section III-A.2), while the rightmost zero-
inertia point is not a dynamic singularity (cf. section III-A.1). Note that
in agreement with the definitions, at any point in the plane the slope of
the red profile is higher than the slope of the green profile, except on the
MVC where the two slopes are equal. The dotted line is the line that goes
through the switch point and has slope λ computed by equation (12) (cf.
section IV). B: close-up view (zoomed in the black box of A) centered
around the undifferentiable switch point.

Define next

ṡ∗ =

√
τmin
k − ck(s∗)

bk(s∗)
. (8)

Recall from our assumptions that the expression under the
radical sign is indeed positive. Let ˜̇s∗ be the smallest velocity
ṡ which satisfies (˜̇s∗ = +∞ if no such ṡ exists)

α̃k(s
∗, ṡ) = β̃k(s

∗, ṡ). (9)

In other words, ˜̇s∗ would be the value of the MVC at s∗,
had the constraints associated with the k-th actuator been
removed.

We now distinguish two sub-cases.
1) Sub-case ˜̇s∗ < ṡ∗: Let ṡm = (˜̇s∗ + ṡ∗)/2. By the

definition of ṡ∗ and the assumption that bk(s
∗) < 0, there

exists η > 0 such that, in a neighborhood to the left of s∗

∀ṡ ≤ ṡm, τmin
k − ck(s)− bk(s)ṡ

2 < −η.

By the same argument as above, one can then show that there
exists a neighborhood to the left of s∗ in which α(s, ṡ) =
α̃k(s, ṡ) for all ṡ ≤ ṡm, that is, in which actuator k does not
contribute to the lower acceleration limit.

Similarly, one can show that there exists a neighborhood
to the right of s∗ in which β(s, ṡ) = β̃k(s, ṡ) for all ṡ ≤ ṡm,



that is, in which actuator k does not contribute to the upper
acceleration limit.

In summary, there exists a neighborhood ]s∗ − ε, s∗ + ε[
such that

∀(s, ṡ) ∈]s∗ − ε, s∗ + ε[×[0, ṡm],

{
α(s, ṡ) = α̃k(s, ṡ)

β(s, ṡ) = β̃k(s, ṡ).
(10)

Since ˜̇s < ṡm, the definition of ˜̇s∗ in equation (9) implies
that

α(s∗, ˜̇s∗) = β(s∗, ˜̇s∗),

which implies in turn that MVC(s∗) = ˜̇s∗.
Furthermore, from equation (10), the behavior of the MVC

in the interval ]s∗ − ε, s∗ + ε[ is fully characterized by α̃k

and β̃k, which contain no singularity in this interval (further
restrict the interval if necessary). One can thus conclude that
the MVC is continuous and differentiable around s∗ and
that α and β are well-defined and equal on the MVC (see
Fig. 2A), which in turn implies that, in this sub-case, s∗ is
not a dynamic singularity.

2) Sub-case ˜̇s∗ > ṡ∗: Since the βi where i 6= k do not in-
volve any singularity around s∗, there exists a neighborhood
around (s∗, ṡ∗) where β̃k is given by βp for a fixed p 6= k.
Furthermore, since we have remarked at the beginning of
section III-A that in a neighborhood to the left of s∗, one
has β = β̃k, one actually has β = βp in a neighborhood to
the left of s∗.

Let next

u(s) =
ak(s)[τ

β
p − cp(s)]− ap(s)[τ

min
k − ck(s)]

ak(s)bp(s)− ap(s)bk(s)
.

Note that, if u(s) ≥ 0, then ṡ =
√
u(s) satisfies αk(s, ṡ) =

βp(s, ṡ). From the fact that ak(s∗) = 0, one has

lim
s↑s∗

u(s) =
τmin
k − ck(s

∗)

bk(s∗)
= ṡ∗2.

Thus, there exists a neighborhood to the left of s∗ where
0 < u(s) < ˜̇s∗2 (the second inequality comes from our as-
sumption that ˜̇s∗ > ṡ∗). We argue that, in that neighborhood,
MVC(s) =

√
u(s). Indeed, as remarked above,

√
u(s)

satisfies αk(s,
√
u(s)) = βp(s,

√
u(s)). Furthermore, if i 6=

k, there is no ṡ <
√
u(s) that satisfies αi(s, ṡ) = βp(s, ṡ)

since
√
u(s) < ˜̇s∗ and by definition of ˜̇s∗.

As a consequence, one also has α = αk in that neighbor-
hood.

Regarding the right of s∗, following a similar reasoning
as above, one first determines q 6= k such that αq = α̃k in a
neighborhood to the right of s∗. Consider then

v(s) =
ak(s)[τ

α
q − cq(s)]− aq(s)[τ

min
k − ck(s)]

ak(s)bq(s)− aq(s)bk(s)
.

Note that we have indeed written τmin
k (and not τmax

k ) in the
above equation, since a(s) < 0 to the right of s∗. Next, one
can show similarly as above that there exists a neighborhood
to the right of s∗ in which MVC(s) =

√
v(s) and, as a

consequence, in which β = βk
Combining the results concerning the left and the right

of ṡ, one obtains that the MVC is continuous at s∗, since

lim
s↑s∗

√
u(s) = lim

s↓s∗

√
v(s) = ṡ∗.

However, the MVC is undifferentiable at s∗ since, in
general,

lim
s↑s∗

(√
u(s)

)′
6= lim

s↓s∗

(√
v(s)

)′
.

Thus, in this sub-case, s∗ is indeed a dynamic singularity
– which we label as “of type I” – and therefore a candidate
undifferentiable switch point.

B. Case bk(s
∗) > 0

From assumption 2 and the assumption that bk(s∗) ≥ 0,
one has that τmin

k − ck(s
∗) − bk(s

∗)ṡ2 < 0 for all ṡ. Thus,
there exists a neighborhood ]s∗ − ε, s∗[ where αk(s, ṡ) is
arbitrary small, in such a way that

∀s ∈]s∗ − ε, s∗[, ∀ṡ, α(s, ṡ) = α̃k(s, ṡ) = αp(s, ṡ),

for some p 6= k. Similarly, one has on the right of s∗

∀s ∈]s∗, s∗ + ε[, ∀ṡ, β(s, ṡ) = β̃k(s, ṡ) = βq(s, ṡ),

for some q 6= k.
The crucial change with respect to case bk(s

∗) < 0 is that
here α, not β, is well-defined and smooth on the left of s∗.
Since the backward integration uses α, we simply initiate
using the value αp(s

∗,MVC(s∗)). Similarly, to initiate the
forward integration, we use the value βq(s

∗,MVC(s∗)).
Define next

ṡ∗ =

√
τmax
k − ck(s∗)

bk(s∗)
. (11)

Note from our assumptions that the expression under the
radical sign is indeed positive. Let ˜̇s∗ be the smallest velocity
ṡ which satisfies equation (9) (˜̇s∗ = +∞ if no such ṡ exists).

Using the same arguments as in case bk(s
∗) < 0, one can

show that
• If ˜̇s∗ < ṡ∗, the MVC is continuous and differentiable

at s∗, which therefore is not a switch point;
• If ˜̇s∗ > ṡ∗, the MVC is continuous but undifferentiable

at s∗. Thus s∗ is a dynamic singularity – which we label
as “of type II” – and therefore a candidate undifferen-
tiable switch point.

IV. ADDRESSING DYNAMIC SINGULARITIES

A. Addressing Dynamic Singularities of Type I

Fig. 2B shows in more detail the α-profiles near a singular
switch point s∗ of type I. Note first that, according to
section III-A.2, α is given by αk in a neighborhood to the
left of s∗, and β is given by βk in a neighborhood to the
right of s∗.

Next, note that the α-profiles are divergent as they ap-
proach (s∗, ṡ∗) from the left. Thus, one cannot naturally
extend αk by continuity to (s∗, ṡ∗) from the left.

Consider the intersections of the vertical line s = s∗ − ε,
where ε is an arbitrary small positive number, with the α-
profiles. An α-profile can reach (s∗, ṡ∗) only if its tangent
vector at the intersection points towards (s∗, ṡ∗). This can
be achieved if there exists a real number λ such that

αk(s
∗ − ε, ṡ∗ + λε)

ṡ∗ + λε
= λ.



Replacing αk by its expression yields the condition

τmin
k − ck(s

∗ − ε)− bk(s
∗ − ε)(ṡ∗ + λε)2

ak(s∗ − ε)(ṡ∗ + λε)
= λ, i.e.

τmin
k − ck(s

∗− ε)− bk(s
∗− ε)(ṡ∗+λε)2 = λ(ṡ∗+λε)ak(s

∗− ε).

Computing the Taylor expansion of the above equation at
order 1 in ε and recalling that τmin

k −ck(s
∗)−bk(s

∗)ṡ∗2 = 0
and ak(s

∗) = 0, one obtains the condition

c′k(s
∗) + b′k(s

∗)ṡ∗2 − 2λbk(s
∗)ṡ∗ = λṡ∗a′k(s

∗).

Solving for λ, one finally obtains

λ = − c′k(s
∗) + b′k(s

∗)ṡ∗2

[2bk(s∗) + a′k(s
∗)]ṡ∗

. (12)

Following the same reasoning on the right of s∗, one has
to solve

βk(s
∗ + ε, ṡ∗ + λε)

ṡ∗ + λε
= −λ,

which leads to the same value as in equation (12). Thus
the optimal backward and forward acceleration at (s∗, ṡ∗)
is given by equation (12). One can observe in Fig. 2A that
the black dotted line, whose slope is given by λ, indeed
constitutes the “neutral” line at (s∗, ṡ∗).

B. Algorithm and Simulations
Based on the results obtained so far, we propose the fol-

lowing algorithm when encountering a zero-inertia point s∗,
with a(s∗) > 0 on the left of s∗ and a(s∗) < 0 on the right
of s∗:

1) If bk(s∗) < 0: compute ṡ∗ by equation (8) and ˜̇s∗ by
solving equation (9).

• If ṡ∗ > ˜̇s∗, then s∗ is not a dynamic singularity,
therefore not a candidate switch point.

• If ṡ∗ < ˜̇s∗, then s∗ is a dynamic singularity of type I.
Next, compute λ by equation (12).

– Integrate the constant field (ṡ∗, λṡ∗) backward for
a small number of time steps. Then continue by
following α, as in the original algorithm;

– Integrate the constant field (ṡ∗, λṡ∗) forward for
a small number of time steps. Then continue by
following β.

2) If bk(s∗) > 0: compute ṡ∗ by equation (11) and ˜̇s∗ by
solving equation (9).

• If ṡ∗ > ˜̇s∗, then s∗ is not a dynamic singularity,
therefore not a candidate switch point.

• If ṡ∗ < ˜̇s∗, then s∗ is a dynamic singularity of type II.
If α̃k(s, ṡ) or β̃k(s, ṡ) “traverses” the MVC then s∗ is
not a switch point. Otherwise,

– Integrate α̃k(s, ṡ) backward for a small number of
time steps. Then continue by following α, as in the
original algorithm;

– Integrate β̃k(s, ṡ) forward for a small number of
time steps. Then continue by following β.

Note that after integrating a small number of steps away
from s∗, the fields α and β become smooth, so that there is
no problem of singularity.

We applied the above algorithm on a dynamic model
of the 4-dof Barrett WAM using the OpenRAVE robotic
simulation platform [17]. The torque limits were set at
±6 N·m, ±15 N·m, ±5 N·m, ±4 N·m respectively for the
shoulder yaw, pitch and roll joints and the elbow joint. The
results show a smooth behaviour around the undifferentiable
switch point, both for the (s, ṡ) profile and for the torque
profiles, see Fig. 3.

Fig. 3. Simulations for a 4-link manipulator. Top: snapshots of the
time-parameterized trajectory taken every 10% of trajectory duration. Left:
(s, ṡ) space. Same legends as in Fig. 2. The superimposed dotted blue line
indicates the final (s, ṡ) profile, which follows parts of the computed α- and
β-profiles (black). Right: torque profiles. The torques for the shoulder yaw,
pitch, roll and elbow joints were plotted in red, blue, green and magenta
respectively. The torque limits are indicated by horizontal dotted lines. Note
that, in agreement with time-optimal control theory, at least one torque limit
is saturated at any time instant. The vertical dotted yellow line indicates the
time instant of the zero-inertia point.

Next, to illustrate more clearly the improvements per-
mitted by our algorithm, we compared the results given
by our algorithm and that given by the algorithm of [5],
[6], which use unsatisfactory values for the accelerations
at dynamic singularities. The results suggest that, in the
numerical integration of the (s, ṡ) profiles, the algorithm
of [5] needed to use a time step at least 5 times finer
(corresponding thus to an execution time potentially 5 times
longer) than our algorithm to achieve the same precision, see
Fig. 4.

C. About Kunz and Stilman’s Conjecture
Kunz and Stilman [9] were first to remark – in the particu-

lar case of time-optimal path parameterization with velocity
and acceleration limits and paths made of straight segments
and circular arcs – that the algorithm proposed in [5], [6]
could not satisfactorily address all dynamic singularities.
From equation (14) of [9], the correspondences between the
parameters of [9] and those of the present article are given
in Table I.

Remark next that the zero-inertia points in [9] are all
located in the circular portions. In such portions, the co-
efficients ak and bk have the following form (using our
notations):

ak(s) = −C1

r
sin

(s
r

)
+

C2

r
cos

(s
r

)
,

bk(s) =
C1

r2
cos

(s
r

)
− C2

r2
sin

(s
r

)
,



∆t = 0.01 s ∆t = 0.002 s

Fig. 4. Close-up views (zoomed in the black boxes of Fig. 3) of the (s, ṡ)
profiles and of the shoulder pitch torque profiles around the switch point,
computed using two different integration time steps ∆t. Solid lines: results
of our algorithm, dotted lines: results of the algorithm proposed by [5]. The
vertical dotted yellow line indicates the time instant of the zero-inertia point.
Note that our algorithm yielded torques that were within the +0.5N·m
tolerance even for ∆t = 0.01 while the algorithm of [5] needed to use
∆t = 0.002 (5 times finer) to get within the same tolerance.

TABLE I
PARAMETERS CORRESPONDENCES

This article Kunz and Stilman [9]
(τmin

k , τmax
k ) ↔ (−q̈max

k , q̈max
k )

ak(s) ↔ f ′
k(s)

bk(s) ↔ f ′′
k (s)

ck(s) ↔ 0

where C1 and C2 are two constants independent of s.
Differentiating bk next yields

b′k(s) = −C1

r3
sin

(s
r

)
+

C2

r3
cos

(s
r

)
=

1

r2
ak(s).

One thus has b′k(s
∗) = 1/r2ak(s

∗) = 0 at a zero-inertia
point. If this zero-inertia point is actually an undifferentiable
switch point of type I then, from equation (12), one obtains
that λ = 0, which corresponds to the conjecture made in [9].

V. CONCLUSION

By studying closely the minimum and maximum accel-
eration profiles in the vicinities of dynamic singularities,
we have obtained a complete characterization of such sin-
gularities, which play a critical role in the classic TOPP
algorithm. In the process, we have also established a general
classification of switch points and related notions associated
with this important algorithm.

On the practical side, we have shown how to address
dynamic singularities, which allows making the TOPP al-
gorithm more robust to discretization errors. In light of the
simulations of Fig. 4, one could also use a variable-time-step
integration scheme whereby the time step would be refined

near zero-inertia points to achieve a good precision, without
ever using the correct acceleration of equation (12). However,
such a method would be cumbersome and would lack the
elegance and the correctness of the solution presented here.

We are currently working on extending the method of
analysis developed here to address dynamic singularities
arising in other variations of the TOPP algorithm, such as in
[7], [8], [10].
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