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Planning manipulator trajectories under dynamics constraints using
minimum-time shortcuts

Quang-Cuong Pham∗

Planning minimum-time, dynamically-feasible, collision-free trajectories for robotic manipulators is essential
to improve industrial productivity. Yet this difficult problem is still waiting for robust and efficient algorithms.
Here we propose to tackle it by bringing together two methods : fixed-path time-minimization under dynamics
constraints and shortcuts-based smoothing. We implement our algorithm using the OpenRAVE platform,
and demonstrate its efficiency through simulations on a dynamic model of the 4-dof Barrett Whole-Arm
Manipulator.
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1. Introduction

Following a great thinker of the 19th century – who
once wrote that “the more the productivity of labour
increases, the more can the working-day be shortened
and, [in a future society], the greater the time for the
free development, intellectual and social, of the indi-
vidual” – it is easy to conceive that time-minimization
of robotic motions is bound to play a major role in so-
cial progress. Yet because of the nonlinearity and the
large number of degrees of freedom associated with
industrial robotic manipulators, finding a minimum-
time, dynamically-feasible, collision-free trajectories
for these systems is still an open problem.

If a path is given between two manipulator config-
urations qinit and qend, efficient algorithms for com-
puting a time-parameterization of that path which
minimizes the traversal time while respecting dy-
namic constraints exist [2, 14, 15, 13]. Extensions of
these algorithms to the non-fixed-path case are mainly
made by varying the path (using iterative path mod-
ification [1] or extensive grid search [12]) and then
running the fixed-path algorithm on the so-modified
path. However, as noted in e. g. [6], iterative path-
modification methods are ill-adapted to highly clut-
tered environments because a costly collision-checker
must be called at each path-modification iteration and
because of the issue of local minima. On the other
hand, grid-search-based methods are ill-adapted to
manipulators with large numbers of degrees of free-
dom.

More recently, approaches combining sample-based
planners (see e.g. [9]) and shortcuts-based smoothers
have proved to be particularly adapted to problems
involving cluttered environments and manipulators
with large numbers of degrees of freedom [5, 6]. In-
deed, one advantage of making shortcuts is that the
collision-checker need only be called on portions of
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the trajectory. In addition, the random and non-local
nature of shortcuts allow effectively exploring high-
dimensional spaces and, to some extent, alleviating
the issue of local minima.

However, the works just mentioned did not ex-
plicitly consider time-minimization [5], or did so un-
der kinematics (such as velocity and acceleration lim-
its), and not dynamics, constraints [6]. Yet dynamics
constraints such as torque limits are the actual con-
straints that apply on robots in the physical world.
Taking into account these constraints as such is thus
essential if planning algorithms are to find their ways
into industrial applications. Some recent approaches
[11, 7] allow taking into account dynamics-based cost
(e. g. by minimizing the integrated square torque)
but cannot satisfactorily handle dynamics hard con-
straints (such as torque limits).

Here we bring together the two ideas mentioned
previously, namely fixed-path time-minimization
under dynamics constraints and shortcuts-based
smoothing, in order to provide an efficient method to
plan time-optimized, dynamically-feasible, collision-
free trajectories. Note that we used the term
“time-optimized” and not “minimum-time” since the
method is not guaranteed to provide the global
minimum-time trajectory.

The article is organized as follows : section 2. re-
calls the necessary backgrounds and outlines the main
algorithm, section 3. presents simulation results for a
4-dof Barrett Whole-Arm Manipulator (WAM), and
section 4. offers a brief conclusive discussion.

2. Proposed algorithm

2.1 Background : minimum-time parameter-
ization of a fixed path

The main ingredient of our algorithm is the time-
minimization under dynamics constraints along a
fixed path developed in the 80’s and the beginning
of the 90’s [2, 15, 13], which we summarize below.

Consider the dynamics equation of a general n-dof
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manipulator

M(q)q̈+ q̇⊤C(q)q̇+ g(q) = τ, (1)

where q is a n× 1 vector of joint values, M the n×n
manipulator inertia matrix, C the n× n× n Coriolis
tensor, g the n × 1 vector of gravity forces and τ
the n × 1 vector of actuator torques. We consider
dynamics constraints of the following form : for all
i ∈ [1, n], t ∈ [0, T ]

τmin
i ≤ τi(t) ≤ τmax

i (2)

Assume that we are given a C1-continuous, piece-
wise C2 trajectory q(t)t∈[0,T ] (which does not nec-
essarily respect the torque limits). The goal is to
find a time-parameterization of its underlying path
which minimizes the traversal time while respect-
ing the torque limits. A time-parameterization is
a C1-continuous, piecewise C2, increasing function
s : [0, T ′] → [0, T ].

First, we can express q as a function of the param-
eterization s as q = q(s), which in turn yields

q̇ = qsṡ (3)

and
q̈ = qss̈+ qssṡ

2 (4)

Substituting (3) and (4) into (1) yields

M(q)(qss̈+qssṡ
2)+q⊤

s C(q)qsṡ
2+g(q) = τ(s), (5)

The above equation can be rewritten in the following
form

a(s)s̈+ b(s)ṡ2 + c(s) = τ(s),

where
a(s) = M(q(s))qs(s),

b(s) = M(q(s))qss(s) + qs(s)
⊤C(q(s))qs(s),

c(s) = g(q(s)).

Now the torque limits of equations (2) can be ex-
pressed by the 2n equations : for all i ∈ [1, n]

τmin
i ≤ ai(s)s̈+ bi(s)ṡ

2 + ci(s) ≤ τmax
i

Next, if ai(s) ̸= 0, one can write

αi(s, ṡ) ≤ s̈ ≤ βi(s, ṡ),

with

αi(s, ṡ) = (τα − bi(s)ṡ
2 − ci(s))/ai(s)

βi(s, ṡ) = (τβ − bi(s)ṡ
2 − ci(s))/ai(s),

where ταi and τβi are defined by{
ταi = τmin; τβi = τmax if ai(s) > 0

ταi = τmax; τβi = τmin if ai(s) < 0.

Thus the bounds on s̈ are defined by

α(s, ṡ) ≤ s̈ ≤ β(s, ṡ),

where α(s, ṡ) = maxi αi(s, ṡ) and β(s, ṡ) =
mini βi(s, ṡ).

Remark that, if α(s, ṡ) = β(s, ṡ), then there is
only one possible value for s̈, namely, s̈ = α(s, ṡ) =
β(s, ṡ). If α(s, ṡ) > β(s, ṡ), then there is no possible
value for s̈, and the trajectory must be stopped. Thus,
following [2, 13], one defines the maximum velocity
curve γ(s)s∈[0,T ] by

γ(s) = sup{v : ∀v′ < v, α(s, v′) ≤ β(s, v)}.

It can be proved [2] that the minimum-time param-
eterization s is obtained by integrating alternatively
the vector fields β and α in the phase plane (s, ṡ),
while always staying below the curve γ (see Fig. 1).
To find the switching points, i. e. the points where
the integration switches from the vector field β to α
and vice versa, several methods have been proposed,
see section 2.2.3 for a more detailed discussion.

2.2 Implementation details for the fixed-path
algorithm

We give here some implementation details for the
above algorithm that were not clearly available in the
previous works.

2.2.1 Computing the vectors a, b and c

To compute the vectors a, b and c at a given s, it
is actually not necessary to evaluate completely the
matrix M and the tensor C. Using the Recursive
Euler-Newton algorithm [17, 3], one can indeed evalu-
ate directly the needed quantities, that is Mqs, Mqss

and q⊤
s Cqs, without computing explicitly the full M

and C.
Note also that the cases of closed-link mechanisms

and of time-varying structure can be handled within
the same framework using [10].

2.2.2 Including joint velocity limits

Usually, in addition to the torque limits of (2), the
joints must also respect velocity limits of the form:
for all i ∈ [1, n], t ∈ [0, T ]

|q̇i(t)| ≤ q̇max
i . (6)

From equation (3), one has q̇i(s) = (qs)iṡ, which

in turn yields ṡ ≤ q̇max
i

|(qs)i| . Thus, if one defines
the velocity-limits-generated maximum velocity curve
γv(s)s∈[0,T ] by

γv(s) = min
i∈[1,n]

q̇max
i

|(qs)i|
,

then the phase plane trajectory must also always stay
below γv.
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Fig.1 Minimum-time parameterization for a pla-
nar two-links manipulator on a fixed path. The
two links have the same length (0.2m) and mass
(8kg). The torque limits were ±3Nm for joint 1
(proximal) and ±1Nm for joint 2 (distal). The
initial trajectory of the joint values was (t +
0.5, t2 + 2t)t∈[0,1]. A : The (s, ṡ) phase plane :
the maximum velocity curve is plotted in black
dashed line. The red curves represent (a) the tra-
jectory integrated forward from the initial condi-
tion (0, 0) following the vector field β, (b) the tra-
jectory integrated backward from the final condi-
tion (1, 1.1) following α, (c) the trajectory inte-
grated forward from the tangent switching point
(square dot) following β and (d) the trajectory
integrated backward from the tangent point fol-
lowing α. The blue trajectory is the minimum-
time phase plane trajectory obtained by following
successively portions of the red trajectories (a),
(d), (c), (b), in this order. The corresponding
minimum-time parameterization yields a move-
ment duration of 1.2s. B : The torque history
corresponding to the minimum-time parameteri-
zation : red for joint 1 and blue for joint 2. The
dashed red and blue lines represent the torque
limits. The vertical black dashed lines corre-
spond to the switching time instants. Note that,
in agreement with the theory, at least one actua-
tor saturates at every moment in time : actuator
2 between t = 0 and the first switching point,
actuator 1 between the first switching point and
the second switching point (the tangent switching
point), etc. At the tangent switching point (near
t = 1.1), both actuators saturate tangentially to
their constraints (cf. [15]).

In practice, when the phase plane trajectory
touches γv during the integration of α or β then this
trajectory will be allowed to “slide” along γv as long
as the tangent of γv at s is comprised between the
minimum and maximum acceleration vectors defined
by α(s) and β(s), see Fig. 1 and e.g. [8] for more de-
tails. However, we note along with [18] that, by fol-
lowing γv, the algorithm might sometimes get stuck
in a “trap” region. This point is currently under in-
vestigation.

2.2.3 Finding the switching points

In [15], a method is proposed to find the switching
points without explicitly evaluating the maximum ve-
locity curve γ. While this method has helped gaining
insights into the problem at hand, we found, along
with [13], that it has in practice the same complexity
as a direct search along γ, while being less robust to
discretization issues.

To compute γ at a given s, we propose to solve
the quadratic equation αi(s, v) = βj(s, v) in the un-
known v for i ̸= j, which gives (at most) one pos-
itive solution vij(s). Then γ(s) can be defined by
γ(s) = mini,j vij(s). The complexity of this proce-
dure is O(n2).

2.3 The global algorithm

We propose the following algorithm to find a global
(i. e. non-fixed-path) time-optimized, dynamically-
feasible, collision-free trajectory between two config-
urations qinit and qend.

1. find a collision-free path between qinit and qend,
using e. g. a sampling-based planner;

2. time-parameterize this path to obtain a C1-
continuous, piecewise C2 trajectory, then run the
algorithm of section 2.1 to obtain the minimum-
time parameterization q(t)t∈[0,T ] of the underly-
ing path;

3. pick two random points t1, t2 ∈ [0, T ] and gen-
erate a candidate shortcut between these two
points;

4. test if this shortcut is collision-free, if not, return
to step 3;

5. run the algorithm of section 2.1 on the shortcut
to obtain the minimum-time parameterization of
the shortcut path;

6. if the new time duration is smaller than t2 − t1,
then replace the original trajectory portion by
the shortcut;

7. repeat steps 3 to 6 until the allotted time is over.

We now discuss some implementation details.

• In step 3, we generate a candidate shortcut by in-
terpolating, for each i, a 3rd-degree polynomial of
time duration t2 − t1 between (qi(t1), q̇i(t1)) and
(qi(t2), q̇i(t2)). Since a 3rd-degree polynomial has
4 free coefficients and there are 4 linear conditions
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(position and velocity at the beginning and the
end of the shortcut), the interpolation problem is
well-defined.

• In step 5, to ensure the C1-continuity of the re-
sulting trajectory, we use the initial and final val-
ues ṡinit = ṡend = 1 when integrating in the (s, ṡ)
plane (cf. the end of section 2.1).

• Steps 4 and 5 should be switched if the algorithm
of section 2.1 happens to be faster than collision-
checking (for instance in highly cluttered envi-
ronments).

3. Simulation results

We ran simulations on a dynamic model of the 4-
dof Barrett WAM using OpenRAVE [4]. The torque
limits were set at ±10Nm, ±15Nm, ±6Nm, ±6Nm
respectively for the shoulder yaw, pitch and roll joints
and the elbow joint. The velocity limits were set at
±4rad.s−1 for all joints. We used the same reaching-
under-the-table paradigm as in [6].

Instead of step 1 of the global algorithm just pre-
sented, we manually set three intermediate configu-
rations such that a collision-free path can be easily
obtained by interpolating between the initial and fi-
nal configurations and theses via-points (trajectory 1 :
left column of Fig. 2). We then ran steps 2 to 7 of the
presented algorithm as they are. The minimum-time,
dynamically-feasible parameterization of the initial
path (obtained after step 2) had time duration 2.22s
(trajectory 2 : middle column of Fig. 2). The com-
putation time allotted for each execution of the algo-
rithm was 15s on a 2GHz Intel Core Duo computer
with 2GB RAM. Note finally that the algorithm is
currently prototyped in Python : we thus expect a
significant gain in performance after transcription into
C++.

The trajectory obtained from the best execution
of the shortcutting algorithm (trajectory 3) is shown
in the right column of Fig. 2. Six shortcuts were effec-
tively made, out of the 49 attempted within the 15s
time limit (a shortcut was rejected because either it
involved collisions, or was not dynamically feasible or
had a time duration longer than that of the original
portion). The resulting trajectory had time duration
1.03s, which was 46.4% of the time duration before
shortcutting. The velocity and torque profiles for tra-
jectories 2 and 3 are shown in Fig. 3.

Fig. 4 next shows statistics over 100 executions of
the shortcutting algorithm. The average final trajec-
tory duration (± standard deviation) across the 100
runs was 1.21±0.07s (54.5% of the initial fixed-path
minimum-time trajectory). One can observe that, af-
ter about 6 effective shortcuts or about 30 shortcut
attempts, no significant improvements were further
made. Thus, in the present experiment, stopping the
algorithm after about 10s of execution time (instead
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Fig.2 Simulations of a reaching-under-the-table
movement using a dynamic model of the Bar-
rett WAM (a video is available at http://

www.normalesup.org/~pham/shortcuts.mov).
Left : snapshots of the original interpolated
trajectory. Middle : minimum-time parameter-
ization of the original path, with time duration
2.22s. Right : the trajectory obtained from the
best execution of the shortcutting algorithm,
with time duration 1.03s.

http://www.normalesup.org/~pham/shortcuts.mov
http://www.normalesup.org/~pham/shortcuts.mov
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Fig.3 A : velocity and torque profiles for the ini-
tial fixed-path minimum-time trajectory (2.22s).
The red, blue, green and magenta curves repre-
sent respectively the torques of the shoulder yaw,
pitch, roll and the elbow joints. The velocity and
torque limits were plotted in dashed lines. B : ve-
locity and torque profiles for the best trajectory
out of 100 executions of the shortcutting algo-
rithm (1.03s). Note that, in agreement with the
theory, at every moment in time, either a veloc-
ity limit or a torque limit is saturated, except
for some short periods because of discretization
issues.

of 15s as in the current implementation) would not
significantly impair the performances. Note neverthe-
less that, in each run, the current trajectory did not
converge to the global optimal trajectory (which had
time duration 1.03s). One workaround could consist
of restarting the shortcutting algorithm several times
from the initial fixed-path minimum-time trajectory
and choosing the best solution. For instance, if we
put the 100 runs into 10 bins and consider the best
result in each bin, then the average time duration be-
comes 1.12±0.04s, which is very close to the overall
best (1.03s).

A

0 2 4 6 8 10 12 14
Number of shortcuts attempted

0.0

0.5

1.0

1.5

2.0

2.5

Tr
aj

ec
to

ry
 d

ur
at

io
n 

(s
)

B

0 10 20 30 40 50 60 70 80
Number of shortcuts attempted

0.0

0.5

1.0

1.5

2.0

2.5

Tr
aj

ec
to

ry
 d

ur
at

io
n 

(s
)

Fig.4 Statistics over 100 runs. A : average time
duration (± standard deviation) of the trajectory
after k effective shortcuts. The average time du-
ration at the end of the shortcutting algorithm
was 1.21s (54.5% of the original duration). The
dashed horizontal line represents the time dura-
tion of the best of the 100 runs (1.03s). B : aver-
age time duration (± standard deviation) of the
trajectory after k attempted shortcuts, i.e. in-
cluding those rejected because they involved colli-
sions, were not dynamically feasible or had a time
duration longer than that of the original portion.

4. Discussion

We have presented an algorithm to find time-
optimized, dynamically-feasible, collision-free trajec-
tories for robotic manipulators based on two main
ingredients : fixed-path time-minimization under dy-
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namics constraints and shortcuts-based smoothing.
This algorithm was implemented in OpenRAVE and
tested on a dynamic model of the Barrett WAM. The
simulation results show that the algorithm is very ef-
ficient.

We are investigating several heuristics to improve
the performance of the global algorithm, such as :
how to generate better candidate shortcuts between
two configurations (other than simply interpolating a
polynomial as currently done), how to choose random
t1 and t2 in step 3 of the algorithm, how to deal with
the issue of local minima, etc.

Regarding the fixed-path algorithm, there is also
much room for improvements. In particular, the is-
sue of “trap” regions when including the joint velocity
limits (cf. section 2.2.2) is still waiting for a robust
and efficient solution. Taking into account third-order
dynamic constraints, such as jerk limits, is also very
important to avoid torque jumps. Future implementa-
tions of our algorithm will include this aspect, build-
ing e.g. from [16].

Finally, we are planning to test the algorithm on
an actual industrial robot.
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