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Abstract

We investigate the incremental stability properties éfdtochastic dynamical systems. Specifically, we derive
a stochastic version of nonlinear contraction theory thravipes a bound on the mean square distance between
any two trajectories of a stochastically contracting syst&his bound can be expressed as a function of the noise
intensity and the contraction rate of the noise-free systém illustrate these results in the contexts of nonlinear
observers design and stochastic synchronization.
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. INTRODUCTION

Nonlinear stability properties are often considered wébpect to an equilibrium point or to a nominal
system trajectory (see e.g. [1]). By contrastrementalstability is concerned with the behavior of system
trajectorieswith respect to each otheFrom the triangle inequality, global exponential increnag stability
(any two trajectories tend to each other exponentially) istranger property than global exponential
convergence to a single trajectory.

Historically, work on deterministic incremental stahjlitan be traced back to the 1950’s [2; 3; 4]
(see e.g. [5; 6] for a more extensive list and historical ussoon of related references). More recently,
and largely independently of these earlier studies, a nurobeavorks have put incremental stability
on a broader theoretical basis and have clarified the raktdth more traditional stability approaches
[7; 8; 9; 10]. Furthermore, it has been shown that incremestédility is especially relevant in the study
of such problems as observer design or synchronizatiorysisal

While the above references are mostly concerned déterministicstability notions, stability theory
has also been extendeddtwchastiadynamical systems, see for instance [11; 12]. This incluchp®rtant
recent developments in Lyapunov-like approaches [13; dgljwell as applications to standard problems
in systems and control [15; 16; 17]. However, stochastisioas of incremental stability have not yet
been systematically investigated.

The goal of this paper is to extend some concepts and resuitetiemental stability to stochastic dy-
namical systems. More specifically, we derive a stochastision of contraction analysis in the specialized
context of state-independent metrics.

We prove in section Il that the mean square distance betwegnvwo trajectories of a stochastically
contracting system is upper-bounded by a constant aftesnexgial transients. In contrast with previous
works on incremental stochastic stability [18], we consitthe case when the two trajectories are affected
by distinct and independent noises, as detailed in section 1I-B. Theciipity enables our theory to
have a number of new and practically important applicatiddswever, the fact that the noise does
not vanish as two trajectories get very close to each oth#rpreévent us from obtaining asymptotic
almost-sure stability results (see section IlI-B). In gattll-D, we show that results on combinations of
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deterministic contracting systems have simple analogudisel stochastic case. Finally, as illustrations of
our results, we study in section IV the convergence of catitrg observers with noisy measurements,
and the synchronization of noisy FitzHugh-Nagumo oscitlisit

[I. THE STOCHASTIC CONTRACTION THEOREM
A. Background: nonlinear contraction theory

Nonlinear contraction theory [8] provides a set of toolsnalsize the incremental exponential stability of
nonlinear systems, and has been applied notably to obséesegn [19; 20], synchronization analysis [21;
22] and systems neuroscience modelling [23]. Nonlineatracting systems enjoy desirable aggregation
properties, in that contraction is preserved under mangsyy system combinations given suitable simple
conditions [8].

While we shall derive global properties of nonlinear systemany of our results can be expressed in
terms of eigenvalues of symmetric matrices [24]. Given aasgumatrixA, the symmetric part oA is
denoted byA;. The smallest and largest eigenvaluesAqfare denoted by, (A) and A< (A). Given
these notations, a matriA is positive definite(denotedA > 0) if \,.,(A) > 0. Finally, a time- and
state-dependent matriX(x, ¢) is uniformly positive definite if

A6>0 Vx,t Amn(A(x,1)) >0

The basic theorem of contraction analysis, derived in [8h be stated as follows
Theorem 1 (Deterministic contractionlConsider, inR”, the deterministic system

% = f(x, ) (I1.1)

wheref is a smooth nonlinear function satifying standard condgifor the global existence and unique-
ness of solutions (for instance: for &dll€ [0, o), there are constantg and L such thatvt € [0, 7], Vx €
R™: ||f(x, ¢)|| < M + Lifx|| [4]).

Denote the Jacobian matrix éfwith respect to its first variable bgﬁ. If there exists a square matrix
O(x,t) such thatM = ©7® is uniformly positive definite and® = (© +©2 ) ©~! is uniformly
negative definite, then all system trajectories convergerantially to a single trajectory, with convergence
ratesup, ; [Amax(F)| = A > 0. The system is said to beontracting F is called itsgeneralized Jacobian
M its contractionmetric and \ its contractionrate.

B. Settings
Consider a noisy system described by andtochastic differential equation

{ gg(lo)::f(?, t)dt + o(a, t)dW? (11.2)

wheref is aR” x Rt — R” function, o is aR” x R™ — R" matrix-valued function}¥¢ is a standard-
dimensional Wiener process afids a random variable independent of the ndigé. To ensure existence
and unigueness of solutions to equation (11.2), we assumefth all 7" € [0, co)

(Lipschitz conditionthere exists a constaif; > 0 such thatvt € [0,T], Va,b € R"

[f(a,t) — £(b, )] + |lo(a, ) — (b, t)|| < Killa—b]
(restriction on growth)there exists a constati, > 0 such thatvt € [0, 7], Va € R™
£, 8)]1* + [lo(a, )[|* < Ka(1 + ||af|*)

Under these conditions, one can show ([25], p. 105) that texjudll.2) has on|0, c0) a uniqueR"-
valued solutioma(t), which is continuous with probability one.



In order to investigate the incremental stability propertof system (11.2), consider now two system
trajectoriesa(t) andb(t). Our goal will consist of studying the trajectoriest) andb(¢) with respect to
each other. For this, we consider thegmentedsystemx(t) = (a(t), b(¢))?, which follows the equation

- () (757 o) ()
= ”f(x,t);zt+a(x, £)dW 2 | :

x(0) = (a(0),b(0)) = (&1,¢2)

Important remark As stated in the introduction, the systemsand b are driven bydistinct and
independent Wiener processBg’ and W¢. This makes our approach considerably different from [18],
where the authors studied two trajectories driventhms samé~Niener process.

Our approach enables us to study the stability of the systéim ngspect to differences in initial
conditionsand to random perturbations: indeed, two trajectories of aral-litee system are typically
affected bydistinct realizationf the noise. In the deterministic domain, incrementaliitglvith respect
to different initial conditionsand different deterministic inputgincremental Input-to-State Stability or
01SS) has been studied in [9; 10; 26]. Besides, it should bedrnibigt our approach leads very naturally to
nice results on the comparison of noisy and noise-freedi@jes (cf. section I1I-C), which are particularly
useful in applications (cf. section V).

However, because of the very fact that the two trajectorresdaiven by distinct Wiener processes,
one cannot expect the influence of the noise to vanish whemwtbdrajectories get very close to each
other. This constrasts with [18], and more generally, wiindard stochastic stability approaches, where
the noise is assumed to vanish near the origin. The consegsiari this will be discussed in detail in
section IlI-B.

(11.3)

C. Statement and proof of the theorem

We first recall a Gronwall-type lemma
Lemma 1:Let g : [0,00) — R be a continuous functiort; a real number and a strictly positivereal
number. Assume that

Vu,t 0<u<t g(t)—gu) < /t —Ag(s) + Cds (1.4)
Then I
VE>0 g(t) < §+ [9(0) — % e M (11.5)

where[-]" = max(0, -).
Proof See [27]C]
We now introduce two hypotheses
(H1) There exists a state-independent, uniformly positive @efimetric M(t) = ©(t)TO(t), with
the lower-bound? > 0 (i.e. vx,t x"M(t)x > §||x[|*) andf is contracting in that metric, with
contraction rate\, i.e. uniformly,

Amax ((%G(t) + @(t)%) @‘1(15)) < =)

or equivalently, uniformly,

M(t) of + (af> M(t) + iM(t) < —2)\M(t)

da '\ da dt
(H2) tr(o(a,t)"M(t)o(a,t)) is uniformly upper-bounded by a constait



Definition 1: A system that verifie¢H1) and(H?2) is said to bestochastically contractingn the metric
M(t), with rate A and boundC'.

Consider the Lyapunov-like functiovi(x, t) = (a — b)"M(¢)(a — b). Using(H1) and(H2), we derive
below an inequality onZ’V (x, t) where Z denotes the differential generator of thé firocess«(¢) ([11],
p. 15).

Lemma 2:Under(H1) and(H2), one has

Vx,t LV (x,t) < =2AV(x,t) + 2C (11.6)
Proof Let us compute firstZV

vV IV 1 7OV
LV (x,t) = e + 8—f(x t)+ 2tr( (x,t)" @O’(X t)>
d

~ @b (M) @-b)

+ 2(a—b)"M(t)(f(a,t) — f(b,t))
+ tr(o(a,t)'M(t)o(a,t)) + tr(a(b, 1) M(t)o (b, t))

Fix ¢ > 0, then, according to [28], there existsc [a, b] such that
(a—b)" (FM(t)) (a —b) +2(a - b)"M(t)(f(a) - £(b))

dt

= (a—b)" (EM(t) + M(t) 5 (c,t) + Ga(c,t)"M(t)) (a — b)
< —2X\(a—b)"M(t)(a — b) = —2\V(x) (1.7)

where the inequality is obtained by usifig1).

Finally, combining equation (I.7) witlfH2) allows to obtain the desired result

We can now state the stochastic contraction theorem

Theorem 2 (Stochastic contractionAssume that system (11.2) verifig$l1l) and (H2). Let a(¢) and
b(t) be two trajectories whose initial conditions are indepenaé the noise and given by a probability
distributionp(&;, &). Then

vt >0 E((a(t) - b(t))"M(#)(a(t) - b(t))) <
% + e_m/ {(ao - bo)TM(O)(ao —bg) — %} dp(ag, bo) (1.8)
In particular,Vt > 0
E (|a(t) - b@®)]?) < % (% +E (&6 — &)™) (& — &) 6—2”) (11.9)

Proof Let x, = (ag, by) € R*". By Dynkin’s formula ([11], p. 10)
B, V(x(£), £) — V(x0,0) = Ex, / PV (x
Thus one ha¥u,t 0<u<t< oo

B,V (X(t), £) — By, V(x zm/zv

< B, / 20V (x(s), 5) + 2C)ds (11.10)



— /t(—QAEXOV(x(s), s)+2C)ds (1.11)

where inequality (11.10) is obtained by using lemma 2 andadityu (11.11) by using Fubini’s theorem
(sinces — E,, V(x(s), s) is continuous onu, t|, one hasfj| — 2)\E,, V(x(s),s) + 2Cds < 0).

Denote byg(t) thedeterministioquantityE,, V' (x(t)). As remarked abovey(t) is a continuous function
of ¢. It then satisfies the conditions of the Gronwall-type lemimand as a consequence

¢ C1" on
Vi >0 EXOV(X(t),t) < X + V(Xo,O) — X e

which leads to (11.8) by integrating with respect (tay, by). Next, (11.9) follows from (11.8) by observing
that

/ [(ao —bo)"M(0)(ag — bg) — g] ' dp(ag, by)

S /(ao — bo)TM(O)(aO — bo)dp(ao, bo)
= E((& - &)"™™M(0)(& - &))

and
la(t) = b(®)[|* < =(a(t) — b(t))"M(t)(a(t) - b(t)) O

[1l. REMARKS
A. “Optimality” of the mean square bound

Consider the following linear dynamical system, known as @rastein-Uhlenbeck (colored noise)
process
da = —Xadt + odW (1.1)

Clearly, the noise-free system is contracting with ratand the trace of the noise matrix is upper-
bounded byr2. Leta(t) andb(t) be two system trajectories starting respectively,adndb, (deterministic
initial conditions). Then by theorem 2, we have

ve>0 E((at)—b())?) < U; + [(ao —bg)? — U;] e M (11.2)

Let us assess the quality of this bound by solving directlyagign (Ill.1). The solution of equation
(1.1) is ([25], p. 134)

¢
a(t) = age™ + 0/ DA (s) (111.3)
0

Compute next the mean square distance between the two orégsat(¢) and b(t)
E((a(t) = b(t))*) = (ao—bo)*e™"

+ o’E (( /0 t e’\(s_t)dwl(s))2)



0'2 0'2 +
S T + |:(CL(] — b0)2 — 7:| 672)\15
The last inequality is in fact an equality whém, — by)* > “72 Thus, this calculation shows that the
upper-bound (Il1.2) given by theorem 2 is optimal, in the setthat it can be attained.

B. No asymptotic almost-sure stability
From the explicit form (111.3) of the solutions, one can deduhat the distributions af(¢) and b(t)
converge to the normal distribution/ (0 2) ([25], p. 135). Sinceu(t) andb(t) are independent, the

72X
distribution of the differencex(t) — b(¢) will then converge ta4” (0, "—f) The last observation shows
that one cannot — in general — obtamost-surestability results.

Indeed, the main difference with the approaches in [16; BJ;liés in the term2C'. This extra term
comes from the fact that the influence of the noise does naslvamhen two trajectories get very close
to each other (cf. section II-B). It prevent®V (x(¢)) from being always non-positive, and as a result,
V(x(t)) is not alwaysnon-increasing Thus, V' (x(t)) is not — in general — a supermartingale, and one
cannot then use the supermartingale inequality (or itsatians) to obtain asymptotic almost-sure bounds,
as in ([11], pp. 47-48) or in [16; 17; 18].

However, if one is interested iimite timebounds then the supermartingale inequality is still ajhlie,
see ([11], p. 86) for details.

C. Noisy and noise-free trajectories
Consider the following augmented system

ix= (100 ) (0 o ) (i ) -

f(x, )dt + o (x, t)dWaq (I11.4)

This equation is the same as equation (I1.3) except thattbgstem is not perturbed by noise. Thus
V(x) = |la — bl||? represents the distance between a noise-free trajectatyaanoisy one. All the
calculations are the same as in section 1I-C, withbeing replaced by”/2. One can then derive the
following corollary (for simplicity, we consider the caséidentity metric; the general case can be easily
adapted)

Corollary 1: Assume that system (I1.2) verifigsll) and (H2) with M = I. Let a(¢) be anoise-free
trajectory starting at, and b(¢) a noisy trajectory whose initial condition is independent of theseo
and given by a probability distributiop(&s). Thenvt > 0

E (Ja(t) ~ b(O)]Y) < -+ E (Jlap ~ &) e (115)
Remarks
« One can note here that the derivation of corollary 1 is onlympged by our initial choice of
consideringdistinct driving Wiener process for tha- and b-systems (cf. section 1I-B).

. Corollary 1 provides a robustness result for contractingesys, in the sense that any contracting
system isautomatically protected against noise, as quantified by (l1l.5). This sthess could be
related to the exponential nature of contraction stability

D. Combination properties

Stochastic contraction inherits naturally from deterisiici contraction [8] its convenient combination
properties. Because contraction is a state-space conceptpsoperties can be expressed in more general
forms than input-output analogues such as passivity-begeibinations [29].



It should be noted that, in the deterministic domain, coratiam properties have been obtained for
0ISS systems [10; 26] (for the definition 6fSS, see section 1I-B).
Consider two connected systems

dX1 = fl(Xl, Xa, t)dt + 0'1(X1, t)dWl
dXQ = fQ(Xl, X9, t)dt + UQ(XQ, t)sz

where system (i = 1, 2) is stochastically contracting with respect; = © ©,, with rate\; and bound
C; (here,M; and ©; are set to be constant matrices for simplicity; the casenoé-varying metrics can
be easily adapted).

Assume that these systems are connecteddgative feedbacB0], i.e. the Jacobian of their coupling
matrices verify®,J,0,' = —k®,JT ©;', with k£ a positive constant. The Jacobian matrix of the
augmented noise-free system is given then by

J_ J —kO;'0,J] 0,0,
J21 J2

Consider the coordinate transfor@® = ©: 0 associated with the metridl = 670 > 0.
0 VkO,

After some calculations, one has

0y [ (edert), 0
(eJo )5 = ( 0 (92‘]2@2_1)5
< max(—A1, —A2)I  uniformly (111.6)

The augmented system is thus stochastically contractirtgenmetricM, with rate min(\;, A2) and
boundC; + kCs.
Similarly, one can show that (witking(A) denoting the largest singular value Af)

« Hierarchical combination: If J;;, = 0 andsing?(0,J,,0;') < K, then the augmented system is
stochastically contracting in the metdd,, with rate (A +X2— /A7 + A3)) and bound’, + 2022122

_ 2212
wheree = \/ T2

. Small gains: DefineB, = 1 <ﬂ®2J21®;1 + (®1J12®;1)T>. If there existsy > 0 such that

sing?(B,) < A1\, then the augmented system is stochastically contractirtermetricM.,, with
boundC; + vC5 and rate) verifying

2
A > Al ‘g Az _ \/(Al g A2) + sing?(B,) (11.7)

Taken together, the combination properties presentedesddtonwv one to build by recursion stochastically
contracting systems of arbitrary size.

V. SOME EXAMPLES
A. Effect of measurement noise on contracting observers
Consider a nonlinear dynamical system
x = f(x,1) (IV.1)

If a measuremeny = y(x) is available, then it may be possible to choose an outputtinje matrix
K(¢) such that the dynamics

x=f(x,1) + Kt)(y —y) (IV.2)



is contracting, withy = y(x). Since the actual state is a particular solution of (IV.2), any solutiok
of (IV.2) will then converge towards exponentially.

Assume now that the measurements are corrupted by additige noise”. In the case dinear
measurement, the measurement equation becgme¥l(¢)x + X(¢)n(t) wheren(t) is a multidimensional
“white noise” andX(t) is the matrix of measurement noise intensities.

The observer equation is now given by the following Ktochastic differential equation (using the
formal rule dW = ndt)

d% = (F(%, 1) + K () (H(t)x — H)X))dt + K()S(t)dW (IV.3)

Next, remark that the solutiox of system (I1V.1) is a also a solution of the noise-free versbsystem
(IV.3). By corollary 1, one then has, for any solutianof system (IV.3)

C
< =

vz 0 E (%) -x(0)]?) < 5

+ || %o — Xo||Pe M (IV.4)

where O (x.1)
. X7
A= lgtf )\max <8—X — K(t)H(t)) ‘

C =suptr (S(t)"K()"K()Z(1))

t>0

Remark The choice of the injection gaiK(¢) is governed by a trade-off between convergence speed
(M) and noise sensitivity({/)\) as quantified by (IV.4). More generally, the explicit cortgttion of the
bound on the expected quadratic estimation error given\ég)Yimay open the possibility aheasurement
selectionin a way similar to the linear case. If several possible measents or sets of measurements can
be performed, one may try at each instant (or at each stepjisceete version) to select the most relevant,
i.e., the measurement or set of measurements which will degtibute to improving the state estimate.
Similarly to the Kalman filters used in [31] for linear systgnthis can be achieved by computing, along
with the state estimate itself, the corresponding boundsherexpected quadratic estimation error, and
then selecting accordingly the measurement which will mire it.

B. Synchronization of noisy FitzHugh-Nagumo oscillators

We analyze in this section the synchronization of two noiggHugh-Nagumo oscillators (see [21] for
the references). The interested reader is referred to (824 fmore complete study.
The dynamics of two diffusively-coupled noisy FitzHughdueno oscillators is given by

dl}i = (C(Ui + w; — %U? + IZ) + ]{?(Uo — Ui))dt + O'dWl

1 0 -1 O
1

wherei = 1,2. Letx = (vi,wi, vz, w2)" andV = 2 ( 0 0 —1

). The Jacobian matrix of the
projected noise-free system is then given by

c—&;@—k c
—1/c —b/c

Thus, if the coupling strength verifiels > ¢ then the projected system will be stochastically con-
tracting in the diagonal metridI = diag(1,c) with rate min(k — ¢,b/c) and boundo?. Hence, the
average absolute difference between the two membrane tiadéejr; — v-| will be upper-bounded by
o/+/min(1, c) min(k — ¢, b/c) after exponential transients (see Fig. 1 for a numericalkition).
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Fig. 1. Synchronization of two noisy FitzHugh-Nagumo oscillators. L&ft:pmembrane potentials of two coupled noisy FN oscillators.
Right plot: absolute difference between the two membrane potentials.
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