
Departure and Conflict Management in
Multi-Robot Path Coordination

Puttichai Lertkultanon, Yang Jingyi, Hung Pham, and Quang-Cuong Pham
ATMRI, School of Mechanical and Aerospace Engineering

Nanyang Technological University, Singapore
Email: cuong.pham@normalesup.org

Abstract—This paper addresses the problem of multi-robot
path coordination, considering specific features that arise in
applications such as automatic aircraft taxiing or driver-less
cars coordination. The first feature is departure events: when
robots arrive at their destinations (e.g. the runway for take-
off), they can be removed from the coordination diagram. The
second feature is the “no-backward–movement” constraint: the
robots can only move forward on their assigned paths. These
features can interact to give rise to complex conflict situations,
which existing planners are unable to solve in practical times.
We propose a set of algorithms to efficiently account for these
features and validate these algorithms on a realistic model of
Charles de Gaulle airport.

I. INTRODUCTION

Consider n robots whose tasks are to move from their initial
positions pstart

i to their respective goal positions pgoal
i , where

i ∈ {1, 2, . . . , n}. Suppose furthermore that their paths from
pstart
i to pgoal

i are fixed and do not involve any collision with
the environment. Finding the coordinated motions of the robots
to move along their paths while avoiding mutual collisions is
a classical problem robotics, known as the multi-robot path
coordination problem.

This problem arises in many contexts. In some multi-robot
motion planning instances, the unconstrained problem (i.e.
when the paths are not fixed) is intractable, in particular
because of the high dimensionality of the problem itself, such
that the only practical solution is to decouple it into two
steps [1], [2], [3]: (i) find the paths for each robot indepen-
dently; (ii) solve the path coordination problem with the paths
found in (i) being fixed. In some other applications, the robots
have to move along predefined “tracks”, e.g. driver-less cars on
city streets or automatic aircraft taxiing on airport tracks. Here,
the constrains of “staying on the track” makes unconstrained
motion planning inapplicable. A more natural solution consists
of (i) finding the paths for each robot independently using, e.g.
graph search; (ii) solving the path coordination problem with
the paths found in step (i).

In this paper, we consider the multi-robot path coordination
problem with automatic aircraft taxiing as an intended applica-
tion (see Fig. 1 for an application scenario at Charles de Gaulle
(CDG) airport in Paris, France). This application displays two
specific features. The first feature is departure events: when
robots arrive at their destinations (e.g. the runway for take-
off), they can be removed from the coordination diagram,
resulting in a change of the structure of the coordination

(a)

(b)

Fig. 1: (a) An actual map of the Charles de Gaulle (CDG) airport in Paris,
France. (b) A simplified map of the airport used in the simulations presented in
this paper. The figure includes paths of 25 aircraft, shown in different colors.
Squares indicate start positions and stars indicate goal positions. A video of
a coordination solution of 25 aircraft computed by the proposed planner can
be found at https://youtu.be/hfJeUKpeeD0.

problem, such as its dimensionality. The second feature is
the “no-backward-movement” constraint: the robots can only
move forward on their assigned paths. This constraint also
arises in driver-less cars applications: while reversing a car is
possible, it should be avoided in normal driving. Furthermore,
these features can interact to give rise to complex conflict
situations, which existing planners are unable to solve in
practical times. The objective of this paper is to develop a
set of algorithms to address (a) departure events, and (b) the
“no-backward-movement” constraint in the multi-robot path
coordination problem. These algorithms significantly improve
planning time and make coordinated motion planning suitable
for real-time taxiing applications.

The rest of the paper is organized as follows. In Section II,
we briefly review the multi-robot motion planning problem
and some of its applications. In Section III, we recall the
main concepts of path coordination. In Section IV, we present
our main contributions, namely, a set of new algorithms to
handle departure and conflicts, which are specifically caused



by the “no-backward-movement” constraint. In Section V,
we present simulation results based on a realistic model of
Charles de Gaulle airport. Finally, in Section VI, we discuss
the advantages and drawbacks of our approach and sketch
some future research directions.

II. LITERATURE REVIEW

Approaches to the problem of multi-robot motion planning can be
classified as centralized or decentralized. In the centralized approach,
a central computer receives position information, computes the mo-
tion plans, and sends the commands to all robots. On the other hand,
in the decentralized approach, each robot computes its own movement
based on the information at its disposal.

In the context of aircraft taxiing, the centralized approach is
currently in use in most airports (air traffic controllers play the
role of the central computer), which prompts us to focus on this
approach in this paper. Within the centralized approach, one can
further distinguish decoupled methods, which we have mentioned
previously, from non-decoupled methods, where trajectories (paths
and timings) are computed in a single step.

A. Non-Decoupled Methods
Applying classical robot motion planning methods, such as

probabilistic roadmap (PRM) [4] or rapidly-exploring random tree
(RRT) [5], directly to the product configuration space is highly
inefficient. Therefore, most non-decoupled methods are found in the
operation research literature, and are based in particular on Mixed
Integer Linear Programming (MILP).

In [6], [7], Marı́n formulated the problem as a multi-commodity
flow network model, which is then solved via MILP. In particular, a
planning horizon is first defined and then discretized into a number
of intervals with the horizon often lasts 30 min while the intervals
is approximately 30 s. Then a spatial-time graph is constructed from
the original spatial graph by creating multiple instances of each node
corresponding to the number of time interval. The author then solved
the resulting network flow problem with constraints via CPLEX. This
formulation has the ability to consider general objective function.
Note that recent developments on Lagrangian decomposition [7] yield
significant improvements in terms of computation time.

A different formulation that also utilizes MILP was reported in [8].
Here, no time-discretization is required. Instead, binary variables
indicate the order with which aircraft pass through a given landmark.
The authors reported that their implementation can plan motions for
30 aircraft in a reasonable amount of time (less than 100 s), but
computation time increased significantly (more than 1000 s) for 50
aircraft.

B. Decoupled Methods
In [1], O’Donnell and Lozano-Pérez were the first to introduce the

idea of coordination diagram, which encodes the relative motions of
the robots on their assigned paths (see Section III-A for more details).
The authors then proposed to compute the obstacle regions in the
coordination diagram explicitly via discretization and subsequently
to find a collision-free path by a greedy algorithm.

In [3], Siméon et al. considered the problem of multiple mobile
vehicles moving along straight lines or arcs. This particular path
geometry allows them to efficiently compute the bounding box
representation of the obstacle regions in the coordination diagram.

In [9], Peng and Akella considered the problem of time-optimal
path coordination subject to velocity and acceleration constraints.
The authors formulated the problem using Mixed Integer Nonlinear
Programming and were able to compute sub-optimal but feasible
coordinations.

In [2], Svetska and Overmars introduce the idea of roadmap
coordination. Instead of moving on an assigned path, a robot can
move within a roadmap. The coordination diagram then becomes

a composite roadmap. This can be seen a generalization of both
the non-decoupled and decoupled methods: if the roadmaps are
infinitely dense, then roadmap coordination is equivalent to the
former approach; if each roadmap contains only one path, then
roadmap coordination is equivalent to the latter. Next, using roadmap
coordination, it is possible to decompose the global coordination
problem into several connected components.

More recently, in [10], Solovey et al. used RRT to find collision-
free paths in the coordination diagram and obtained promising results
in terms of computation time.

C. Specificity of Our Approach

Our approach is inscribed within the coordination dia-
gram framework. In particular, as in [10], we use RRT to
find collision-free paths in the coordination diagram. Our
specificity consists of the departure and conflict management
features. As we shall demonstrate, taking these features into
account significantly improves the performance with respect
to using a vanilla motion planner. Note that the development
presented here can be easily combined with existing decoupled
planning heuristics (e.g. roadmap coordination [2]).

In absence of standardized test cases, it is difficult to
establish quantitative comparisons with the non-decoupled
approaches based on MILP discussed previously. Indeed, the
hardness of a motion planning instance not only depends
on the number of aircraft, but more fundamentally, on the
existence of “narrow passages”. Our problem instances are
associated with a large number of shared tracks and potential
deadlocks, yielding particularly narrow passages in the co-
ordination diagram, which are hard to overcome without the
proposed conflict management.

III. BACKGROUND: MULTI-ROBOT PATH COORDINATION
WITHOUT BACKWARD MOVEMENTS

A. Coordination Diagram

Consider n robots traveling on n given paths P1, P2, . . . , Pn

with path lengths of sgoal
1 , sgoal

2 , . . . , sgoal
n , respectively. The

positions of the robots on their respective paths can be given
by an n-tuple q = (s1, s2, . . . , sn), where si ∈ [0, sgoal

i ], 1 ≤
i ≤ n. Thus, one can represent this vector, which we will
refer to as a configuration, as a point in an n-orthotope
C := [0, sgoal

1 ] × [0, sgoal
2 ] × . . . × [0, sgoal

n ], also called the
coordination diagram (CD) [1], [2], [3].

As two paths Pi and Pj may intersect or even share some
track segments, robots i and j may collide with each other
while traversing their paths. For simplicity, robots are assumed
to be identical and are represented as disks of radius r/2. One
can thus define the obstacle set in C as

O = {q | ∃i, j, ‖pi(si)− pj(sj)‖2 ≤ r}, (1)

where pi(s) is the 2D physical position of the robot i when
it has traveled a distance s along its path.

The problem of path coordination—finding the motions
for all robots along their paths so that they (i) start from
the origin of their paths; (ii) eventually reach the end of
their paths; and (iii) never collide with one another—can
now be cast as a classical motion planning problem: find



(a) (b)

Fig. 2: (a) Three robot paths in the physical map. Squares are the start positions
and Stars are the goal positions. Note that robots 1 and 2 share a common
segment of their paths, on which they travel in opposite directions. (b) The
corresponding coordination diagram. The obstacle induced by the shared path
segment is depicted in dark gray. Note that for simplicity, the collision radius
in this case was supposed to be very small. Otherwise, the obstacle would be
thicker. The search tree is depicted in green and the solution path is highlighted
in red.

a collision-free continuous path between (0, 0, . . . , 0) and
(sgoal

1 , sgoal
2 , . . . , sgoal

n ) in the CD. Fig. 2 shows an example
of coordination diagram and a search tree constructed for a
problem with three robots.

The classical motion planning problem can be solved by any
existing geometric motion planning algorithms [11]. Here we
use a rapidly-exploring random tree (RRT) planner [5]. Briefly,
RRT iteratively grows a tree rooted at the start configuration
qstart := (0, 0, . . . , 0). At each planning iteration, a random
configuration qrand is sampled within the free space C \ O .
Next, one determines amongst the existing tree vertices, the
vertex qnear that is the nearest neighbor to qrand, according
to some distance function dist. Finally, one tries extending
the tree from qnear towards qrand, creating thereby a new
tree vertex qnew. The algorithm terminates when either the
time limit is reached or the goal configuration qgoal :=

(sgoal
1 , sgoal

2 , . . . , sgoal
n ) can be connected to the tree. For more

details and variations, the reader is referred to [5].

Collision Checking: When extending the tree from qnear to-
wards qrand, one needs to check if the segment (qnear, qrand)

1

is collision-free. For this, one checks whether all discretized
configurations q along the segment are collision-free.

Consider a configuration q = (s1, s2, . . . , sn). To check
whether q is collision-free, one puts all the robots to the phys-
ical positions defined by the respective si, i ∈ {1, 2, . . . , n}.
Then one checks for all pairs (i, j) whether the robots i and
j are in mutual collision, according to Eq. (1). Note that the
obstacle set is thus not necessarily explicitly constructed in
the coordination diagram.

B. Motion Planning without Backward Movements

Consider a straight path from q = (s1, s2, . . . , sn) to
q′ = (s′1, s

′
2, . . . , s

′
n) in C . The “no-backward-movement”

constraint is equivalent to the monotonicity of the path. There-
fore, the path satisfies the “no-backward-movement” constraint
if and only if q � q′, where � is a component-wise inequality
between two vectors.

1In case dist(qnear, qrand) > ε, where ε is the maximum extension
distance, one considers instead the segment (qnear, qclose), where qclose is
the configuration on the segment (qnear, qrand) at distance ε from qnear.

To enforce this constraint in RRT, one should attempt
extension from qnear to qrand only when qnear � qrand. A simple
way to implement this filter is to modify the distance function
(used in the nearest neighbor search) as

dist(q → q′) =

{
‖q − q′‖ if q � q′

+∞ otherwise (2)

such that any q � qrand will never be selected as the nearest
neighbor of qrand.

IV. DEPARTURE AND CONFLICT MANAGEMENT

A. Departure Management

We say that a robot departs from the CD when it reaches
its goal position. This terminology is in line with the aircraft
taxiing context, where aircraft indeed depart (take off) when
they reach their goal positions (the runway) or wheel-locked
in the gate where it would not block the way of other aircraft.
Once a robot has departed, it “disappears” and is no longer
taken into account in collision checks, thereby simplifying the
motion planning problem.

In the CD C , a departure of a robot corresponds to the
search tree reaching a configuration q on an n−1-dimensional
face of C . When this happens, we continue the planning on
the respective face of C . This can be seen as initiating a
new search tree, in n − 1-dimensional space, rooted at the
intersection point of the previous tree and the face. When
another robot reaches its goal position, we continue the same
process, i.e. planning in the n − 2-dimensional space and so
on.

Virtual Box: If one samples new configurations within the CD
C , one can never reach the faces of C since the faces have
measure zero relative to C . Therefore, we propose to sample
new configurations within a larger n-orthotope C := [0, s1]×
. . . × [0, sn], where si ≥ sgoal

i , i ∈ {1, 2, . . . , n}. We call C
the virtual box.

When a sampled configuration qrand is in C \C , we first find
qnear as the tree vertex that is closest to qrand as previously.
Next, when extending the tree from qnear towards qrand, we
stop at qcropped, defined as the intersection of the segment
(qnear, qrand)

2 with the boundary of C , see Fig. 3.
The size of the virtual box, i.e. the values si, also affect the

performance of the planner. The greater the values si, the more
the tree is attracted towards the faces of C and the relative
value si/s

goal
i determine the attractiveness of the face i. These

attractiveness ratio can also be seen as priority given to robots
as the greater ratio, the more likely the robot will reach its
goal first.

In our implementation, we chose s1 = s2 = . . . = sn =
γmaxi(s

goal
i ), where γ ≥ 1 is a design parameter. Choosing

an n-orthotope with equal side lengths (i.e. a cuboid) as the
virtual box favors the robots with shorter path lengths since the
attractiveness ratio increases with shorter path lengths. Thus,

2Note that for simplicity of the discussion, here we ignore the maximum
extension distance ε. This maximum extension distance must also be taken
into account in the actual implementation.



(a) (b)

Fig. 3: Departure management. (a) At iteration k, a newly sampled config-
uration qrand falls outside C . The interpolated path is thresholed at qcropped,
which lies on a face of C (shaded in orange). (b) From iteration k+1 on, the
algorithm continues planning on the face until the search tree reaches qgoal.

(a) (b) (c)

Fig. 4: Three types of elementary conflicts: (a) Junction (type-J); (b) Shared
(type-S); (c) Deadlock (type-D).

the algorithm will tend to make those robots reach their goals
first and “clear up the floor” more quickly, simplifying thereby
the motion planning. Regarding the value γ, we found through
extensive simulations that γ = 1.2 yields the best result.

B. Conflict Management

An elementary conflict happens when two robots, traversing
their own assigned paths, have potential to collide with each
other. This, in turn, happens when their paths intersect, either
at a point or a long a segment. There are three types of
elementary conflicts:

Junction (J): two robot paths cross each other at a point;
Shared (S): two robot paths share a path segment where
both robots travel in the same direction; and
Deadlock (D): two robot paths share a path segment where
the two robots travel in opposite directions.

The scenarios of elementary conflicts are depicted in Fig. 4.
A sampling-based planner, equipped with a collision

checker3, is able to explore the configuration space without
the need to explicitly computing the obstacle set, which is
computationally expensive. However, we found out that:
� The presence of narrow passages—regions in C with rel-

atively small volumes that when removed, increase the
number of connected component in C —greatly affects
the performance of the planner. While it is possible to
use some heuristics to alleviate the problems arisen from
narrow passages (see, e.g. [12]), they often require some
assumptions on the obstacle set O . Therefore, it is better
to have at least partial knowledge of O in order to devise
policies to overcome narrow passages.

� The obstacles in C that are induced by elementary conflicts
can be closely described by simple geometric shapes and

3A collision checker is a function that takes a configuration as its input and
return a Boolean value indicating if the input configuration is in collision.

(a) (b)

Fig. 5: Deadlock obstacle OD . (a) The black diagonal line represents
configurations where actual collisions occur. The red region is a trapped
region where there exists no collision-free and monotonically increasing path
that connects a configuration inside to the goal. (b) The waiting areas W1,
W2, and W3. When the search tree is extended from a configuration inside
a waiting area, one robot should be made temporarily inactive (i.e. waiting)
until the other robot has exited the deadlock path segment.

(a) (b) (c)

Fig. 6: Complex deadlocks. (a) The situation consists of three robots. (b) There
are three elementary deadlock obstacles in C , depicted as gray rectangular
prisms (not to scale). (c) The three elementary deadlock obstacles induce a
complex deadlock shown in red.

do not require extensive computational resource to compute
and store them.

Therefore, our approach is to compute the obstacle sets
induced by conflicts and to devise policies to overcome those
obstacles.

1) Representing Conflicts in C : For simplicity of discus-
sion, we suppose that the collision radius r is very small. In
practice, the radius r can be taken into account by padding
the obstacle set by the value r.

Consider when there are two robots, r1 and r2, in the scene.
The paths of the two robots are parameterized by parameters
s1 ∈ [0, sgoal

1 ] and s2 ∈ [0, sgoal
2 ], respectively.

Junction: The paths intersect at (s1, s2) = (sJ1 , s
J
2 ). The

obstacle set OJ is described as OJ = {(sJ1 , sJ2 )}.
Shared: Suppose the robot r1 is in the shared segment when
s1 ∈ IS1 := [sS,start

1 , sS,end
1 ] and the robot r2 is in the shared

segment when s2 ∈ IS2 := [sS,start
2 , sS,end

2 ]. The obstacle set
is described as OS = {(s1, s2) | s1 ∈ IS1 , s2 ∈ IS2 , s1 =
s2 + (sS,start

1 − sS,start
2 )}4, which is a straight line connecting

the points (sS,start
1 , sS,start

2 ) and (sS,end
1 , sS,end

2 ) in C .
Deadlock: Suppose the robot r1 is in the shared segment when
s1 ∈ ID1 := [sD,start

1 , sD,end
1 ] and the robot r2 is in the shared

segment when s2 ∈ ID2 := [sD,start
2 , sD,end

2 ]. The obstacle set
is described as OD′

= {(s1, s2) | s1 ∈ ID1 , s2 ∈ ID2 , s1 +
s2 = (sD,start

1 + sD,start
2 )}, which is a straight line connecting

(sS,start
1 , sS,end

2 ) and (sS,end
1 , sS,start

2 ) in C .

4Note that since all the paths are parameterized by their own path lengths,
the intervals I1 and I2 have the same length. This implies sS,start

1 − sS,start
1

and sS,end
1 − sS,end

1 , and so on.



Note, however, that the deadlock obstacle OD′
also creates

a virtual obstacle or a trapped region (the red region in Fig. 5).
For any configuration (s1, s2), although they are collision-free,
there exists no monotonically increasing path that connects
(s1, s2) to (sgoal

1 , sgoal
2 ). Therefore, the search tree should not

extend itself to any configuration inside any trapped region.
Also, the area above OD′

(the blue region in Fig. 5) is
not reachable due to the “no-backward-movement” constraint.
Therefore, we propose to describe a deadlock obstacle as
OD = ID1 × ID2 , which is the Cartesian product of the two
intervals.

When there are n robots in the scene, the obstacles are
simply protrusions of the previously discussed obstacle sets
into the new dimensions. For example, from the scenario in
Fig. 2(a), the deadlock obstacle is a rectangular prism ID1 ×
ID2 × [0, sgoal

3 ].
2) Resolving Conflicts: Here we only discuss a policy to

overcome deadlock obstacles since they have the most volume
compared to obstacles of other types hence highest potential
to create narrow passages.

Since one robot can be inside a deadlock path segment
at a time, when one robot, say r1, has already entered the
deadlock, the other, say r2, needs to wait until r1 robot has
come out. Also, r2 should be waiting only when it is near the
entrance of the deadlock segment. Geometrically, this policy
leads us to define waiting areas W1, W2, and W3 in C , as
depicted in Fig. 5(b). When the search tree is extended from
a configuration inside a waiting area, one robot should be
made temporarily inactive to prevent future collision. If the
tree is extended from qnear ∈W1, the robot r1 should be made
waiting, i.e. the tree extension will go vertically. In case of
W2, the robot r2 should be waiting, while in case of W3, the
user has freedom to choose the waiting robot. Note that the
dimension of the waiting area can be adjusted to suit different
applications.

3) Complex Deadlocks: Apart from elementary deadlock
obstacles, as discussed previously, there exists complex dead-
locks, i.e. ones that involve more than two robots. Note that
this complex deadlock is not equivalent to multiple elementary
deadlocks since it is not a subset of any combination of
elementary obstacles.

To see this, consider a situation depicted in Fig. 6(a) in
which there are three robots. There is a deadlock between
every possible pair of robots. Each of the conflicts induces
a deadlock obstacle in C that is a 3-orthotope. However, in
this case, the arrangement of the three 3-orthotopes is such
that it induces a new trapped region not inside any existing
elementary deadlock obstacles (red region in Fig. 6(c)). We
call this trapped region a complex deadlock as it is induced by
multiple elementary obstacles. To prevent the search tree from
being stuck in a complex deadlock, we present an algorithm
to compute a complex deadlock obstacle induced by a cluster
of elementary deadlock obstacles.

Consider an exemplary 2D coordination diagram with two
deadlock obstacles, OD

1 and OD
2 , connected at their corners,

as depicted in Fig. 7(a). In this case, there exists a complex

deadlock OD
3 , shaded in red. To compute OD

3 , we need to
compute shadows produced by each elementary obstacle. Then
a complex deadlock will be an intersection of shadows. More
precisely, suppose there is a light source placed at +∞ of
s1-axis of C . Then OD

1 will produce a shadow S1 and OD
2

will produce a shadow S3 (see Fig. 7). Configurations in these
shadows can be seen as being blocked in s1-direction. Suppose
there is another light source placed at +∞ of s2-axis then we
compute shadows S2 and S4. Similarly, configurations in S2

or S4 can be seen as being blocked in s2-direction. Finally, the
complex deadlock is obtained as an intersection of shadows
from different direction. This is because a deadlock is, by
definition, a region that is blocked in every direction. In this
example, OD

3 = S1 ∩ S4.
Note that the proposed procedure of computing complex

deadlocks can be easily generalized to handle complex dead-
locks or any dimension. For example, consider an obstacle de-
scribed by a Cartesian product [s′1, s

′′
1 ]×[s′2, s′′2 ]×. . .×[s′k.s′′k ].

The shadow of this obstacle in s1-direction is simply described
as [0, s′1]× [s′2, s

′′
2 ]× . . .× [s′k.s

′′
k ].

V. SIMULATIONS

A. Planning Pipeline

We propose the following pipeline to address multi-robot
path planning problems:
Step 1 Plan robot paths in the physical map independently

using, e.g. a graph search algorithm;
Step 2 Find a collision-free path in the coordination diagram

using the set of algorithms developed previously;
Step 3 Post-process the path.

In the post-processing step, one can first use shortcutting
algorithms [13], [14] to smoothen the path in the CD. Then
one can time-parameterize the physical paths, i.e. impose
velocity and acceleration constraints, by using algorithms such
as Time-Optimal Path Parameterization (TOPP) [15] 5. If the
commands are to be transmitted by Air Traffic Controllers, one
can also impose the switch times (the time duration between
two acceleration switches) to be always larger than some
predefined minimum value [14].

B. Simulation Results

Here we compare performance of four variants of the RRT
planner [5] in coordination scenarios on the CDG airport (see
Fig. 1) involving 2 to 25 aircraft. A video of a coordination
solution of a problem with 25 aircraft can be found at
https://youtu.be/hfJeUKpeeD0. All the simulations were
run on a 2.2GHz laptop running Ubuntu.

RRT Variants: The four planners are as follows:
1) Vanilla RRT: This planner is without handling of departure
events (virtual box) and conflict management. After each suc-
cessful extension of the search tree, the planner will attempt to
connect the newly added tree vertex to the goal configuration
via a straight path with a probability pbias.

5Note that the time-parameterizability also depends on the geometry of the
path in the CD (the readers are referred to [15] for more details).



(a) (b) (c)

Fig. 7: Complex deadlock computation. (a) There are two elementary obstacles OD
1 and OD

1 , which are connected at their corners. These elementary obstacles
induce a complex deadlock OD

3 , shaded in red. To compute OD
3 , we compute shadows of OD

1 (see (b)) and shadows of OD
1 (see (c)). Then the complex

deadlock is the non-empty intersection between shadows of different directions. In this case, OD
3 = S1 ∩ S4.

2) RRT-DM: This is an RRT planner with only the Departure
Management feature, i.e. the virtual box heuristic.
3) RRT-CM: This is an RRT planner with only the Conflict
Management feature. Since the virtual box heuristic is not
used, there is also a connection attempt after each successful
tree extension as in the vanilla RRT.
4) RRT-DCM: This is an RRT planner with both the departure
management and conflict management features.

In the simulations, all variants used the same maximum
extension distance (ε). The probability pbias (for Vanilla RRT
and RRT-CM) was set to 0.2.

Problem Settings: Let 2 ≤ n ≤ 25 be the number of robots
in the scene. For each n, we first randomly sampled n pairs
of start and goal positions. Then for each planner, we ran
simulations 50 times on each of the 24 sampled problem
instances. In each run, the time limit was set to 60 s.

Results are reported in Fig. 8. While RRT-DCM found a
solution in every run, the success rates of the other three
planners decrease rapidly with n. At large n’s, those planners
only occasionally get lucky enough to find solutions. From this
sufficiently clear trend, we did not run simulations for Vanilla
RRT, RRT-DM, and RRT-CM for n > 15.

Interestingly, RRT-DM performed better than Vanilla RRT
and RRT-CM. This is because in a multi-robot path coordina-
tion scenario, allowing robots to reach their goals at different
times greatly increases the solution space, hence the high
success rate. However, since a new search tree is initiated
when a robot reaches its goal, the lack of conflict management
feature can result in the new tree being trapped completely in a
deadlock. Similarly, although the conflict management feature
is useful, not explicitly allowing robots to reach their goals at
different times is still too restrictive that although the search
tree did not get trapped, the planner required too much time
to find a solution.

One can see that while the presented two features—
departure handling and conflict management—are not much
beneficial being used separately, they are complementary.
Therefore, integrating both of them into a planner significantly
improved the performance as illustrated in simulations.

Note also that although previous works such as [16] pre-
sented simulations with 240 aircraft, the number of aircraft
was cumulative across an interval of three hours. All snapshots
presented in [16] showed less than 20 aircraft in the airport.
By contrast, the simulations presented here were such that all

Number of robots

Su
cc

es
s

ra
te Vanilla RRT

RRT-DM
RRT-CM
RRT-DCM

(a)

Number of robots

R
un

ni
ng

tim
e

Vanilla RRT
RRT-DM
RRT-CM
RRT-DCM

(b)

Number of robots

N
um

be
ro

fc
on

fi
ct

s Junction
Shared
Deadlock
Complex

(c)

Fig. 8: Experimental results. (a) The success rates of all planners as a function
of the number of involving aircraft. (b) The average running time over 50
runs of all planners as a function of the number of aircraft. The vertical bars
indicate the respective standard deviation. In case a planner failed in all 50
runs, the running time of that problem instance is shown as the time limit, 60
s. (c) The number of conflicts of each type in the sampled problem instances
used in the simulations.

aircraft were presented in the scene.

VI. DISCUSSION AND CONCLUSION

A. Discussion

Arrival Management: This feature cannot be directly in-
tegrated into the presented approach since the planning
in the coordination diagram does not include timing. The
planned path only encodes information of relative positions of
robots/aircraft. It is thus not possible to include new aircraft
into the planner while in the middle of the planning process.
However, the simulation results presented previously suggest
that it can be possible to use the approach “plan-execute-
replan”. That is, it is feasible to assume that a coordinated



path is planned and the execution starts before a new aircraft
arrives. Thus, when a new aircraft arrives, one can replan the
coordinated path by using the current configuration as the root
of the new search tree.

Complex Deadlocks: The existence of complex deadlocks
has been already been discussed in the literature (see, e.g. [1]).
Similar ideas were also explored in literature on concurrency
control of databases [17], [18]. However, previous works
only discussed these deadlocks in 2D cases. Furthermore, a
complex deadlock was also thought to be the SW-hull [19]
of other existing obstacles [1]. Upon further investigation, we
found out that the complex deadlocks are equivalent to SW-
hulls only in two-dimensional cases. To our knowledge, this
paper is the first to develop an algorithm to explicitly address
high-dimensional complex deadlocks.

The presented approach, however, comes with high combi-
natorial complexity. To compute a complex deadlock induced
by a cluster of m elementary deadlocks, we compute exactly
two shadows produced by each obstacle. In the worst case,
we need to examine all possible cases 2m of shadow inter-
section (since in each case, we can select one out of two
shadows). Therefore, the worst case complexity is O(2m).
It is possible to reduce the computation time by using, for
example, a graph search algorithm that takes into account
path overlapping, hence reducing m. However, to derive a
more efficient complex deadlock detection algorithm, we need
to gain more understanding of how complex deadlocks are
formed, their mathematical properties, etc.

Completeness: The RRT planner itself is probabilistically
complete [5], meaning that if there exists a solution, it will
be found with probability one as the number of iterations in-
creases. However, the planner presented in this paper may not
be probabilistically complete. One possible factor can be the
current mechanism of departure management which reduces
the dimension of the coordination diagram immediately after a
robot has reached its goal. This mechanism implicitly assumes
that the configuration qcropped is part of some solutions, which
we currently have no guarantee. Further study should also
focus on this completeness issue.

B. Conclusion

In this paper, we have developed a set of algorithms to
deal with departure events and conflicts (mainly caused by the
“no-backward-movement” constraint) in the classical multi-
robot path coordination problem. The virtual box heuristic,
when integrated into a planner, allows robots to reach their
goals at different times while the conflict management feature
helps prevent the search tree from being trapped in a deadlock
situation. Integrating the presented two features in a multi-
robot coordination planner greatly improves the performance,
as illustrated in simulations. Future research directions include,
but not limited to, 1) further understanding of deadlock for-
mation and how to reduce complexity of complex deadlock
computation; and 2) analyzing the completeness property of
the planner.

Acknowledgment

This work was partially supported by grant ATMRI:2014-R6-
PHAM awarded by NTU and the Civil Aviation Authority of Singa-
pore. We thank our colleagues from ENAC, Railane Benhacene and
Mathieu Cousy, for directing us towards the aircraft taxiing problem
as well as for providing the data for Charles de Gaulle airport.

REFERENCES

[1] P. A. O’Donnell and T. Lozano-Pérez, “Deadlock-free and collision-free
coordination of two robot manipulators,” in Robotics and Automation,
1989. Proceedings., 1989 IEEE International Conference on, 1989, pp.
484–489.

[2] P. Švestka and M. H. Overmars, “Coordinated path planning for multiple
robots,” Robotics and Autonomous Systems, vol. 23, no. 3, pp. 125–152,
April 1998.

[3] T. Siméon, S. Leroy, and J.-P. Laumond, “Path coordination for multiple
mobile robots: a resolution-complete algorithm,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 1, pp. 42–49, 2002.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[6] Á. G. Marı́n, “Airport management: Taxi planning,” in Annals of
Operations Research, vol. 143, no. 1, 2006, pp. 191–202.

[7] ——, “Airport taxi planning: Lagrangian decomposition,” Journal of
Advanced Transportation, vol. 47, no. 4, pp. 461–474, 2013.

[8] M. J. S. J. W. Smeltink, “An optimisation model for airport taxi
scheduling,” 2004.

[9] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,” The International Journal of Robotics
Research, vol. 24, no. 4, pp. 295–310, 2005.

[10] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an expo-
nential haystack: Discrete RRT for exploration of implicit roadmaps in
multi-robot motion planning,” in Springer Tracts in Advanced Robotics,
vol. 107, 2015, pp. 591–607.

[11] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.
[12] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. H. Reif, “Narrow passage

sampling for probabilistic roadmap planning,” IEEE Transactions on
Robotics, vol. 21, no. 6, pp. 1105–1115, 2005.

[13] R. Geraerts and M. H. Overmars, “Creating high-quality paths for
motion planning,” The International Journal of Robotics Research,
vol. 26, no. 8, pp. 845–863, 2007.

[14] P. Lertkultanon and Q.-C. Pham, “Time-optimal parabolic interpolation
with velocity, acceleration, and minimum-switch-time constraints,” Ad-
vanced Robotics, vol. 30, no. 17–18, pp. 1095–1110, 2016.

[15] Q.-C. Pham, “A general, fast, and robust implementation of the
time-optimal path parameterization algorithm,” IEEE Transactions on
Robotics, vol. 30, pp. 1533–1540, 2014.

[16] G. L. Clare and A. G. Richards, “Optimization of taxiway routing and
runway scheduling,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1000–1013, 2011.

[17] M. Yannakakis, C. H. Papadimitriou, and H. T. Kung, “Locking poli-
cies: Safety and freedom from deadlock,” in Foundations of Computer
Science, 1979., 20th Annual Symposium on, 1979, pp. 286–297.

[18] W. Lipski and C. H. Papadimitriou, “A fast algorithm for testing for
safety and detecting deadlocks in locked transaction systems,” Journal
of Algorithms, vol. 2, no. 3, pp. 211–226, 1981.

[19] F. P. Preparata and M. Shamos, Computational Geometry. Springer-
Verlag New York, 1985.


