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I. Introduction

There are many applications where multiple autonomous (or semi-autonomous) agents share a

common workspace. For example, in applications like search and rescue operations and surveillance

multiple fixed wing unmanned aerial vehicles (UAVs) are often deployed to navigate along strategi-

cally designed paths. Similarly, due to increased air-traffic, multiple commercial aircrafts are now

routinely present in a given airspace at any time instant. A key requirement in any application

involving multiple agents is to ensure collision avoidance. One of the efficient approaches for colli-

sion avoidance is to appropriately coordinate the motions of the agents along pre-specified paths,

resulting in the so-called path-coordination problem [1]. The problem of path-coordination is usually

solved as an optimization problem which takes the form of either mixed-integer [1], [2], [3], [4], [5],

non-linear [6] or a convex problem [7] although sampling-based planners like [8, 9] have also been

proposed. These cited approaches are designed as an off-line planning framework and their exten-

sion to reactive on-line setting is not straightforward. The most straightforward approach for the

reactive setting would be to solve the optimizations in [1]-[7] over a shorter horizon (small segments

of the given paths). However, we have observed in our studies that such straightforward extension

proves to be insufficient. In particular, we have observed two potential bottlenecks. Firstly, since

[1]-[7] model collision as the overlap of agents’ footprints at a given time instant, the choice of the

length of the horizon becomes very critical. As shown in Fig.1(a)-1(c), choosing a very small horizon
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may mean that collisions are detected only when agents are very close to each other and this in

turn may lead to deadlocks. Secondly, a smaller horizon may not even lead to any computational

gain. For example in conflicts like that shown in Fig.1(a)-1(c), collisions with all the agents needs

to be considered even while considering a relatively small horizon. This in turn may prevent any

reduction of binary variables in the mixed integer formulation [1]-[5]. Further, even in the convex

approach of [7], the number of agents and conflicts considered is one of the key factors deciding the

computation time.
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Fig. 1 A receding horizon implementation of the path coordination framework proposed in

[4]. The shape of the agents are approximated as discs which are shown as circles.

A. Overview of the Proposed Approach

The proposed approach is built on the concept of collision cone (CC) [10] which models collision in

the combined position-velocity space. Thus, on straight line paths, all imminent collisions can be

modeled by just knowing the current position and velocity of the agents. On curvilinear paths, the

collision modeling relies on piece-wise linear approximation. The use of the concept of CC allows

for the development of one-step receding horizon like framework wherein the next instant velocity

of the agents are continuously updated based on their current positions and velocities.

In our earlier works [11], [12] we introduced the concept of time scaled collision cone (TSCC)

which is a projection of CC constraints along a given path. In this paper, we present several improve-

ments over these works to achieve reactive on-line path coordination. Firstly, we formulate TSCC

over the joint velocity space of all the agents. For a system of n agents, the newly formulated TSCC

models the n dimensional velocity space. In contrast, our earlier works [11], [12] only considered a
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single agent at a time and thus modeled only a one-dimensional velocity space. Secondly, we show

that the intersection space of reachable velocities with joint TSCC can simplified to a convex set

defined by linear inequalities. This is an important result since only a few frameworks like [7] have

previously attempted to provide a convex approximation to the difficult path coordination problem.

In contrast to [7], the proposed formulation does not require a priori knowledge of priorities in which

agents enter and depart from the collision zones. Rather, a feasible priority is computed automati-

cally along with the coordination plans. Further, even for a given priority, the proposed framework

computes less conservative coordination plans than [7], is computationally faster and consequently

more suitable for reactive navigation.

We would like to point out that although CC or its analogous velocity obstacles (VO) [13] have

been used extensively for reactive collision avoidance [14], the setting where the paths of the agents

are fixed is not that well studied in the context of reactive navigation. Besides our earlier works

cited above, we are only aware of [15] which tackles this problem. The technical approach followed

in [15] is very different. However, similar to [11], [12], it also considers a single agent at a time

and furthermore works under the assumption of instantaneous velocity change. In contrast, our

proposed formulation is much more general as it considers the joint velocity space of all the agents

and incorporates hard velocity and acceleration bounds.

II. Preliminaries

A. Original Collision Cone

Consider a pair of agents at time t0 and assume that their footprints do not overlap at the current

position. A pair of trajectories xi(t),xj(t) is said to be collision-free ∀t ∈ (t0,∞) if it satisfies the

following constraint.

(rTijvij)
2

‖vij‖2
− ‖rij‖2 + R2

ij ≤ 0, Rij = Ri + Rj , rij =

xi(t0)− xj(t0)

yi(t0)− yj(t0)

 ,vij =

ẋi(t0)− ẋj(t0)

ẏi(t0)− ẏj(t0)

 . (1)

Inequality (1) is called the collision cone constraint [10] and it assumes that the velocities of

the agents remain constant at (ẋi(t0), ẏi(t0)) and (ẋj(t0), ẏj(t0)) respectively ∀t ∈ (t0,∞). Under

the assumption of instantaneous velocity change, the solution space of (1) directly characterizes

3



the space of straight line paths and their corresponding velocity profiles which a pair of agents can

employ for collision avoidance. It is worth pointing out that collision between a pair of agents can be

detected by noting whether the l.h.s of (1) is greater than 0 along with (rTijvij) ≤ 0. Consequently,

thereafter satisfaction of (1) would be sufficient for collision avoidance.

B. Time Scaling

Let us consider a path x(s) = (x(s), y(s)), where s ∈ [s0 sf ] is the path variable. The space of

velocities and accelerations that can be achieved at each point along the path can be parameterized

in terms of a function ds
dt in the following manner.

ẋ(t) = x
′
(s)

ds

dt
, ẍ(t) = x

′′
(s)(

ds

dt
)2 + x

′
(s)

d2s

dt2
,
ds

dt
= ṡ(s),

d2s

dt2
= s̈(s). (2)

The function ds
dt is called the scaling function and decides the transformation of the path x(s) to

trajectory x(t) in some time interval t ∈ [t0 tf ]. Please note in (2), the path derivatives x
′
(s), y

′
(s)

etc. are known and thus the space of velocities and accelerations are completely determined by the

choice of scaling function.

III. Time Scaled Collision Cone (TSCC) Based Collision Avoidance

In our previous work [11], [12], we formulated TSCC for a single agent assuming either all agents

compute their motions independently [11] or that there is only a single decision making agents

and all other agents are non-reactive dynamic obstacles [12]. Thus, TSCC in these earlier works

characterized a single dimensional velocity space. Here, we extend TSCC to characterize the joint

space of collision free velocities of a pair of agents in collision. Thus, for a system of n agents, TSCC

over all the pair of agents would characterize a n dimensional space of collision free velocities. To

this end, consider Fig.2 which shows two agents whose straight line paths, xi(s), xj(s) entail a

collision zone around the paths’ intersection. At current time t0, the position of the agents are given

by arc length s0 on their respective paths. Let arc length, sc > s0 define a look-ahead point on each

path. Let the respective agents be associated with scaling functions ṡi(s) and ṡj(s) for the path

segment between s0 and sc. Due to the application of these scaling functions, the agents move from
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the arc length s0 to sc in the time interval [t0 tci ] and [t0 tcj ] respectively. The space of velocities

that can be achieved at arc length sc by the respective agents are characterized using (2) in the

following manner.

(ẋi(t
i
c), ẏi(t

i
c)) = ṡi(sc)(x

′

i(sc), y
′

i(sc)), (ẋj(t
j
c), ẏj(t

j
c)) = ṡj(sc)(x

′

j(sc), y
′

j(sc)). (3)

Now, according to collision cone concept, if the agents are collision free in the some time interval

[max(tci , t
c
j), tf ), then the pair of position and velocities, (xi(sc), yi(sc), ṡi(sc)x

′

i(sc), ṡi(sc)y
′

i(sc)) and

(xj(sc), yj(sc), ṡj(sc)x
′

j(sc), ṡj(sc)y
′

j(sc)) should satisfy collision cone constraint (1). Consequently,

we obtain the following form for TSCC.

((rsij)Tvs
ij)

2

‖vs
ij‖2

− ‖rsij‖2 + R2
ij ≤ 0, rsij =

xi(sc)− xj(sc)

yi(sc)− yj(sc)

 ,vij =

ṡi(sc)x
′

i(sc)− ṡj(sc)x
′

j(sc)

ṡi(sc)y
′

i(sc)− ṡj(sc)y
′

j(sc)

 . (4)

In (4), the look ahead points defined by sc are known and thus consequently, rsij is also known

for a given pair of paths. Inequalities (4) thus, can be represented in a compact form as the following

generic quadratic inequality.

Aij ṡi(sc)
2 + Bij ṡi(sc)ṡj(sc) + Cij ṡj(sc)

2 ≤ 0. (5)

Where, Aij , Bij and Cij are functions of xi(sc), x
′

i(sc), xj(sc), x
′

j(sc), yi(sc), y
′

i(sc).... etc and are

thus known for a given set of paths. Extension of (5) to multiple agents is straightforward and

from here on, we assume such a construction has been performed for a system of n agents. Few

important points regarding (5) are worth pointing out. Firstly, its dependency on relative position

and velocities is same as the original collision cone. Secondly, for a pair of agents, ṡi(sc), ṡj(sc)

models the priority among them. For example, ṡi(sc) > ṡj(sc) means that agent i leads while

passing through point defined by sc. Finally, (5) represents an algebraic (not differential) quadratic

inequality with respect to variables ṡi(sc), ṡj(sc).
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A. Role of lookahead point

The role of lookahead point defined by sc in TSCC (4) is to relax the requirement of instantaneous

velocity change associated with the original collision cone (1). Essentially, what we have done here

is that instead of computing velocities which is safe between the arc lengths s0 and sf , we compute

those which ensure safety between the arc lengths sc and sf . The path segment between s0 and

sc provides the space for the achievement of collision free velocities. Naturally, there is an implicit

requirement here that the agents do not collide between the path segment defined by s0 and sc while

attempting to reach the collision free velocities. This requirement can be met by construction in

the following manner. From the current position of the agents given by s0 we look for a lookahead

point given by sc on their respective paths such that the footprints of the agents do not overlap

anywhere in the path segment between s0 and sc.

Fig. 2 An example of conflict between a pair of agents used to define TSCC constraints (4).

B. Optimization

In this section, we compute a scaling function ṡi(s) valid over the path segment defined by s0 and

sc for the ith agent. Beyond sc, the scaling function just remains constant at the value ṡi(sc). As a

result of the time scaling transformation, each agent would traverse the path segment in a different

time interval [t0 tci ] leading to collision free path coordination. To this end, we propose the following
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optimization problem.

arg min
ṡi(s)

J2 =
∑
i

(ṡi(sc)− ṡprefi ), sprefi =
vprefi√

ẋi(tci )
2 + ẏi(tci )

2
. (6a)

vmin
i ≤

√
ẋi(tci )

2 + ẏi(tci )
2 ≤ vmax

i . (6b)

si(s0) = 1, . (6c)

amin
i√

2
≤ ẍi(t0) ≤ amax

i√
2

,
amin
i√

2
≤ ÿi(t0) ≤ amax

i√
2

. (6d)

Aijsi(sc)
2 + Bijsi(sc)sj(sc) + Cij ṡj(sc)

2 ≤ 0,∀i 6= j,∀i = 1, 2, 3....n.. (6e)

The cost function in (6a) seeks to compute such scaling functions which minimizes the deviation

of the ith agent from its preferred velocity profile, vprefi . Inequalities (6b) enforces the constraints

that the forward velocity resulting from time scaling transformation should respect the minimum

(vmin
i ) and maximum (vmax

i ) velocity bounds at time tci or equivalently at points defined by sc. In

our formulation, vmin is strictly greater than zero to account for the fact that both fixed wing UAVs

and commercial aircrafts have well defined minimum velocity below which it cannot maintain flight.

The equality (6c) ensures that the velocity profile resulting from the time scaling transformation has

continuity with the velocity at initial time instant t0 or alternatively at the initial point defined by

s0. Note that if the scaling function ṡi(s) is linear and the current velocities of the agents are within

bounds, then (6b) and (6c) in conjunction ensures that the velocity bounds are satisfied at all the

points between s0 and sc. Inequalities (6d) enforces the acceleration bounds. For computational

reasons, we have split the acceleration bounds (amin
i , amax

i ) into equivalent bounds for the separate

x and y components. Inequalities (6e) is same as (5) but now written explicitly for a system of n

agents.

IV. Simplification of Optimization

We start with the convexification of TSCC constraints (4) or (5) and then subsequently show

that its intersection space with velocity and acceleration bounds can be described in terms of linear

inequalities. Following [16], we approximate ṡi(s),∀s ∈ [s0 sc] as a linear positive function to ensure

that the transformation between s and t is monotonically increasing. Further, s̈i(s) is approximated
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as constant. Further, for the ease of exposition, we introduce the change of variables (7), [16]. The

third equality in (7) can also be intuitively thought as a finite difference approximation of s̈ over

the path segment defined by s0, sc. In particular, note s̈ ≈ ṡ(tc)−ṡ(t0)
tc−t0

= ṡ(sc)−ṡ(s0)

(sc−s0)
2

ṡ(sc)+ṡ(s0)

, where we

have used the fact that ṡ at time t0, tc will correspond to the value at the points on the path defined

by s0, sc. Further, the time interval tc − t0 = (sc − s0) 2
ṡ(sc)+ṡ(s0)

[16].

ṡi(s0)2 = zi(s0), ṡi(sc)
2 = zi(sc), s̈i(s) ≈

ṡi(sc)
2 − ṡi(s0)2

2(sc − s0)
. (7)

A. Convexification of TSCC Constraints

It is clear that the (5) could either be convex or non-convex depending on the sign of Aij , Bij and

Cij , which in turn would depend on the path of each agent. We now show that for a large number

of relative configuration of the agents, (5) has a natural convex decomposition while for the rest,

a convexification scheme could be adopted. The analysis presented below is for a pair of agents.

Extension to multiple agents can be obtained by repeating the process over all the pairs.

Case 1: Aij ≥ 0, Cij ≤ 0 Let us start by defining a variable ṡij = ṡi(sc)
ṡj(sc)

, with respect to which

(5) assumes the following form.

Aij ṡ
2
ij + Bij ṡij + Cij ≤ 0. (8)

Since, Aij ≥ 0, (8) represents a single variable convex quadratic inequality. Thus, its solution space

would be of the following form

ṡij ∈ [ṡminṡmax], ṡmin = min

−Bij ±
√

(B2
ij − 4AijCij)

2Aij

 , ṡmax = max

−Bij ±
√

(B2
ij − 4AijCij)

2Aij

 .

(9)

It is straightforward to convert (9) to the original set of variables to obtain (10a). Finally, using

(7), we have (10b).

ṡi(sc) ≥ ṡminṡj(sc), ṡi(sc) ≤ ṡmaxṡj(sc). (10a)
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zi(sc) ≥ (ṡmin)2zj(sc), zi(sc) ≤ (ṡmax)2zj(sc). (10b)

Case 2: Aij ≤ 0, Cij ≥ 0 The procedure for this case is similar to that described for the

previous case. The small difference being that we start by defining ṡji =
ṡj(sc)
ṡi(sc)

to obtain the

following reformulation of (5)

Aij + Bij ṡji + Cij ṡ
2
ji ≤ 0.⇒ ṡi(sc)ṡmin ≥ ṡj(sc), ṡi(sc)ṡmax ≤ ṡj(sc). (11)

Inequality (11) can eventually be reduced to the following linear inequalities.

(ṡmin)2zi(sc) ≥ zj(sc), (ṡmax)2zi(sc) ≤ zj(sc). (12)

ṡmin = min

−Bij ±
√

(B2
ij − 4AijCij)

2Cij

 , ṡmax = max

−Bij ±
√

(B2
ij − 4AijCij)

2Cij

 . (13)

Case 3: Aij ≥ 0, Cij ≥ 0 This case is superset of the previous two cases and thus, any one of

the approaches described previously can be followed.

Case 4: Aij ≤ 0, Cij ≤ 0, Bij ≥ 0 This represents an instant where the constraint (5) is

non-convex and thus is the most difficult. Recall (7), to represent (5) in the following form.

Aijzi(sc) + Bij

√
zi(sc)zj(sc) + Cijzj(sc) ≤ 0. (14)

(Aij −
√
zj0√
zi0

Bij)zi(sc) + (Cij −
√
zi0√
zj0

Bij)zj(sc) ≤ 0. (15)

It can be seen from (14) that the first and third term is convex (in zi(sc) and zj(sc) respectively),

while the second term is purely concave with respect to both zi(sc) and zj(sc). Thus, we linearize

the second term around some initial guess zi0, zj0. This gives way to the linear inequality (15) in

terms of zi(sc), zj(sc). It should be noted that the solution space of (15) is contained in that of

(14). In other words, (15) is a more conservative constraint than (14) [17].
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B. Velocity and Acceleration Bounds

Using (2), the forward velocity for the ith agent obtained through time scaling transformation

can be described as
√
ẋi(tic)

2 + ẏi(tic)
2 = ṡi(sc)

√
x

′
i(sc)

2 + y
′
i(sc)

2. Thus, velocity bounds can be

formulated using (7) in the following manner.

⇒ (vmin
i )2 ≤ zi(sc)(x

′

i(sc)
2 + y

′

i(sc)
2) ≤ (vmax

i )2 (16)

Similarly, using (2), (7), the acceleration bound constraints take the following form [16].

amin
i√

2
≤ zi(s0)x

′′

i (s0) + x
′

i(s0)
zi(sc)− zi(s0)

2(sc − s0)
≤ amax

i√
2

. (17)

amin
i√

2
≤ z(s0)y

′′

i (s0) + y
′

i(s0)
zi(sc)− zi(s0)

2(sc − s0)
≤ amax

i√
2

.

Summary: The discussions presented in this section has shown that the TSCC constraints and the

velocity and acceleration bounds can all be represented as linear inequalities in terms of variable

zi(sc), zi(s0). Let these inequalities be compactly represented as Ainqz − bineq ≤ 0, where z =

(z1sc, z1(s0), z2(sc), z2(s0)...). The optimization (6a)-(6c) can then be presented in the following

simple form.

arg min
zi(sc)

J2 =
∑
i

(zi(sc)− (sprefi )2)2. (18a)

Ainqz − bineq ≤ 0. (18b)

zi(sc) ≥ 0. (18c)

zi(s0) = 1. (18d)

As can be seen, (18a)-(18d) is a convex QP problem. The variables in the optimization are zi(sc)

as a slight algebraic manipulation can remove the equalities (18d) and consequently zi(s0) . The

time scaling function can be easily recovered through ṡi(s0) =
√
zi(s0), ṡi(sc) =

√
zi(sc).

V. Simulation Results

A. Benchmark Conflict Scenarios

In this section, we present implementation results of our proposed formulation on different bench-

mark scenarios. All the agents are cruising with a velocity, vcruisei = 10m/s when the collisions
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are detected. The velocity bounds are kept as vmin
i = 5m/s, vmax

i = 15m/s while acceleration

bounds were fixed at amin
i = −3m/s2, amax

i = 3m/s2. It is worth pointing out that existing path

coordination frameworks like [2], [4] which are applied for coordination of fixed wing UAVs or

commercial aircrafts assume capability of instantaneous velocity change (infinite acceleration). In

contrast, we incorporate practical bounds on both velocities and accelerations in our simulations.

Simulation videos can be found in https://www.youtube.com/watch?v=Of6LMnV5CsE. The coor-

dination framework essentially consists of solving optimization (18a)-(18d) in a receding horizon

manner wherein at each iteration, after obtaining the scaling functions, the forward velocities and

the positions of the agents along their paths are updated. Consequently, at next iteration, these

updated positions and velocities are taken as current boundary values and the optimization is again

solved. The process continues till all the agents have reached their goal position.

Agents along the circumference of a circle: The conflict scenario shown in Fig.3(a) is similar

to that addressed in the MIP based path-coordination framework [1]. Here, 20 agents modeled as

circular disks of radius 4.5m are placed along the circumference of a circle of radius 313m. Their

straight line paths create a common collision zone around the center of the circle. Note that in

contrast to [1], our implementation, imposes the constraint that vmin
i > 0. That is, the forward

velocity is strictly positive and consequently the agents cannot stop in place to avoid collisions. We

believe that this condition leads to a more difficult coordination problem.

Agents along the circumference of a semi-circle: Fig. 3(d) show 20 agents placed along the

circumference of a semi-circle with a common collision zone around the center of the circle. The

radius of the circle as well as the circular disks representing the agents are same as the previous

conflict scenario.

Rectangular Grid: Fig.3(e) show the conflict scenario with two groups of 10 agents each. The

straight line paths of the agents create a rectangular grid like structure with multiple collision zones.

Conflict Along Curved Paths: This conflict scenario shown in Fig.3(f) is similar to the semi-circle

conflict discussed above. However, now the agents move along curved paths instead of straight lines.

For this case, we resort to piece-wise straight line approximation which are constantly refined within

our receding horizon framework. Further, additional constraints on turn rate was also incorporated

11
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Fig. 3 Conflict scenarios considered and obtained velocity profiles.

which could also be converted to linear inequality in (18a)-(18d).

B. Velocity Profiles

Due to space constraints, we present velocity plots for only one conflict scenario.

The velocity profiles of the agents during collision avoidance depends on the choice of vprefi . That

shown in Fig.3(b) are obtained with vprefi = vcurrenti , where, vcurrenti represents the current velocity

of the ith agent. Similar choice of vprefi has also been reported in [18]. We also experimented with

a different choice of vprefi . To this end, consider the following.

vprefi = vcurrenti , f coll
ij (.) > 0, vprefi = vcruisei , f coll

ij (.) ≤ 0 (19)

Where, vcruisei is some preferred cruise velocity for the agents and f coll
ij (.) is a function which detects

the collision state of a pair of agents based on (1). Thus, a value greater than 0 implies the agents

are on a collision course, while a value less than or equal to 0 implies the converse. Essentially, the
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above cost function checks whether all agents have been out of collision zone for last k iterations

of receding horizon formulation and if so, allows them to go back to their cruise velocities. In

practical applications like air-traffic conflict resolution, the cruise velocity is designed based on

metrics like fuel efficiency and thus, it is advantageous for the aircrafts to come back to their cruise

velocities after coming out of the collision zone. Velocity profiles shown in Fig.3(c) is obtained with

vcruisei = 10m/s.

C. Velocity Requirements for Path Coordination.

Let the velocity bounds for the agents be described as [vcruisei −∆, vcruisei + ∆]. In this section, we

empirically evaluate the minimum ∆ required for collision free coordination in benchmark conflict

scenarios presented in Fig.3. To this end, consider Fig.4(a) which presents ∆ as a percentage

of vcruisei = 10m/s for varying number of agents. As can be seen, for difficult circle and semi-

circle conflict scenarios, the requirement is around 45%. However for a more realistic scenario

like rectangular grid, the minimum ∆ required is significantly lower, around 13% for 20 agents.

Moreover, the increase in ∆ with the number of agents is also small. This is because, in this conflict

scenario not all agents are simultaneously in conflict with each other. For the conflict scenario along

the curved paths, the geometry of the paths actually assist in collision avoidance and thus here the

minimum ∆ required is the least.

The ∆ requirements presented above are moderate and easily achievable for autonomous agents

like commercially available UAVs. However, in applications like air traffic conflict resolution the

flexibility in change of magnitude of forward velocity is limited due to operational constraints [19].

According to [19], a commercial passenger aircraft’s forward velocity is recommended to be reduced

and increased by maximum of 6% and 3% respectively. With these bounds, we evaluated the

performance of our proposed formulation on the benchmark conflict scenarios presented in figure 3.

The results are summarized in Fig.4(b).
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Fig. 4 (a):Forward velocity change requirement in percentage for different conflict scenarios.

(b): Maximum number of agents that can be de-conflicted for the velocity change bounds of

−6% and +3%

VI. Comparisons with the State of the Art

A. Review of Convex Path Coordination of [7]

Let, xi(s) be the path of the ith agent. Let, ti(sk) represent the time at which the ith agent is at

position xi(sk). Similarly, let vi(sk), vj(sk), and ai(sk), aj(sk) respectively represent the forward

velocities and accelerations of the agents at the same point on the path. We formulate the following

optimization problem for the path coordination based on [7], [20].

i=n∑
i=1

sk=sf∑
sk=s0

ai(sk)2. (20a)

pi(sk+1) = Api(sk) + bai(sk).∀i (20b)

tj(s
entry) ≥ ti(s

exit).∀i,∀j = i + 1, i + 2.. (20c)

vi(sk) ≤ vmax
i ,∀i,∀sk ∈ [s0 sf ]. (20d)

ai(sk) ≤ amax
i (sk), ai(sk) ≥ amin

i (sk)∀i,∀sk ∈ [s0 sf ]. (20e)

pi(sk) =

ti(sk)

vi(sk)

), A =

1 ds

0 1

), b =

 0

ds

),

The cost function, (20a) penalizes acceleration inputs and encourages the agents to continue moving

with their current velocities. This cost function is slightly different from the original formulation of

[7], [20] but has been brought here for fair comparison with our proposed formulation. The equality
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(20b) models the evolution of the agents along the given path. In particular, at what time, a given

agent occupies a particular position on the path. Here, ds is the resolution of discretization which

can be thought as an arc length between positions xi(sk) and xi(sk+1). The inequality (20c) models

the collision avoidance constraints, where sentry ∈ [s0 sf ] and sexit ∈ [s0 sf ] denote the start

and end of the collision zone. Inequality (20c) essentially forces the agent j to enter the collision

zone only when the agent i has exited it. The inequalities (20d) and (20e) are typical velocity and

acceleration bound constraints. Please note that amax
i (sk), amin

i (sk) are related but at the same

time slightly different from the acceleration bounds presented in (6d). For details refer [7](and

equation (16) therein).

Planning Horizon: The computational complexity of the optimization (20a)-(20e) depends on

the length of the planning horizon and the resolution of discretization ds as the number of variables

in the optimization depends on the product of these two parameters. For both these parameters,

we experimented with many values till we found the smallest value for which the optimization

(20a)-(20e) resulted in a feasible solution.

Table 1 Summary of Computation Times in seconds

Conflict Scenario Murgovski et al . Each iteration (Proposed) Total time (Proposed)

Circle: 5 agents 0.54 0.004 0.24

Circle: 10 agents 2.87 0.011 0.52

Circle: 15 agents 39.18 0.02 1.4

Semi-Circle: 5 agents 0.14 0.0037 0.20

Semi-Circle: 10 agents 3.03 0.009 0.37

Semi-Circle: 15 agents 32.43 0.018 0.765

B. Comparative Results

We compare our proposed formulations with the convex path coordination of [7] in terms of (i)

computational time and (ii) quality of coordination maneuver obtained. We use the conflict scenarios

presented in Fig.3(a), 3(d) as test cases as they represent a difficult benchmark case while at the
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Fig. 5 Snapshots of collision avoidance behavior obtained through the path coordination ap-

proach of [7].
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Fig. 6 Snapshots of collision avoidance behavior obtained through the proposed formulations.

same consists of only a single collision zone. Moreover, these conflict scenarios require consideration

of collision avoidance among all the agents even while considering a smaller path horizon.

Computational Time: Table 1 contrasts the computational time for our proposed formulation

with the path coordination approach of [7] for a given planning horizon. Since, our formulation

incrementally builds the path coordination plans by repeatedly solving optimization (18a)-(18d) in

a receding horizon manner, we present both the computational time for each iteration as well as that

required to plan for the entire considered horizon. All computations were performed on a laptop

with 12GB RAM and 2.5GHz processor. Python based framework CVXOPT [21] was used to solve

the optimizations.

As can be seen, our formulation is significantly faster and the difference increases sharply as the

number of agents increase. From the table 1, it is also clear that the approach of [7] can be adapted

for reactive setting for only small number of agents (typically around 5). It should be noted from
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Fig. 7 Figures (a) and (b) presents a comparison of max(v1,v2,v3...vn)
min(v1,v2,v3...vn)

. Figures (c) and (d) presents

traversal time for the last agent.

table 1 that each iteration of the proposed receding horizon formulation can be solved in few tens

of milliseconds. Thus, the agents can adapt their motions on the fly. In fact the receding horizon

formulation can act as an implicit feedback for the agents.

Quality of Coordination Maneuver: Fig.5(a)-5(c) provides snapshots of coordination obtained

following the approach of [7] while Fig.6(a)-6(c) provides the same obtained from our proposed

formulation. All the agents are cruising with a velocity of 10m/s when they detect mutual conflicts

with each other. The following key contrasts can be easily observed. Firstly, note Fig.5(a)-5(c)

where the start and end of the collision zone is represented by the points shown in magenta and

black respectively. The approach of [7] requires only one agent to be present in the collision zone

at any given instant (recall inequality (20c)). This is a highly conservative requirement which

induces unnecessarily high clearance between the agents (Fig.5(b), 5(c)). In contrast, our proposed
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formulation allows agents to come close to each other provided they have collision avoiding velocities.

As a result more than one agent can simultaneously reside in the collision zone at any given instant

(Fig. 6(b), 6(c)).

Secondly, the conservativeness of [7] puts a higher demand for change in magnitude of for-

ward velocities to achieve collision avoidance. To understand this further, consider Fig.7(a)-7(b)

which quantifies max(v1,v2,v3...vn)
min(v1,v2,v3...vn)

, that, is the ratio of maximum and minimum velocity required for

achieving collision avoidance. As can be seen, our proposed formulation achieves collision free path

coordination with a much smaller ratio than the approach presented in [7]. This in turn signifies

that the agents incur much smaller deviation from their cruise velocities. As mentioned earlier,

in many applications, departure from the cruise velocities incurs a physical cost. For example, an

air traffic conflict resolution, this may impact fuel efficiency. Even for fixed wing UAVs, there is

generally a cruise velocity which results in least drag and maximum efficiency.

Finally, our proposed formulation results in path coordination with smaller traversal times which

can be quantified as the time taken by the last agent to exit the collision zone. Fig.7(c) and 7(d)

quantifies the traversal times obtained with our proposed formulation as well as that obtained with

the approach presented in [7].

VII. Conclusions

Frameworks for path coordination can be extremely useful for many applications involving

deployment of multiple agents. However, the computational nature of the existing frameworks

essentially restricts them to an off-line motion planning methodology and have limited their utility

in real time applications wherein motion plans needs to be computed on the fly. In this paper, we

have proposed a distinctively different approach based on a novel concept called time scaled collision

cone (TSCC). As shown, our proposed formulation essentially boils down to solving a convex QP

problem in a receding horizon manner. The computational time required to solve each instance of

the QP was found to vary linearly with number of agents, n (refer table 1). For 20 agents, the

time required was around 40 ms on a laptop with 12GB RAM and 2.5GHz processor. We have

extensively compared our formulation with the current state of the art convex path coordination
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approach of [7] and shown that our formulation is not only faster but also provides less conservative

solutions. The proposed centralized formulation provides one key advantage-it allows for search in

joint velocity space of all the agents. Thus, collision free coordination in some conflict scenarios was

obtained with as less as 10% change in cruise velocity of the agents.
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