a, a, A and A represent scalar, vector, constant, and matrix. A^{T} , A^{*} , A^{H} , A^{-1} denote the transpose, conjugate, Hermitian, inversion of the complex matrix A, respectively. The notations Tr(A), and |A| indicate trace, and determinant of the complex matrix A, respectively. Diag $\{A\}$ denotes a vector whose elements are the diagonal elements of the matrix A, and Blockdiag $(\{A_k\}_{k=1}^K)$ is a block diagonal matrix with diagonal sub-matrices of A_k 's. Furthermore, the *i*-th row and the *j*-th column of A are denoted as $[A]_{i,:}$ and $[A]_{:,j}$, respectively, and the element in the *i*-th row and *j*th column is denoted as $[A]_{i,j}$. The symbols dx, ∂x , and df represent the differential, partial differential, and total differential, respectively. For instance, the differential and partial derivative of f with respect to a variable a are expressed as $\frac{df}{da}$ and $\frac{\partial f}{\partial a}$, respectively. Sets can be represented by A, B, and C. For example, 1

 $A \subseteq B \cup C$ indicates that set A is a subset of the union of sets B and C. Random variables can be represented by X, Y, and Z. For example, the expectation of the sum of two random variables is given by E(X + Y) = E(X) + E(Y). The symbol \mathbb{C} represents the set of complex numbers, such as $\exists z \in \mathbb{C} (z^2 + 1 = 0)$. \mathbb{Z}_n denotes the set of integers modulo n, and Z stands for the standard normal distribution. The symbol ω is used for the smallest infinite ordinal number, \aleph_0 represents the cardinality of natural numbers, and c denotes the cardinality of real numbers. Moreover, they are the key mathematical infinity symbols. The symbols \top and \perp represent tautology and contradiction, respectively. For example, for each proposition A, $A \wedge \top \equiv A$ and $A \wedge \neg A \equiv \bot$. These symbols are used in propositional logic, where \top denotes a statement that is always true, and \perp denotes a statement that is always false. In addition, $\sum_{i=m}^{n} a_i$ represents summation, $\prod_{i=m}^{n} a_i$ denotes the Pi product, and [a] refers to the equivalence class of a. Δ refers to the discriminant, which is commonly used in polynomial equations to determine the nature of their roots. The symbols δ and ε represent small quantities used in proofs involving limits.

Author: Jiacheng Wang Email: jiacheng.wang@ntu.edu.sg Link: https://scholar.google.com.sg/citations?hl=zh-N& authuser=1&user=MEp49P8AAAJ