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a b s t r a c t

It is both theoretically and practically important to investigate the problem of accommodating infinite
number of actuator failures or faults in controlling uncertain systems. However, there is still no result
available in developing adaptive controllers to address this problem. In this paper, a new adaptive
failure/fault compensation control scheme is proposed for parametric strict feedback nonlinear systems.
The techniques of nonlinear damping and parameter projection are employed in the design of controllers
and parameter estimators, respectively. It is proved that the boundedness of all closed-loop signals can
still be ensured in the case with infinite number of failures or faults, provided that the time interval
between two successive changes of failure/fault pattern is bounded below by an arbitrary positive
number. The performance of the tracking error in the mean square sense with respect to the frequency
of failure/fault pattern changes is also established. Moreover, asymptotic tracking can be achieved when
the total number of failures and faults is finite.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In control systems, actuators may undergo complete failures or
partial loss of effectiveness (PLOE) faults during operation. These
failures or faults may cause instability and end up with catas-
trophic accidents if they are not well handled. Accommodating
such failures/faults is important to ensure the safety of the systems,
especially for life-critical systems such as aircrafts, spacecrafts, nu-
clear power plants and so on. Recently, increasing demands for
safety and reliability in modern industrial systems have motivated
more and more researchers to investigate the problem of actuator
failure/fault accommodation.

Some effective approaches have been developed on synthe-
sizing controllers to address the problem. They can be roughly
classified into two categories, i.e. passive and active ones. Typical
passive designs aim at achieving insensitivity of the system to
certain presumed failures or faults by adopting robust control tech-
niques; see for instance in Niemann and Stoustrup (2005), Veil-
lette, Medanic, and Perkins (1992), Yang, Wang, and Soh (2001)
and Zhao and Jiang (1998). Since fixed controllers are used and
fault detection/diagnostic (FDD) is not required in these results,
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the design methods are computationally attractive. However, they
have the drawback that the designed controllers are often conser-
vative to handle large failure/fault pattern changes. In contrast to
passive designs, the parameters and/or the structure of the con-
trollers are adjustable with active approaches. A number of active
approaches have been proposed, such as pseudo-inverse method
(Gao&Antsaklis, 1991), eigenstructure assignment (Ashari, Sedigh,
& Yazdanpanah, 2005), multiple model (Boskovic &Mehra, 2002b;
Maybeck & Stevens, 1991), model predictive control (Kale & Chip-
perfield, 2005), neural networks/fuzzy logic based scheme (Diao &
Passino, 2001; Zhang, Parisini, & Polycarpou, 2004; Zhang & Qin,
2008) and sliding mode control based scheme (Corradini & Or-
lando, 2007). Different from the ideas of redesigning the nominal
controllers for the post-failure plants in these schemes, the virtual
actuator method (Richter, Schlage, & Lunze, 2007, 2008) hides the
effects of the failures from the nominal controller to preserve the
nominal controller in the loop.

Apart from these, adaptive control is also an active method
well suited for actuator failure/fault compensation (Ahmed-Zaid,
Ioannou, Gousman, & Rooney, 1991; Bodson & Groszkiewicz,
1997) because of its prominent adapting ability to handle the
structural and parametric uncertainties and variations in the
systems. As opposed to most of the active approaches, many
adaptive control design schemes can be applied with neither
control restructuring nor FDD processing. Moreover, not only
the uncertainties caused by the failures or faults, but also the
unknown system parameters are estimated online for updating
the controller parameters adaptively. In Tao, Chen, and Joshi
(2002); Tao, Joshi, and Ma (2001), the authors proposed a class

http://dx.doi.org/10.1016/j.automatica.2011.08.022
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:wang0336@e.ntu.edu.sg
mailto:ecywen@ntu.edu.sg
http://dx.doi.org/10.1016/j.automatica.2011.08.022


2198 W. Wang, C. Wen / Automatica 47 (2011) 2197–2210
of adaptive control methods for linear systems with complete
actuator failures. As we know, backstepping technique (Krstic,
Kanellakopoulos, & Kokotovic, 1995) has been widely used to
design adaptive controllers for uncertain nonlinear systems due
to its advantages. The results in Tao et al. (2002, 2001) have
been successfully extended to nonlinear systems in Tang and Tao
(2009), Tang, Tao, and Joshi (2003, 2007) and Zhang and Chen
(2009) by adopting the backstepping technique. In Zhang, Xu,
Guo, and Chu (2010), a robust adaptive output feedback controller
was designed based on the backstepping technique to stabilize
nonlinear systems with uncertain complete failures involving
parameterizable and unparameterizable time varying terms. To
ensure a prescribed transient performance of the tracking error for
nonlinear systems in the presence of uncertain complete failures
and PLOE faults, a new adaptive backstepping based failure/fault
compensation scheme was recently proposed in Wang and Wen
(2010).

Inmost of the existing results on adaptive actuator fault tolerant
control, such as Boskovic, Jackson, Mehra, and Nguyen (2009);
Boskovic, Yu, and Mehra (1998), Tang and Tao (2009), Tang et al.
(2003), Tao et al. (2002, 2001), Wang and Wen (2010) and Zhang
and Chen (2009); Zhang et al. (2010), only the cases with finite
number of failures and faults are considered. It is assumed that one
actuator may only fail once and the faulty mode does not change
afterward. This implies that there exists a finite time Tr such that no
further failure or fault occurs on the system after Tr . In these cases,
although some unknown parameters will experience jumps at the
time instants when failures or faults occur, the jumping sizes are
bounded and the total number of jumps are finite. Thus thepossible
increase of the considered Lyapunov function, which includes
the estimation errors of the unknown parameters, is bounded,
which enables the closed-loop stability to be established. However,
we cannot show the system stability in the same way when
the number of failures or faults is infinite, because the possible
increase of the Lyapunov function mentioned earlier cannot be
ensured bounded automatically when the parameters experience
infinite number of jumps. This is indeed the main challenge to
find an adaptive solution to the problem of compensating for
infinite number of failures theoretically. On the other hand, it is
possible that some actuator failures or faults occur intermittently
in practice. Thus the actuatorsmay unawarely change from a faulty
mode to a normallyworkingmode or another different faultymode
infinitely many times. For example, poor electrical contact can
cause repeated unknown breaking down failures on the actuators
in some control systems. Although it is of both theoretical and
practical importance to consider the case with infinite number of
failures or faults, there is still no solid result available in this area
so far. In Tang et al. (2007), the authors only conjectured that their
proposed scheme could possibly be applied to this case. It was
remarked that all the signals might still be ensured bounded as
long as the time interval between two sequential changes of failure
status is not too small. Nevertheless, to the best of our knowledge,
no rigorous analysis has been reported by them.

In this paper, we shall deal with the problem of compensating
for possibly infinite number of actuator failures or faults in control-
ling uncertain nonlinear systems based on adaptive backstepping
technique. Through tremendous studies, we find that it is difficult
to show the boundedness of all the signals using the tuning func-
tion design approaches as in Tang and Tao (2009), Tang et al. (2003,
2007), Wang and Wen (2010) and Zhang and Chen (2009), mainly
because the unbounded derivatives of the parameters caused by
jumps need to be considered in computing the derivative of the
Lyapunov function. In fact from our simulation studies, instabil-
ity is observed when the tuning function scheme as summarized
in Wang and Wen (2010, Sec. 3) is utilized to compensate for infi-
nite number of relatively frequent actuator failures. To overcome
the difficulty,we propose amodular design scheme. Actually, so far
there is also no result available by using backstepping basedmodu-
lar design scheme to compensate for actuator failures or faults even
for the case of finite number of failures/faults. With compared to
the existing tuning functionmethods, our designs have the follow-
ing features. The control module and parameter estimator mod-
ule are designed separately; nonlinear damping term functions
are introduced in the control design to establish an input-to-state
property of an error system; impulses caused by failures or faults
are considered in computing the derivatives of the unknown pa-
rameters and these parameters are shown to satisfy a finite mean
variation condition; the parameter update law involves projection
operation to ensure the boundedness of estimation errors; the
properties of the parameter estimator, which are useful for sta-
bility analysis, are also obtained. It is proved that the bounded-
ness of all the closed-loop signals can be ensured with our scheme,
provided that the time interval between two successive changes
of failure/fault pattern is bounded below by an arbitrary positive
number. It is also established that the tracking error can be small in
themean square sense if the changes of failure/fault pattern are in-
frequent. This shows that the less frequent the failure/fault pattern
changes, the better the tracking performance is. Moreover, asymp-
totic tracking can still be achievedwith the proposed scheme in the
casewith finite number of failures and faults as the tuning function
methods.

The remaining part of the paper is organized as follows. In
Section 2, the control problem is formulated. The design of both
controller and parameter update law is presented in Section 3. The
analysis of stability and tracking performance are established in
Section 4 followed by simulation studies in Section 5. Apart from
the comparative study mentioned previously, the effectiveness
of our proposed scheme is further verified through an aircraft
application. Finally, we conclude the paper in Section 6.

1.1. Notations and definitions

� For a scalar function x(t) ∈ ℜ,
• |x|, the absolute value of x.

� For a vector function x(t) = [x1, . . . , xn]T ∈ ℜ
n,

• |x|, Euclidean norm |x| =

∑n
i |xi|2;

• ‖x‖p, Lp norm for p ∈ [1,∞) that ‖x‖p =


∞

0 |x(τ )|pdτ
1/p;

• ‖x‖∞, L∞ norm ‖x‖∞ = supt≥0 |x(t)|;

• x(t) ∈ S1(µ), if
 t+T
t |x(τ )|dτ ≤ c̄1µT + c̄2 for µ ≥ 0, where

c̄1, c̄2 are some positive constants, and c̄1 is independent ofµ.
• x(t) ∈ S2(µ), if

 t+T
t x(τ )T x(τ )dτ ≤ (c̄1µ2

+ c̄3µ)T + c̄2 for
µ ≥ 0, where c̄i for i = 1, 2, 3 are some positive constants,
and c̄1, c̄3 are independent of µ. We say that x is of the order
µ in the mean square sense if x ∈ S2(µ).

� For a matrix A ∈ ℜ
m×n,

• ‖A‖, induced matrix norm of matrix A corresponding to the
vector norm | · |, i.e.

‖A‖ , sup
x≠0, x∈ℜn

|Ax|
|x|

= sup
|x|≤1

|Ax| = sup
|x|=1

|Ax|;

• ‖A‖F , Frobenius norm ‖A‖F =

tr{ATA}, i.e. the square root

of the sum of the absolute squares of its elements.

2. Problem formulation

We consider a class of multiple-input single-output nonlinear
systems that are transformable into the following parametric strict
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feedback form.

ẋi = xi+1 + ϕi(x̄i)T θ, i = 1, 2, . . . , ϱ − 1

ẋϱ = ϕ0(x, ξ)+ ϕϱ(x, ξ)T θ +

m−
j=1

bjβj(x, ξ)uj

ξ̇ = Ψ (x, ξ)+ Φ(x, ξ)θ
y = x1, (1)

where x = [x1, x2, . . . , xϱ]T , ξ ∈ ℜ
n−ϱ are the states, y ∈ ℜ

is the output and uj ∈ ℜ for j = 1, 2, . . . ,m is the jth input of
the system, i.e. the output of the jth actuator. βj(x, ξ), ϕ0(x, ξ) ∈

ℜ, ϕϱ(x, ξ), ϕi(x̄i) ∈ ℜ
p for i = 1, 2, . . . , ϱ− 1 are known smooth

nonlinear functions with x̄i = (x1, x2, . . . , xi). θ ∈ ℜ
p is a vector of

unknown parameters and bj for j = 1, . . . ,m are unknown control
coefficients.

Remark 1. As presented in Tang et al. (2003, Sec. 3.1), suppose
there is a class of nonlinear systems modeled as,

χ̇ = f0(χ)+

p−
l=1

θlfl(χ)+

m−
j=1

bjgj(χ)uj

y = h(χ), (2)

where χ ∈ ℜ
n, y, uj for j = 1, . . . ,m are the states, output

and jth input of the system, respectively, fl(χ) ∈ ℜ
n for l = 0,

1, . . . , p, gj(χ) ∈ ℜ
n for j = 1, . . . ,m and h(χ) are known smooth

nonlinear functions, θl for l = 1, . . . , p and bj are unknown param-
eters and control coefficients. If gj(χ) ∈ span{g0(χ)}, g0(χ) ∈ ℜ

n

and the nominal system χ̇ = f0(χ)+ F(χ)θ + g0(χ)u0, y = h(χ),
where u0 ∈ ℜ, F(χ) = [f1(χ), f2(χ), . . . , fp(χ)] ∈ ℜ

n×p, θ =

[θ1, θ2, . . . , θp]
T

∈ Rp, is transformable into the parametric-strict-
feedback form with relative degree ϱ, the nonlinear plant (2) can
be transformed to the form of (1).

Suppose that the internal dynamics in actuators is negligible.
We denote ucj for j = 1, . . . ,m as the input of the jth actuator,
which is to be designed. An actuator with its input equal to its
output, i.e. uj = ucj, is regarded as fault free. The actuator failures
and faults of interest are modeled as follows,

uj(t) = ρjhucj + ukj,h,
t ∈ [tjh,s, tjh,e),
h ∈ Z+ (3)

ρjhukj,h = 0, j = 1, . . . ,m, (4)

where ρjh ∈ [0, 1), ukj,h, tjh,s, tjh,e are all unknown constants and
0 ≤ tj1,s < tj1,e ≤ tj2,s < · · · < tjh,e ≤ tj(h+1),s < tj(h+1),e and
so forth. Eq. (3) indicates that the jth actuator fails from time tjh,s
till tjh,e. tj1,s denotes the time instant when the first failure or fault
takes place on the jth actuator.

Similar to Wang and Wen (2010), (3)–(4) cover both PLOE type
of faults and complete failures.

(1) ρjh ≠ 0 and ukj,h = 0.
In this case, uj = ρjhucj, where 0 < ρjh < 1. This indicates PLOE
faults. For example,ρjh = 70%means that the jth actuator loses
30% of its effectiveness.

(2) ρjh = 0.

In this case, uj is stuck at an unknown value ukj,h such that it
can no longer be influenced by the control inputs ucj. This indicates
complete failures, which are sometimes referred to as total loss
of effectiveness (TLOE) type of faults. The detailed descriptions of
TLOE faults can be found in Boskovic and Mehra (1999, 2002a).

It is important to be noted that actuators working in fault free
case can also be represented as (3) with ρjh = 1 and ukj,h = 0.
Therefore, the model in (3) is applicable to describe the output of
an actuator no matter it fails or not.
Remark 2. By comparing (3)–(4) to the failure/fault models
considered in Boskovic et al. (2009, 1998), Tang and Tao (2009),
Tang et al. (2003), Tao et al. (2002, 2001), Wang and Wen (2010)
and Zhang and Chen (2009); Zhang et al. (2010), h is not restricted
to be finite. This implies (i) a failed actuator may operate normally
again from time tjh,e till tj(h+1),s when the next failure or fault occurs
on the same actuator; (ii) the failure/fault valuesρjh or ukj,h changes
to a new one, i.e. ρj(h+1) or ukj,h+1, from the time tjh,e(=tj(h+1),s).

The control objectives in this paper are as follows,

• The effects of considered types of actuator failures or faults
can be compensated for so that the closed-loop system is
maintained stable all the time.

• The tracking error z1(t) = y(t) − yr(t) is small in the mean
square sense that z1(t) ∈ S2(µ), where S2(µ) is defined in
Section 1.1.

• If the total number of failures and faults is finite, asymptotic
tracking can still be achieved, i.e. limt→∞ z1(t) = 0.

To achieve the control objectives, the following assumptions are
imposed.

Assumption 1. The plant (1) is so constructed that for any up to
m− 1 actuators undergoing complete failures simultaneously, the
remaining actuators can still achieve the desired control objectives.

Assumption 2. The reference signal yr(t) and its first ϱth order
derivatives y(i)r (i = 1, . . . , ϱ) are known, bounded, and piecewise
continuous.

Assumption 3. βj(x, ξ) ≠ 0, the signs of bj, i.e. sgn(bj), for j =

1, . . . ,m are known.

Assumption 4. 0 < bj ≤ |bj| ≤ b̄j, |ukj,h| ≤ ūkj. For the PLOE
faults, ρ

j
≤ ρjh < 1. There exists a convex compact set C ⊂ ℜ

p

such that ∃θ̄ , θ0, |θ − θ0| ≤ θ̄ for all θ ∈ C. Note that bj, b̄j, ρ j
,

ūkj, θ0, θ̄ are all known finite positive constants.

Assumption 5. The subsystem ξ̇ = Ψ (x, ξ) + Φ(x, ξ)θ is input-
to-state stable with respect to x as the input.

Remark 3.
• As similarly discussed in Boskovic andMehra (1999), Tang et al.

(2003), Tao et al. (2002, 2001), Wang and Wen (2010) and
Zhang and Chen (2009), Assumption 1 is a basic assumption
to ensure the controllability of the system and the existence
of a nominal solution for the adaptive failure compensation
problem.However, all actuators are allowed to suffer fromPLOE
faults simultaneously.

• In Assumption 4, ρ
j
denotes the lower bound of ρjh on the jth

actuator in the case of PLOE faults. The knowledge of ρ
j
will

be used in designing the controllers and the estimators. The
control objectives can be achieved with such designs no matter
complete failures or PLOE faults occur.

3. Adaptive control design for failure compensation

Design ucj in parallel as follows

ucj =
sgn(bj)
βj

u0, (5)

where u0 will be generated by performing backstepping technique.
Based on (5) and the considered failures/faults modeled as in
(3)–(4), theϱth equation of the plant (1) has different forms in fault
free and faulty cases.
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• Fault Free Case

ẋϱ = ϕ0 + ϕT
ϱθ +

m−
j=1

|bj|u0. (6)

• Faulty Case.
We denote Th for h ∈ Z+ as the time instants at which the
failure/fault pattern of the plant changes. Suppose that during time
interval (Th, Th+1), there are qh (1 ≤ qh ≤ m − 1) actuators
j1, j2, . . . , jqh undergoing complete failures and the failure/fault
pattern will be fixed until time Th+1. We have

ẋϱ = ϕ0 + ϕT
ϱθ +

−
j≠j1,j2,...,jqh

ρjh|bj|u0 +

−
j=j1,j2,...,jqh

bjukj,hβj. (7)

From (1), (6) and (7), a unified model of ẋ for both cases is
constructed as
ẋi = xi+1 + ϕT

i θ, i = 1, 2, . . . , ϱ − 1

ẋϱ = ϕ0 + ϕT
ϱθ + bu0 + βTk, (8)

where

b =


m−
j=1

|bj|, Fault Free−
j≠j1,...,jqh

ρjh|bj|, Faulty
(9)

β = [β1, . . . , βm]
T

∈ ℜ
m, (10)

k =


[0, . . . , 0]T ∈ ℜ

m, Fault Free
0, . . . , bj1ukj1,h, 0, . . . ,
bjqhukjqh,h, 0, . . . , 0

T
∈ ℜ

m Faulty.
(11)

Define that ζ = min1≤j≤m{ρ
j
bj}, kj = eTm,jk, where ei,j denotes

the jth coordinate vector inℜ
i. FromAssumption 1, there is at least

one actuator free from complete failures, we have b ≥ ζ . Note that
b, kj for j = 1, . . . ,m are time varying parameters that may jump.
We further define ϑ = [b, θ T , kT ]T ∈ ℜ

p+m+1, the property of ϑ is
established in the following lemma.

Lemma 1. The derivative of ϑ(t) satisfies that ϑ̇(t) ∈ S1(µ), where
S1(µ) is defined in Section 1.1, i.e.∫ t+T

t
|ϑ̇(τ )|dτ ≤ C1µT + C2, ∀t, T (12)

with C1, C2 > 0, µ is defined as

µ =
1
T ∗
, (13)

where T ∗ denotes the minimum value of time intervals between any
successive changes of failure/fault pattern. C1 is independent of µ.
Proof. From Assumption 4, the upper bounds of the jumping sizes
on b and kj can be calculated. If b or kj jumps at time instant t , we
obtain that

|b(t+)− b(t−)| ≤

m−
j=1

b̄j − ζ , (14)

|kj(t+)− kj(t−)| ≤ 2b̄jūkj. (15)

Define K̄ = max1≤j≤m{
∑m

k=1 b̄k − ζ , 2b̄jūkj}. Clearly, K̄ is finite.
Denote Th, where h ∈ Z+, as the time instantwhen the failure/fault
pattern changes. The failure/fault pattern will be fixed during time
interval (Th, Th+1). Because of the definition of T ∗, Th+1 − Th ≥ T ∗

is satisfied for all Th, Th+1. We know that |ϑ̇(t)| ≤
¯̄K
∑

h δ(t − Th),
where δ(t − Th) is the shifted unit impulse function and ¯̄K =√
p + m + 1K̄ . Consider the integral interval t ∼ t + T in the
following cases:
� T < T ∗ and Th−1 < t ≤ Th ≤ t + T < Th+1, which corresponds

to the case that there is one and only one time of failure/fault
pattern change during [t, t + T ]. Thus we have∫ t+T

t
|ϑ̇(τ )|dτ ≤

¯̄K . (16)

� T < T ∗, t > Th and t + T < Th+1, which corresponds to the
case that the failure/fault pattern is fixed during [t, t + T ]. We
have∫ t+T

t
|ϑ̇(τ )|dτ = 0. (17)

� T ≥ T ∗, t ≤ Th and t+T ≥ Th+N , whereN is the largest integer
that is less than or equal to T/T ∗. This refers to the case that
there are at most N + 1 times of failure/fault pattern changes
occurring during [t, t + T ]. We then obtain∫ t+T

t
|ϑ̇(τ )|dτ =

¯̄K(N + 1) ≤
¯̄K
1
T ∗

T +
¯̄K . (18)

� T ≥ T ∗, t ≤ Th and t + T < Th+N , where N is the same as the
above case. This refers to the case that there are atmostN times
of failure/fault pattern changes occurring during [t, t + T ]. We
then have∫ t+T

t
|ϑ̇(τ )|dτ =

¯̄KN ≤
¯̄K
1
T ∗

T . (19)

Clearly, the above four cases include all the possibilities of t and
t + T . From (16)–(19), if it is defined that C1, C2 =

¯̄K , (12) follows
and C1 is independent of µ. Therefore ϑ̇ ∈ S1(µ). Note that µ
decreases as T ∗ increases. �

3.1. Design of u0

This subsection is devoted to constructing u0 by performing
backstepping technique on the model (8). We introduce the error
variables

zi = xi − y(i−1)
r − αi−1, i = 1, . . . , ϱ (20)

where α0 = 0 and αi is the stabilizing function generated at the ith
step given by,

αi = −zi−1 − (ci + si)zi − wT
i θ̂

+

i−1−
k=1


∂αi−1

∂xk
xk+1 +

∂αi−1

∂y(k−1)
r

y(k)r


, i = 1, . . . , ϱ − 1 (21)

αϱ =
1

b̂
ᾱϱ −

1
ζ
(cϱ + sϱ)zϱ (22)

ᾱϱ = −zϱ−1 − ϕ0 − wT
ϱ θ̂ − βT k̂

+

ϱ−1−
k=1


∂αϱ−1

∂xk
xk+1 +

∂αϱ−1

∂y(k−1)
r

y(k)r


, (23)

where b̂, θ̂ and k̂ are the estimates of b, θ and k, respectively. wi
and the nonlinear damping functions si are designed as

wi = ϕi −

i−1−
k=1

∂αi−1

∂xk
ϕi, i = 1, . . . , ϱ (24)

si = κi|wi|
2
+ gi

∂αi−1

∂θ̂

T 2 , i = 1, . . . , ϱ − 1 (25)

sϱ = κϱ

|wϱ|
2
+

y
(ϱ)
r + ᾱϱ

b̂


2

+ |β|
2

+ gϱ

∂αϱ−1

∂θ̂

T 2 . (26)
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Remark 4. Different from the existing tuning function designs
such as in Tang et al. (2003, 2007) and Wang and Wen (2010), the
use of nonlinear damping functions here is to construct a controller
such that an input-to-state property of an error system given later
in (67) with respect to ϑ̃ and ˙̂

θ as the inputs will be established in
Section 4.

Finally, u0 is designed as

u0 = αϱ +
y(ϱ)r

b̂
. (27)

3.2. Design of parameter update law

In this subsection, preliminary design of certain filters is first
presented and some boundedness properties of related signals are
also established. Then the design of adaptive law involving the
details of parameter projection design is provided. Further, the
properties of the estimator which are useful in the analysis of
system stability and the performance of tracking error in themean
square sense will also be shown.

3.2.1. Preliminary design
Eq. (8) can be written in parametric x-model as

ẋ = f (x)+ F T (x, u)ϑ, (28)

where f (x) = [x2, x3, . . . , xϱ, ϕ0]
T and

F T (x, u) =


0, ϕT

1 , 01×m

0, ϕT
2 , 01×m

...
...

...

u0, ϕT
ϱ , βT

 ∈ ℜ
ϱ×(p+m+1). (29)

We introduce two filters

Ω̇T
= A(x, t)ΩT

+ F T (x, u), Ω ∈ ℜ
(p+m+1)×ϱ (30)

Ω̇0 = A(x, t)(Ω0 + x)− f (x), Ω0 ∈ ℜ
ϱ (31)

where A(x, t) is chosen as

A(x, t) = A0 − γ F T (x, u)F(x, u)P, (32)

with γ > 0 and A0 is an arbitrary constant matrix such that
PA0 + AT

0P = −I, P = PT > 0. We now have the following
lemmas.

Lemma 2. For a time varying system ψ̇ = A(x(t), t)ψ , the state
transition matrixΦA(t, t0) satisfies that

‖ΦA(t, t0)‖ ≤
¯̄k0e−r0(t−t0), (33)

where ¯̄k0 and r0 are some positive constants.

Proof. Defining a positive definite quadratic function V = ψTPψ .
It satisfies that V̇ ≤ −ψTψ and λmin(P)ψTψ ≤ V ≤ λmax
(P)ψTψ , where λmax(P), λmin(P) are the maximum and minimum
eigenvalue of P , respectively. Thus the equilibrium point ψ =

0 is exponentially stable from Theorem 4.10 in Khalil (1996).
Moreover, ‖ΦA(t, t0)‖ ≤

¯̄k0e−r0(t−t0) for ¯̄k0, r0 > 0 can be shown
by following similar procedures in proving Theorem 4.11 in Khalil
(1996). �

Lemma 3. The state Ω of the filter (30) satisfies that ‖Ω‖∞ ≤ C3
irrespectively of the boundedness of its input F T , where C3 is a positive
constant given by

C3 =
√
ϱmax


‖Ω(0)‖F ,


p + m + 1

2γ


. (34)
Proof. Similarly to the proof on Pages 250–251 in Krstic et al.
(1995), we obtain that

d
dt

tr{ΩPΩT
} = −‖Ω‖

2
F − 2γ

FPΩT
−

1
2γ

Ip+m+1

2
F

+
1
2γ

tr{Ip+m+1}

≤ −‖Ω‖
2
F +

p + m + 1
2γ

. (35)

From (35) and the fact that λmin(P)‖Ω‖
2
F ≤ tr{ΩPΩT

}, it
follows thatΩ ∈ L∞ and

‖Ω‖∞ ≤
√
ϱ‖Ω‖F ≤

√
ϱmax


‖Ω(0)‖F ,


p + m + 1

2γ


. �

(36)

Combining (28), (31), and defining Y = Ω0 + x, we have

Ẏ = AY + F Tϑ. (37)

Introduce that ε = Y −ΩTϑ . From (30) and (37), the derivative of
ε is computed as

ε̇ = AY + F Tϑ − (AΩT
+ F T )ϑ −ΩT ϑ̇

= Aε −ΩT ϑ̇ . (38)

Then, the following results are obtained.

Lemma 4.

(i) If µ is finite, ε is bounded;
(ii) ε ∈ S1(µ) and ε ∈ S2(µ).

Proof.
• Proof of (i). The solution of (38) is

ε(t) = ΦAε(0)−

∫ t

0
ΦA(t, τ )ΩT (τ )ϑ̇(τ )dτ . (39)

From Lemmas 2 and 3, we have

|ε(t)| ≤
¯̄k0e−r0t |ε(0)| +

¯̄k0‖Ω‖∞

∫ t

0
e−r0(t−τ)|ϑ̇(τ )|dτ

= ε1 + ε2, (40)

where ε1 =
¯̄k0e−r0t |ε(0)| and ε2 =

¯̄k0‖Ω‖∞

 t
0 e−r0(t−τ)·|ϑ̇(τ )|dτ ,

respectively.
From Lemma 1 and the definition of ε2, one can show that

ε2 ≤ C4µ+ C5, where

C4 =

¯̄k0C1‖Ω‖∞er0

1 − e−r0
, C5 =

¯̄k0C2‖Ω‖∞er0

1 − e−r0
, (41)

by following similar procedures in proving that 1(t, t0) ≤ c on
Pages 84–85 in Ioannou and Sun (1996). Thus we conclude that ε2
is bounded as long as µ is finite. Consequently, ε is bounded.
• Proof of (ii).

By integrating (40) over [t, t + T ], we have∫ t+T

t
|ε(τ )|dτ ≤

∫ t+T

t

¯̄k0e−r0τ |ε(0)|dτ

+
¯̄k0‖Ω‖∞

∫ t+T

t

∫ τ

0
e−r0(τ−s)

· |ϑ̇(s)|dsdτ

=

¯̄k0|ε(0)|
r0

+
¯̄k0‖Ω‖∞

∫ t+T

t
e−r0τ

∫ t

0
er0s|ϑ̇(s)|dsdτ
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+
¯̄k0‖Ω‖∞

∫ t+T

t
e−r0τ

∫ τ

t
er0s|ϑ̇(s)|dsdτ

≤

¯̄k0|ε(0)|
r0

+

¯̄k0‖Ω‖∞

r0

∫ t

0
e−r0(t−s)

|ϑ̇(s)|ds

+
¯̄k0‖Ω‖∞

∫ t+T

t
e−r0τ

∫ τ

t
er0s|ϑ̇(s)|dsdτ , (42)

where the last inequality is obtained by using e−r0t − e−r0(t+T )
≤

e−r0t .
From the Proof of (i), we have∫ t+T

t
|ε(τ )|dτ ≤

¯̄k0|ε(0)| + C4µ+ C5

r0
+

¯̄k0‖Ω‖∞

×

∫ t+T

t
e−r0τ

∫ τ

t
er0s|ϑ̇(s)|dsdτ . (43)

By changing the sequence of integration, (43) becomes∫ t+T

t
|ε(τ )|dτ ≤

¯̄k0|ε(0)| + C4µ+ C5

r0
+

¯̄k0‖Ω‖∞

×

∫ t+T

t
er0s|ϑ̇(s)|

∫ t+T

s
e−r0τdτds

≤

¯̄k0|ε(0)| + C4µ+ C5

r0
+

¯̄k0‖Ω‖∞

r0

∫ t+T

t
|ϑ̇(s)|ds. (44)

From Lemma 1, we obtain that∫ t+T

t
|ε(τ )|dτ ≤ C6µT + C7, (45)

where C6 =
¯̄k0C1‖Ω‖∞/r0 and

C7 =

¯̄k0|ε(0)| + C4µ+ C5 +
¯̄k0C2‖Ω‖∞

r0
. (46)

Therefore, ε ∈ S1(µ).
From (40), it follows that ‖ε‖∞ ≤

¯̄k0|ε(0)| + C4µ + C5. By
utilizing Hölder’s inequality, we obtain that∫ t+T

t
ε(τ )Tε(τ )dτ ≤ ‖ε‖∞

∫ t+T

t
|ε(τ )|dτ

= ‖ε‖∞(C6µT + C7)

= (C8µ
2
+ C9µ)T + C10, (47)

where C8 = C4C6, C9 = C6(
¯̄k0|ε(0)| + C5) + C4C7, C10 =

C7(
¯̄k0|ε(0)| + C4µ+ C5).
Hence ε ∈ S2(µ) is concluded. �

3.2.2. Design of adaptive law
Now we introduce the ‘‘prediction’’ of Y as Ŷ = ΩT ϑ̂ , where

ϑ̂ = [b̂, θ̂ T , k̂T ]T . The ‘‘prediction error’’ ϵ = Y − Ŷ can be written
as

ϵ = ΩT ϑ̃ + ε, (48)

where ϑ̃ = ϑ − ϑ̂ .
Design the update law for ϑ̂ by following standard parameter

estimation algorithm Krstic et al. (1995) as

˙̂
ϑ = Proj {ΓΩϵ} , Γ = Γ T > 0 (49)

where Proj{·} is a smooth projection operator to ensure that

ϑ̂(t) = (ϑ̂1, . . . , ϑ̂p+m+1)
T

∈ Π0, ∀t. (50)
In (50), the setΠ0 is defined similarly as in Example 1 of Pomet and
Praly (1992), i.e.

Π0 =


ϑ̂

|ϑ̂i − νi| < σi, i = 1, p + 2, . . . , p + m + 1
|θ̂ − θ0| < θ̄, θ̂ = [ϑ̂2, . . . , ϑ̂p+1]

T


. (51)

Note that θ0 and θ̄ are given in Assumption 4 and νi, σi are given
as

ν1 =


ζ +

m−
j=1

b̄j


/2,

νi = 0, i = p + 2, . . . , p + m + 1; (52)
σ1 = ν1 − ζ ,

σi = b̄jūk(i−p−1), i = p + 2, . . . , p + m + 1. (53)

By doing these, ζ ≤ b̂ ≤
∑m

j=1 b̄j, |k̂j| ≤ b̄jūkj and θ̂ ∈ C all the
time. Based on Krstic et al. (1995) and Pomet and Praly (1992), the
detailed design of projection operator is given below.

Choosing a C2 function P (ϑ̂): ℜp+m+1
→ ℜ as

P (ϑ̂) =

−
i=1,p+2,...,p+m+1

 ϑ̂i − νi

σi


q

+


|θ̂ − θ0|

θ̄

q

− 1 + ς, (54)

where 0 < ς < 1 and q ≥ 2 are two real numbers. We then define
the setΠ as

Π =


ϑ̂ |P (ϑ̂) ≤ 0


. (55)

Clearly, Π approaches Π0 as ς decreases and q increases. Similar
to (E.3) in Krstic et al. (1995), we consider the following convex set

Πς =


ϑ̂

P (ϑ̂) ≤
ς

2


, (56)

which contains Π for the purpose of constructing a smooth
projection operator as

Proj(τ ) =


τ ,P (ϑ̂) ≤ 0 or

∂P

∂ϑ
(ϑ̂)τ ≤ 0

τ − c(ϑ̂)Γ
∂P

∂ϑ̂
(ϑ̂) ∂P

∂ϑ̂
(ϑ̂)T

∂P

∂ϑ̂
(ϑ̂)TΓ ∂P

∂ϑ̂
(ϑ̂)

τ , if not
(57)

where ϑ̂(0) ∈ Π and

c(ϑ̂) = min


1,

2P (ϑ̂)

ς


. (58)

It is helpful to be noted that

c(ϑ̂) =


0, P (ϑ̂) = 0
1, P (ϑ̂) =

ς

2
.

(59)

The properties of projection operator (57) are rendered in the
following lemma.

Lemma 5.

(i) Proj(τ )TΓ −1Proj(τ ) ≤ τ TΓ −1τ , ∀ϑ̂ ∈ Πς .

(ii) Let Γ (t), τ (t) be continuously differentiable and ˙̂
ϑ =

Proj(τ ), ϑ̂(0) ∈ Πς . Then on its domain of definition, the
solution ϑ̂(t) remains inΠς .

(iii) −ϑ̃TΓ −1Proj(τ ) ≤ −ϑ̃Γ −1τ ,∀ϑ̂ ∈ Πς , θ ∈ Π .

Proof. The proof is similar to the proof of Lemma E.1 in Krstic et al.
(1995). �
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Based on these, we have the following results, which will be
useful in the analysis of system stability and the performance of
tracking error in the mean square sense.

Lemma 6. The estimator (49) has the following properties.
(i) ϵ ∈ S2(µ);
(ii) ˙̂

ϑ ∈ S2(µ).
Proof. We define a positive definite function

Vϑ =
1
2
ϑ̃TΓ −1ϑ̃ . (60)

From Lemma 5(iii), we have

V̇ϑ = ϑ̃TΓ −1(ϑ̇ −
˙̂
ϑ) ≤ −ϑ̃TΓ −1 (ΓΩϵ)+ ϑ̃TΓ −1ϑ̇

= −(ϵ − ε)T ϵ + ϑ̃TΓ −1ϑ̇

≤ −ϵT ϵ + |εT ϵ| + ϑ̃TΓ −1ϑ̇ . (61)

• Proof of (i).
By integrating both sides of (61) and using Hölder’s inequality,

we obtain∫ t+T

t
V̇ϑdτ ≤ −

∫ t+T

t
ϵT ϵdτ + ‖ϵ‖∞

∫ t+T

t
|ε|dτ

+ ‖ϑ̃‖∞‖Γ −1
‖∞

∫ t+T

t
|ϑ̇ |dτ

≤ −

∫ t+T

t
ϵT ϵdτ + ‖ϵ‖∞(C6µT + C7)

+ ‖ϑ̃‖∞

1
λmin(Γ )

(C1µT + C2). (62)

Thus∫ t+T

t
ϵ(τ )T ϵ(τ )dτ

≤
1

2λmin(Γ )


ϑ̃(t)T ϑ̃(t)− ϑ̃(t + T )T ϑ̃(t + T )


+ ‖ϵ‖∞(C6µT + C7)+

‖ϑ̃‖∞

λmin(Γ )
(C1µT + C2)

≤ (C11µ
2
+ C12µ)T + C13, (63)

where C11 = C8 and

C12 = C9 +
C1‖ϑ̃‖∞

λmin(Γ )
, C13 = C10 +

‖ϑ̃‖
2
∞

+ 2C2‖ϑ̃‖∞

2λmin(Γ )
. (64)

From Lemma 5(iii), ϑ̂(t) remains in Πς if ϑ̂(0) ∈ Πς . From
Assumption 4 and the definition of Πς , we know that ϑ ∈ Πς .
Therefore ϑ̃ is bounded by utilizing the projection operator, ϵ ∈

S2(µ).
• Proof of (ii).

From Lemma 5(i) and Hölder’s inequality, we have∫ t+T

t

˙̂
ϑ

T
˙̂
ϑdτ ≤

∫ t+T

t
ϵTΩTΓ 2Ωϵ

≤ λmax(Γ )
2
 ‖Ω ‖

2
F


∞

∫ t+T

t
ϵT ϵdτ . (65)

Thus from (63),∫ t+T

t

˙̂
ϑ(τ)T

˙̂
ϑ(τ)dτ ≤ (C14µ

2
+ C15µ)T + C16, (66)

where C1i = C1i−3λmax(Γ )
2
‖ ‖Ω ‖

2
F ‖∞ for i = 4, 5, 6. Therefore,

˙̂
ϑ ∈ S2(µ) is concluded. �
4. Stability analysis

Wewill first prove the input-to-state stability of an error system
with ϑ̃ and ˙̂

θ as the inputs. An error system obtained by applying
the design procedure (20)–(27) to system (8) is given by

ż = Az(z, ϑ̂, t)z + Wϑ (z, ϑ̂, t)T ϑ̃ + Qθ (z, ϑ̂, t)T
˙̂
θ, (67)

where

Az =



−(c1 + s1) 1 0 · · · 0

−1 −(c2 + s2) 1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . .

. . . 1

0 · · · 0 −1 −
b
ζ
(cϱ + sϱ)


,(68)

W T
ϑ =


0 wT

1 01×m

0 wT
2 01×m

...
...

...

ᾱϱ + y(ϱ)r

b̂
wT
ϱ βT

 , (69)

Q T
θ =

[
0,−

∂α1

∂θ̂
, . . . ,

−∂αϱ−1

∂θ̂

]T
. (70)

For the error system (67)–(70), the following input-to-state
property holds.

Lemma 7. If θ̃ , b̃, k̃, ˙̂
θ ∈ L∞, then z ∈ L∞ and

|z(t)| ≤
1

2
√
c0

[
1
κ0
(‖θ̃‖2

∞
+ ‖b̃‖2

∞
+ ‖k̃‖2

∞
)+

1
g0

‖
˙̂
θ‖2

∞

] 1
2

+ |z(0)|e−c0t , (71)

where θ̃ = θ − θ̂ , b̃ = b − b̂ and k̃ = k − k̂ and c0, κ0 and g0 are
defined as

c0 = min
1≤i≤ϱ

ci, κ0 =


ϱ−

i=1

1
κi

−1

, g0 =


ϱ−

i=1

1
gi

−1

. (72)

Proof. Along the solutions of (67), we compute

d
dt


1
2
|z|2


≤ −c0|z|2 −

ϱ−
i=1

κi

wizi −
1
2κi
θ̃

2
−

ϱ−
i=1

gi

∂αi−1

∂θ̂

T

zi +
1
2gi

˙̂
θ

2

− κϱ


y(ϱ)r + ᾱϱ

b̂


zϱ −

1
2κn

b̃

2

− κϱ

βzϱ −
1

2κϱ
k̃
2 +


n−

i=1

1
4κi


|θ̃ |2

+


n−

i=1

1
4gi


|
˙̂
θ |2 +

1
4κn

(b̃2 + |k̃|2)

≤ −c0|z|2 +
1
4

[
1
κ0
(|θ̃ |2 + b̃2 + |k̃|2)+

1
g0

|
˙̂
θ |2
]
. (73)
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Let v = |z|2 and L =


1
κ0
(|θ̃ |2 + b̃2 + |k̃|2)+

1
g0

|
˙̂
θ |2
1/2

, it
follows that

v̇ ≤ −2c0v +
1
2

L 2. (74)

If θ̃ , b̃, k̃ and ˙̂
θ ∈ L∞,L ∈ L∞, then v ∈ L∞ and

v(t) ≤ v(0)e−2c0t +
1
4c0

‖L ‖
2
∞

≤ v(0)e−2c0t +
1
4c0

[
1
κ0
(‖θ̃‖2

∞
+ ‖b̃‖2

∞

+ ‖k̃‖2
∞
)+

1
g0

‖
˙̂
θ‖2

∞

]
. � (75)

We are now at the position to present the main results of this
paper in the following theorem.

Theorem 1. Consider the closed-loop adaptive system consisting of
the nonlinear plant (1), the controller (5), (27) and the parameter
update law (49). Irrespective of actuator failures or faults modeled
in (3)–(4) under Assumptions 1–5, we have the following results.

(i) All the signals of the closed-loop system are ensured bounded as
long as µ is finite.

(ii) The tracking error z1 = y− yr is small in the mean square sense
that z1(t) ∈ S2(µ).

(iii) The asymptotic tracking can be achieved for a finite number of
failures and faults, i.e. limt→∞ z1(t) = 0.

Proof.
• Proof of (i).
ϑ̃ is bounded by utilizing the projection operator in (49). From

Lemma 3, Ω is bounded. From Lemma 4, ε is bounded as long
as µ is finite. Thus from (48), ϵ is bounded and so is ˙̂

ϑ . Thus all
the conditions in Lemma 7 are satisfied, then z(t) ∈ L∞. From
Assumption 2, the definition of zi in (20) and the design of αi in
(21)–(23), x(t) ∈ L∞. From Assumption 5, ξ is bounded with
respect to x(t) as the input. αρ is then bounded. From (5) and (27),
control signals ucj for j = 1, 2, . . . ,m are also bounded. The closed-
loop stability is then established.
• Proof of (ii).

Rewrite (67) as

ż = Āz(z, ϑ̂, t)z + W̄ϑ (z, ϑ̂, t)T ϑ̃ + Qθ (z, ϑ̂, t)T
˙̂
θ, (76)

where Qθ is the same as in (70) and

Āz =



−(c1 + s1) 1 0 · · · 0

−1 −(c2 + s2) 1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . .

. . . 1

0 · · · 0 −1 −
b̂
ζ
(cϱ + sϱ)


, (77)

W̄ T
ϑ =


0 wT

1 01×m

0 wT
2 01×m

...
...

...

u0 wT
n βT

 . (78)

Introduce the state χ T as

χ̇ T
= Āzχ

T
+ W̄ T

ϑ . (79)
Similarly to Lemma2,we obtain that ‖ΦĀz (t, t0)‖ ≤
¯̄k1e−r1(t−t0)

where ¯̄k1, r1 are positive constants. Thus χ ∈ L∞ is shown from
(79) and the boundedness of W̄ϑ .

By defining η as

η = z − χ T ϑ̃, (80)

we will show (ii) in two steps. In Step 1, η ∈ S2(µ)will be proved.
Then we will establish that χ T ϑ̃ ∈ S2(µ) in Step 2. Thus from (80),
z(t) ∈ S2(µ)will be obtained.
Step 1.

Computing the derivative of η gives that

η̇ = ż − χ̇ T ϑ̃ − χ T (ϑ̇ −
˙̂
ϑ)

= Āzη + Q T
θ

˙̂
θ + χ T ˙̂

ϑ − χ T ϑ̇ . (81)

The solution of (81) is

η(t) = ΦĀz (t, 0)η(0)

+

∫ t

0
ΦĀz (t, τ )Qθ (z(τ ), ϑ̂(τ ), τ )

T
·
˙̂
θ(τ )dτ

+

∫ t

0
ΦĀz (t, τ )χ(τ)

T ˙̂
ϑ(τ)dτ

−

∫ t

0
ΦĀz (t, τ )χ(τ)

T ϑ̇(τ )dτ . (82)

Since Qθ and χ are bounded, we have

|η(t)| ≤
¯̄k1e−r1t |η(0)| +

¯̄k1‖Qθ‖∞

∫ t

0
e−r1(t−τ) · |

˙̂
θ(τ )|dτ

+
¯̄k1‖χ‖∞

∫ t

0
e−r1(t−τ)|

˙̂
ϑ(τ)|dτ

+
¯̄k1‖χ‖∞

∫ t

0
e−r1(t−τ)|ϑ̇ |dτ = η1 + η2, (83)

where η1 and η2 are defined respectively as

η1 =
¯̄k1


‖Qθ‖∞

∫ t

0
e−r1(t−τ)|

˙̂
θ(τ )|dτ

+ ‖χ‖∞

∫ t

0
e−r1(t−τ)|

˙̂
ϑ(τ)|dτ


(84)

η2 =
¯̄k1


e−r1t |η(0)| + ‖χ‖∞

∫ t

0
e−r1(t−τ)|ϑ̇ |dτ


. (85)

By following similar procedures to the proof of Lemma 4(ii), it
can be shown that η2 ∈ S2(µ). Now we show that η1 ∈ S2(µ).
Using the Schwartz inequality, we obtain

η1 ≤
¯̄k1


‖Qθ‖∞

∫ t

0
e−r1(t−τ)dτ

 1
2
∫ t

0
e−r1(t−τ)

× |
˙̂
θ(τ )|2dτ

 1
2

+ ‖χ‖∞

∫ t

0
e−r1(t−τ)dτ

 1
2

∫ t

0
e−r1(t−τ)|

˙̂
ϑ(τ)|2dτ

 1
2


≤

¯̄k1
√
r1


‖Qθ‖∞

∫ t

0
e−r1(t−τ)|

˙̂
θ(τ )|2dτ

 1
2

+ ‖χ‖
2
∞

∫ t

0
e−r1(t−τ)|

˙̂
ϑ(τ)|2dτ

 1
2

. (86)
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By squaring both sides of (86) and integrating it over [t, t + T ], we
have∫ t+T

t
η21dτ ≤

2 ¯̄k
2

1

r1

[
‖Qθ‖2

∞

∫ t+T

t

∫ τ

0
e−r1(τ−s)

|
˙̂
θ(s)|2dsdτ

+ ‖χ‖
2
∞

∫ t+T

t

∫ τ

0
e−r1(τ−s)

|
˙̂
ϑ(s)|2dsdτ

]
. (87)

Similar to the proof of Lemma 4, we obtain that∫ t+T

t
η21dτ ≤

2 ¯̄k
2

1‖Qθ‖
2
∞

r1


1
r1

∫ t

0
e−r1(t−s)

|
˙̂
θ(s)|2ds +

∫ t+T

t
er1s

× |
˙̂
θ(s)|2

∫ t+T

s
e−r1τdτds


+

2 ¯̄k
2

1‖χ‖
2
∞

r1

×


1
r1

∫ t

0
e−r1(t−s)

|
˙̂
ϑ(s)|2ds +

∫ t+T

t
er1s| ˙̂ϑ(s)|2∫ t+T

s
e−r1τdτds



≤
2 ¯̄k

2

1

r21
(‖Qθ‖2

∞
+ ‖χ‖

2
∞
)
er1(C14µ

2
+ C15µ+ C16)

1 − e−r1

+
2 ¯̄k

2

1‖Qθ‖
2
∞

r21

∫ t+T

t
|
˙̂
θ(s)|2ds

+
2 ¯̄k

2

1‖χ‖
2
∞

r21

∫ t+T

t
|
˙̂
ϑ(s)|2ds. (88)

From Lemma 6(ii), ˙̂
ϑ ∈ S2(µ), thus

˙̂
θ ∈ S2(µ) and η1 ∈ S2(µ).

From (83), η ∈ S2(µ) where we have used the fact that |η|2 ≤

2(η21 + η22).
Step 2.

From (48), Lemma 4(ii) and Lemma 6(i), we haveΩT ϑ̃ ∈ S2(µ).
Thus our main task in this step is to show that ΩT ϑ̃ ∈ S2(µ)
implies χ T ϑ̃ ∈ S2(µ).

For the simplicity of presentation, we represent the following
system by an operator TAi [·],

ζ̇i = Ai(t)ζi + u, (89)

where Ai : ℜ+ → ℜ
ϱ×ϱ is continuous, bounded, and exponentially

stable. For example, ζ1 = TA[F T ϑ̃] if ζ̇1 = Aζ1 + F T ϑ̃ , where A is
defined in (32).

Since the stability of the closed-loop system has been shown,
F is bounded. Similarly to the proof of η ∈ S2(µ), ζ1 − ΩT ϑ̃ =

TA[F T ϑ̃]−TA[F T
]ϑ̃ ∈ S2(µ) can also be shown. FromΩT ϑ̃ ∈ S2(µ),

it follows that ζ1 ∈ S2(µ).
We now show that ζ2 = TĀz [W̄ϑ ϑ̃] ∈ S2(µ), where Āz is the

same as in (77).
From (24), (29) and (78), we have

W̄ϑ = MF T , (90)

where

M =



1 0 · · · 0

−
∂α1

∂x1
1

. . .
...

...
. . .

. . . 0

−
∂αϱ−1

∂x1
· · · −

∂αϱ−1

∂xϱ−1
1

 . (91)
Then we obtain

ζ2 = ΦĀz (t, 0)ζ (0)+

∫ t

0
ΦĀz (t, τ )M(τ )F

T (τ )ϑ̃(τ )dτ

= ΦĀz (t, 0)ζ (0)+

∫ t

0
ΦĀz (t, τ )M(τ )[ζ̇1 − A(τ )ζ1(τ )]dτ

= ΦĀz (t, 0)ζ (0)+ M(t)ζ1(t)− ΦĀz (t, 0)M(0)ζ1(0)

−

∫ t

0
ΦĀz (t, τ )[Ṁ(τ )+ Āz(τ )M(τ )+ M(τ )A(τ )]ζ1(τ )dτ .

(92)

Note that M has a similar form to matrix N on Page 253 of Krstic
et al. (1995). By following similar analysis in Krstic et al. (1995), we
have thatM and Ṁ are bounded. Thus for the last term in (92), we
get∫ t

0
ΦĀz (t, τ )[Ṁ(τ )+ Āz(τ )M(τ )+ M(τ )A(τ )] · ζ1(τ )dτ

2
≤ ‖Ṁ + ĀzM + MA‖

2
∞

∫ t

0
e−2c0(t−τ)|ζ1(τ )|

2dτ . (93)

Since ζ1 ∈ S2(µ), ζ2 = TĀz [MF T ϑ̃] ∈ S2(µ) can be concluded
by following similar procedures in proving η1 ∈ S(µ) in Step 1.
Moreover, TĀz [MF T ϑ̃] − TĀz [MF T

]ϑ̃ ∈ S2(µ) can also be shown by
following the similar procedures in the proof ofη ∈ S2(µ).We then
obtain that TĀz [MF T

]ϑ̃ ∈ S2(µ). Thus TĀz [W̄
T
ϑ ]ϑ̃ = χ T ϑ̃ ∈ S2(µ).

From z = χ T ϑ̃ + η, z ∈ S2(µ). Hence z1 ∈ S2(µ) follows.
FromLemma1,we know thatµ =

1
T∗ where T ∗ is theminimum

time interval between two successive changes of failure/fault
pattern. Clearly, µ can be very small for a large T ∗.
• Proof of (iii).

For the casewith a finite number of failures and faults, the result
that ϑ̇(t) ∈ S1(µ) will be changed to that ϑ̇(t) ∈ L1. Through the
similar procedures in the analysis above, z(t) ∈ L2 will be followed
instead of z(t) ∈ S2(µ). From (67), ż(t) ∈ L∞. Together with the
facts that z(t) ∈ L∞, from the corollary of Barbalat’s Lemma as
provided in Appendix A in Krstic et al. (1995), asymptotic tracking
will be achieved, i.e. limt→∞ z1(t) = 0. �

Remark 5. With our proposed scheme, all the closed-loop signals
are ensured bounded even if there are infinite number of actuator
failures or faults as long as the time interval between two
successive changes of failure/fault pattern is bounded below by
an arbitrary positive number. Such a condition is less restrictive
than that conjectured in Tang et al. (2007). Moreover, from the
established tracking error performance in Theorem 1(ii), we see
that the frequency of changing failure/fault patterns will affect the
tracking performance. In fact for a designed adaptive controller
with a given set of design parameters and initial conditions, the less
frequent the failure/fault pattern changes, the better the tracking
performance is.

Our results can also be extended to the following situations,
even though they are not the focus of the paper.

Remark 6.

• As far as the ‘offline’ repair situation (namely actuators may
repeatedly fail, be removed from the loop and then put back
into the loop after recovery) is concerned, stability result cannot
be established by using the existing tuning function schemes.
This is because when the actuators change only from a working
mode to an ‘offline’ repairing mode infinitely many times, the
parameter b in (8) will experience infinite number of jumps
which will lead to instability if they are not carefully handled.
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However, system stability can be ensured with our proposed
scheme if Assumptions 1–5 are satisfied and the time intervals
between two successive changes of failure/fault pattern are
bounded below by an arbitrary positive number.

• The results achieved in this paper can also be applied to time
varying systems. The derivatives of the unknown parameters
are not required to be bounded like many other results on
adaptive backstepping control of time varying systems such as
Fidan, Zhang, and Ioannou (2005), Giri, Rabeh, and Ikhouane
(1999) and Zhang, Fidan, and Ioannou (2003). On the other
hand, the parameter µ being finite is the only condition to
achieve the boundedness of all closed-loop signals in this paper.
In contrast to previous results on adaptive control of systems
with possible jumping parameters such as in Middleton and
Goodwin (1988) and Zhang, Wen, and Soh (2000), µ is not
required to satisfy that µ ∈ (0, µ∗

] where µ∗ is a function of
the bounds of unknown system parameters as well as design
parameters. Thus the results here are more general than those
in Middleton and Goodwin (1988) and Zhang et al. (2000).

• Similar to the comments in Tang and Tao (2009), more general
failures modeled like uj(t) = ukj,h +

∑nj
i=1 djh,i · fjh,i(t) for

j = 1, 2, . . . ,m, with smooth functions fjh,i(t) and unknown
constants ukj,h, djh,i can also be handled with our proposed
scheme. However different from Tang and Tao (2009), fjh,i(t)
can be allowed unknown with our proposed scheme, as long
as it varies in such a way that ϑ̇ ∈ S1(µ) is still satisfied.

5. Simulation studies

5.1. A numerical example

In this subsection, a numerical example is considered to
illustrate the ability of the proposed scheme in compensating
for infinite number of relatively frequent actuator failures. To
carry out a comparison, the results by using a tuning function
scheme in Wang and Wen (2010, Sec. 3), which can be regarded
as a representative of currently available results in the area of
adaptive failure/fault compensation for nonlinear systems, are also
presented.

We consider a system with dual actuators

χ̇ = f0(χ)+ f (χ)θ +

2−
j=1

bjgj(χ)uj

y = χ2, (94)

where the state χ ∈ ℜ
3,

f0 =


−χ1
χ3
χ2χ3


, f =


0
χ2
2

1 − e−χ3

1 + e−χ3

 , (95)

and

g1 = g2 =

[
2 + χ2

3

1 + χ2
3
, 0, 1

]T
, (96)

which is modeled similarly to Example 13.6 in Khalil (1996). As
discussed in Khalil (1996), to transform (94) into the form of (1),
we choose [ξ, x1, x2]T = T (χ) = [φ(χ), χ2, χ3]

T where φ(χ) =

−χ1 + χ3 + tan−1 χ3. We have φ(0) = 0 and

∂φ

∂χ
gj(χ) =

∂φ

∂χ1
·
2 + χ2

3

1 + χ2
3

+
∂φ

∂χ3
= 0. (97)

Since the equation T (χ) = s for any s ∈ ℜ
3 has a unique

solution, the mapping T (χ) is a global diffeomorphism. Thus, the
Fig. 1. Tracking error y(t) − yr (t) with the scheme in Wang and Wen (2010, Sec.
3) when T ∗

= 5 s.

Fig. 2. Control u1 and u2 with scheme in Wang and Wen (2010, Sec. 3) when
T ∗

= 5 s.

transformed system below

ξ̇ = −ξ + x2 + tan−1 x2 +
2 + x22
1 + x22


x1x2 +

1 − e−x2

1 + e−x2
θ


ẋ1 = x2 + x21θ

ẋ2 = x1x2 +
1 − e−x2

1 + e−x2
θ +

2−
j=1

bjuj (98)

is defined globally. Because of the boundedness of functions

tan−1(x2),
2+x22
1+x22

and 1−e−x2

1+e−x2 , it is concluded that ξ̇ = −ξ +

η(x1, x2, θ) is ISSwhereη = x2+tan−1 x2+
2+x22
1+x22


x1x2 +

1−e−x2

1+e−x2 θ

.

Thus Assumption 5 is satisfied.
The considered failure case is modeled as

u1(t) = uk1,h, t ∈ [hT ∗, (h + 1)T ∗), h = 1, 3, . . . , (99)

which implies that the output of first actuator (u1) is stuck at
u1 = uk1,h at every hT ∗ seconds and is back to normal operation
at every (h + 1)T ∗ seconds until the next failure occurs.

The following information is unknown in the designs.

θ = 2, b1 = 1, b2 = 1.1,
uk1,h = 5, T ∗

= 5.
(100)

However, we know that b1, b2 > 0 and

1 ≤ θ ≤ 3, 0.8 ≤ |b1| ≤ 1.4, 0.6 ≤ |b2| ≤ 2 (101)
0.5 ≤ ρjh ≤ 1, |ukj,h| ≤ 6, j = 1, 2. (102)

The reference signal yr = sin(t).
We first design the adaptive controllers following the proce-

dures in Wang and Wen (2010, Sec. 3). In simulation, the initial
states and estimates are all set as 0 except that χ2(0) = 0.4 and
θ̂ (0) = 1. The design parameters are chosen as c1 = c2 = 5,Γ =

3,Γκ = 3 × I3. The performances of the tracking error and con-
trol inputs (u1, u2) versus time are given in Figs. 1 and 2, respec-
tively. It can be seen that after 150 s, the magnitudes of the error
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Fig. 3. Tracking error y(t)− yr (t)with proposed scheme when T ∗
= 5 s.

Fig. 4. Control u1 and u2 with proposed scheme when T ∗
= 5 s.

Fig. 5. χ1 and χ3 with proposed scheme when T ∗
= 5 s.

signal grows larger and larger. Growing phenomenon can also be
observed from the control signal even more rapidly. It seems that
the boundedness of the signals cannot be guaranteed in this case.

We then adopt the proposed modular scheme to redesign the
adaptive controllers. b̂(0) = 1.5, the rest of the initial states and
estimates are kept the same as in the tuning function design. The
design parameters c1, c2 are fixed at c1 = c2 = 5, while other
design parameters are chosen as

ζ = 0.3, κ1 = κ2 = 3, g2 = 3, Γ = 40 × I4, (103)

ν1 =
0.3 + 3.4

2
, ν3 = ν4 = 0, (104)

σ1 = 3.4 − 2 = 1.4, σ3 = σ4 = 12, (105)

θ0 =
1 + 3
2

= 2, θ̄ = 2, q = 40, ς = 0.01. (106)

The performances of tracking error and control signals in this case
are given in Figs. 3–4. Apart from these, the states χ1 and χ3,
parameter estimates are also plotted in Figs. 5–6. Obviously, the
boundedness of all the signals is now ensured.

To show how T ∗ affects the tracking performance when the
proposed design scheme is utilized, we set T ∗

= 25 s. The
performance of tracking error is now shown in Fig. 7. Comparing
Fig. 6. Parameter estimates with proposed scheme when T ∗
= 5 s.

Fig. 7. Tracking error y(t)− yr (t)with proposed scheme when T ∗
= 25 s.

Fig. 8. Tracking error y(t)−yr (t)with finite number of failures when the proposed
scheme is applied.

Figs. 7 and 3, better tracking error performance in themean square
sense is observed.

Now we consider the case that there are finite number of
failures by setting T ∗

= 5 s and there will be no failure for t >
100 s. The performance of tracking errorwith our proposed scheme
is given in Fig. 8, which shows that the tracking error will converge
to zero asymptotically in this case.

5.2. An aircraft application

In this subsection, we apply the proposed scheme to accommo-
date infinite number of complete failures or PLOE faults for the
twin otter aircraft longitudinal nonlinear dynamics model as de-
scribed in Tang et al. (2003), i.e.

V̇ =
Fx cos(α)+ Fz sin(α)

m

α̇ = q̄ +
−Fx sin(α)+ Fz cos(α)

mV
θ̇ = q̄

˙̄q =
M
Iy
, (107)
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Table 1
Notations through the model (107)–(109).

V The velocity
α The attack angle
θ The pitch angle
q̄ The pitch rate
δe1, δe2 The elevator angles of an augmented two-piece elevator
m The mass
Iy The moment of inertia
ρ The air density
S The wing area
c The mean chord
Tx The components of the thrust along the body x
Tz The components of the thrust along the body z

Table 2
Aircraft parameters in simulation.

m = 4600 kg Iy = 31027 kg m2 S = 39.02 m2

c = 1.98 m ρ = 0.7377 kg/m3 Tx = 4864 N
Tz = 212 N Cx1 = 0.39 Cx2 = 2.9099
Cx3 = −0.0758 Cx4 = 0.0961 Cz1 = −7.0186
Cz2 = 4.1109 Cz3 = −0.3112 Cz4 = −0.2340
Cz5 = −0.1023 Cm1 = −0.8789 Cm2 = −3.852
Cm3 = −0.0108 Cm4 = −1.8987 Cm5 = −0.6266

where

Fx = ¯̄qSCx + Tx − mg sin(θ)
Fz = ¯̄qSCz + Tz + mg cos(θ)

M = ¯̄qcSCm, (108)

and ¯̄q =
1
2ρV

2, Cx, Cz and Cm are polynomial functions that

Cx = Cx1α + Cx2α
2
+ Cx3 + Cx4(d1δe1 + d2δe2)

Cz = Cz1α + Cz2α
2
+ Cz3 + Cz4(d1δe1 + d2δe2)+ Cz5q̄

Cm = Cm1α + Cm2α
2
+ Cm3 + Cm4(d1δe1 + d2δe2)+ Cm5q̄. (109)

The notations through the model (107)–(109) are illustrated
in Table 1. We choose V , α, θ, q as the states χ1, χ2, χ3, χ4,
respectively, and δe1, δe2 as the outputs of the two actuators
redundant for each other. As explained in Tang et al. (2003), there
exists a diffeomorphism [ξ, x]T = T (χ) = [T1(χ), T2(χ), χ3, χ4]

that (107) can be transformed into the form of (1), i.e.

χ̇3 = χ4

χ̇4 = ϕ(χ)T ¯̄θ +

2−
i=1

biχ2
1 uj

ξ̇ = Ψ (ξ , x)+ Φ(ξ , x) ¯̄θ (110)

where ¯̄θ ∈ R4 is an unknown constant vector, ϕ(χ) =

[χ2
1χ2, χ

2
1χ

2
2 , χ

2
1 , χ

2
1χ4]

T , x = [χ3, χ4]
T , u1 = δe1 and u2 = δe2.

Input-to-state stability of the subsystem ξ̇ = Ψ (ξ , x) + Φ(ξ , x) ¯̄θ
with x as its input was shown in Tang et al. (2003).

In simulation, the aircraft parameters in use are set based on the
data sheet in Miller and William (1999), which is listed in Table 2.
In addition, we choose d1 = 6, d2 = 4. All these parameters are
unknown in the designs.

The faulty case considered in this example is modeled as

u1(t) = uk1,h
u2 = ρ2huc2

, t ∈ [hT ∗, (h + 1)T ∗), h = 1, 3, . . . , (111)

which implies that at every hT ∗ seconds, the output of the 1st
actuator (u1) is stuck at u1 = uk1,h and the 2nd actuator loses
(1 − ρ2h) percent of its effectiveness. While at every (h + 1)T ∗

seconds, both actuators are back to normal operation until the
next failure or fault occurs. In simulation, we choose that uk1,h =

0.4, ρ2h = 30% and T ∗
= 10 s, which are also unknown in the
Fig. 9. Tracking error y(t)− yr (t).

Fig. 10. Velocity V .

designs. However, we know that b1, b2 in (110) are both negative
and

|
¯̄θ | ≤ 0.02, 0.01 ≤ |b1| ≤ 0.02,
0.005 ≤ |b2| ≤ 0.01,

(112)

0.2 ≤ ρjh ≤ 1, |ukj,h| ≤ 1. (113)

The reference signal yr = 0.1 sin(0.05t). The initial states and
estimates are all set as 0 except that χ(0) = [85, 0, 0.03, 0]T ,
b̂(0) = 0.01. The design parameters are chosen as

ξ = 0.001, c1 = c2 = 1,

κ2 = 10−6, Γ = 0.1 × I7,
(114)

ν1 =
0.03 + 0.001

2
, σ1 = 0.03 − 0.001, (115)

θ0 = [0, 0, 0, 0]T , θ̄ = 0.02, (116)
ν6 = ν7 = 0, σ6 = 0.02, σ7 = 0.01, (117)
q = 20, ς = 0.01. (118)

The performances of tracking error, velocity, attack angle, pitch
rate and control u1, u2 are given in Figs. 9–13, respectively. It can
be seen that all the signals are bounded and the tracking error is
small in the mean square sense.

6. Conclusion

In this paper, the problem of adaptive control of uncertain
nonlinear systems in the presence of infinite number of actuator
failures or faults is addressed. It has been proved that the
boundedness of all closed-loop signals can be ensured by adopting
the proposed scheme, provided that the time interval between two
successive changes of failure/fault pattern is bounded below by an
arbitrary positive number. From the established performance of
tracking error in the mean square sense, it is shown that the less
frequent the failure/fault pattern changes, the better the tracking
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Fig. 11. Attach angle α.

Fig. 12. Pitch rate q̄.

Fig. 13. Control inputs (elevator angle (rad)) u1 and u2 .

performance is. Moreover, the tracking error can converge to zero
asymptotically in the case with finite number of failures and
faults. In simulation studies, the ability of the proposed scheme
to compensate for infinite number of relatively frequent failures
is compared with a tuning function design scheme through a
numerical example. The effectiveness of the proposed scheme is
also shown on an aircraft system through simulation.

We feel that it is worthy to investigate the transient perfor-
mance of the system with the proposed scheme in the presence
of failures. Moreover, it is an interesting topic to extend the results
for more general class of redundant actuators, for example with
the condition gj ∈ span{g0} in Remark 1 relaxed. Further research
is also needed to explore rigorous analysis in accommodating infi-
nite number of actuator failures with tuning function designs.
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