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Decentralized Model Reference Adaptive Control
Without Restriction on Subsystem Relative Degrees

Changyun Wen and Yeng Chai Soh

Abstract—When the direct model reference adaptive control (MRAC)
scheme with first-order local estimators is employed to design totally
decentralized controllers, the stability result can only be applied to a
system with all of its nominal subsystem relative degrees less than or
equal to two. In this paper, this restriction is relaxed and it is achieved
by employing the parameter projection together with static normalization.
To implement the local controllers, noa priori knowledge of the subsystem
unmodeled dynamics and no information exchange between subsystems
are required. Global stability is established for the closed-loop system and
small in the mean tracking error is ensured. With this analysis, the class
of interactions and subsystem unmodeled dynamics can be enlarged to
include those having infinite memory.

Index Terms—Adaptive control, decentralized control, robustness, sta-
bility.

I. INTRODUCTION

Decentralized adaptive control is an important control scheme for
large scale systems, and it has continued to receive a lot of attention
from control researchers over the last few decades. However, only
a limited number of stability results in this area are available due
to the difficulties in the analysis of ignored interactions. The first
batch of results were obtained based on the direct model reference
adaptive control (MRAC) approach [1]–[3]. A strong assumption for
these results is that relative degrees of all the nominal subsystem
models should be less than or equal to two. The stability results
using the indirect pole assignment design scheme were reported later
in [4]–[6] where there is no restriction on the relative degrees of
the nominal subsystem. Recently, efforts on relaxing the subsystem
relative degrees in the case of employing the direct adaptive control
scheme have been made by using some advanced adaptive strategies.
The concept of high-order tuners in [7] was applied to achieve this
in [8] and [9]. In this case, a local dynamic estimator with the
subsystem relative degree as its order is designed to identify the
unknown parameters of each subsystem. The integrator backstepping
technique of [10] was also successfully utilized to reach a similar
goal in [11]–[13]. To obtain the final control for each subsystem,
a number of iterative design steps should be involved to calculate
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some intermediate virtual control signals. As commented in [9],
the unmodeled interactions must satisfy certain structural conditions
when these advanced schemes are used.

However, for the conventional MRAC scheme, the problem of the
relaxation of the subsystem relative degrees is still unsolved. Due to
the simplicity of the conventional MRAC scheme, the solution to such
a problem is of practical interest. In [14], Datta and Ioannou applied
the normalization technique used in the single-loop robust adaptive
controller design to achieve the required relaxation. But the proposed
local normalizing signals require information from the other subsys-
tems to bound the effects of interactions from these subsystems. Thus,
only partially decentralized adaptive controllers can be designed. In
this paper, the problem will be solved with totally decentralized
controllers by employing the parameter projection together with a
static normalization technique. Global stability is established for the
closed-loop system and small in the mean tracking error is ensured.
With our analysis, the class of interactions and subsystem unmodeled
dynamics can be enlarged to include those having infinite memory.

The remaining part of the paper is organized as follows. Section II
gives the class of systems to be controlled and Section III presents
the decentralized controllers. The analysis of the closed-loop system
and the main result are given in Section IV. Finally, the paper is
concluded in Section V.

II. SYSTEM MODELS AND ASSUMPTIONS

In this paper, the class of interconnected systems considered con-
sists ofm single-input/single-output subsystems. Theith subsystem
is modeled as

yi(t) = Hi(D)ui(t) +Hi(D)

m

j=1

��ij �Hij(D)[uj(t) + yj(t)]

+

m

j=1

���ij
��Hij(D)[uj(t) + yj(t)] + di(t) (1)

for i; j = 1; � � � ; m, whereyi; ui; anddi are, respectively, the output,
input, and disturbance of theith subsystem. In (1),Hi(D) = B (D)

A (D)

and it is the reduced-order transfer function of subsystemi with

Ai(D) = D
n + a

n �1
i D

n �1 + � � �+ a
0
i

Bi(D) = b
m
i D

m + b
m �1
i D

m �1 + � � �+ b
0
i

whereD denotes the differentiation operator,mi < ni; ��ij ; ���ij are
constants, and�Hij(D) and ��Hij(D) denote the subsystem interactions
if i 6= j and unmodeled dynamics ifi = j.

Now, a reference model given below is chosen for theith sub-
system

y
i
m(t) = W

i
m(D)ri(t) (2)

whereW i
m(D) = kim

1
D (D)

and ri is an external reference input

signal. Here,kim is a constant andDi
m(D) is a monic Hurwitz

polynomial of degreen�i = ni � mi, i.e., Di
m(D) = Dn +

din �1D
n �1 + � � � + di1D + di0. The control problem is to design

totally decentralized controllers for plant (1) such that the closed-loop
system is stable in the sense that all signals in the system are bounded
for arbitrary boundedri and initial conditions, and the outputyi(t)
follows the outputyim(t) of the model (2) as closely as possible. To
solve the control problem, the following assumptions are made for
the plant given in (1).
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Assumption 2.1:

A1) Bi(D) is Hurwitz.
A2) An upper bound forni, the nominal relative degreen�i =

ni �mi of subsystemi, and the sign of the high frequency
gain sgn(bmi ) are known. Furthermore, the coefficients of
Ai(D) andBi(D) are inside a known compact convex region
Ci.

A3) �Hij(D) and ��Hij(D) are stable, andHi(D) �Hij(D) and
��Hij(D) are strictly proper.

A4) di(t) is bounded.

Remarks 2.1:

1) Note that there is no restriction on the nominal subsystem
relative degreesn�i ; i = 1; 2; � � � ;m.

2) While modeling errors are assumed to satisfy A3) and A4), no
a priori knowledge is required from them for the implemen-
tation of the adaptive controllers given in the later sections.
Assumption A2) also implies a known lower bound forjbmi j.

III. D ESIGN OFROBUST DECENTRALIZED ADAPTIVE CONTROLLERS

For each subsystem, we define the following filtered variables:

_!i;1 = �i!i;1 + qiyi; _!i;2 = �i!i;2 + qiui (3)

where(�i; qi) is a controllable pair satisfying

(DI � �i)
�1
qi =

1

Fi(D)
[Dn �2

; � � � ; 1]T (4)

with Fi(D) as an arbitrary Hurwitz polynomial of orderni�1. Both
�i and qi are chosen by users. Let

�!T
i = !

T
i;1; !

T
i;2; yi : (5)

Then the control is given as

ui = �!T
i �i + ci;0ri (6)

where�Ti (t) = [�Ti;1(t); �
T
i;2(t); �i;3(t)] is a (2ni � 1)-dimensional

control parameter vector andci;0(t) is a feedforward parameter
scalar. From [16], it can be shown that a desired parameter vector
��i of �i and a desired parameterc�i;0 of ci;0 exist, and they can
be obtained when the nominal transfer functionHi(D) of the ith
subsystem is known. WhenHi(D) is unknown, an adaptive law is
required to update�i and ci;0. To achieve this and to ensure the
robustness of the adaptive controller in the presence of modeling
errors including interactions, subsystem unmodeled dynamics, and
external disturbances, we introduce parameter projection operation to
the adaptive law. The adaptive law to tune�i andci;0 is divided into
the following two cases.

Case 1: bmi = 1. In this case,ci;0 = 1 if kim is chosen to be
one and

_�i = P �i;�
�i�ei;1�i
1 + !T

i !i
(7)

where�i = �Ti > 0

�ei;1 = yi � ym + �
T
i �i � vi; �i = W

i
m(D)I�!i

vi = W
i
m(D)�Ti �!i (8)

!
T
i = �!T

i ; �
T
i ; �

(1)
i

T
; � � � ; �

(n )

i

T

(9)

andP denotes the projection operation defined in [17] or
[18].

Case 2: bmi is unknown. In this case,ci;0(t) is unknown and
needs to be updated. The local adaptive law in this case
is a modified version of that in [15] by changing the�-
modification and the normalizing signal appropriately as
in Case 1.

Remarks 3.1:

1) As can be noted from (6)–(9), the normalization is static.
Also the implementation of local adaptive controllers does not
require any information exchange between subsystems and the
a priori knowledge on subsystem unmodeled dynamics.

2) The results for the adaptive controller in Case 2 can be obtained
by following the similar analyses as in Case 1 and [15]. Thus
we just focus our attention on Case 1 without any further
elaboration on Case 2.

IV. STABILITY OF THE DECENTRALIZED ADAPTIVE CONTROL SYSTEMS

We need to establish the robustness of the local adaptive controllers
in the presence of ignored interactions, unmodeled dynamics, and
external disturbances. Before doing this, some preliminary analysis
is required.

From (1)–(6), it can be shown that theith subsystem can be
expressed as

yi = W
i
m(D) �!T

i
~�i + ri +mi(t) (10)

where
~�i = �i � �

�
i (11)

mi(t) = �i(t) + 1 +W
i
m(D)��i;1 (DI � �i)

�1
qi di (12)

�i(t) =

m

j=1

�ij(D)[uj(t) + yj(t)] (13)

�ij(D) = W
i
m(D)��ij �Hij(D) 1� �

�
i;2 (DI � �i)

�1
qi

+���ij
��Hij(D) 1 +W

i
m(D)(��i;3 + �

�
i;1 (DI � �i)

�1
qi :

(14)

Clearly,�ij(D) is strictly proper and stable from Assumption 2.1.
From (12), we have the following result.

Lemma 4.1: The modeling errormi(t) in (12) satisfies

jmi(t)j �

m

j=1

�ij sup
0���t

k!j(�)k+ d0 (15)

where�ij andd0 are some nonnegative constants.
Proof: Let Vi(D) be an arbitrary Hurwitz polynomial defined as

Vi(D) = D
n �2 + vi;n �3D

n �3 + � � �+ vi;0

v
T
i = [1; vi;n �3; � � � ; vi;0]:

Then

�i(t) =

m

j=1

�ij

Fj

Vj

Vj

Fj
(uj + yj)

=

m

j=1

�ij

Fj

Vj
v
T
j (!j;1 + !j;2) : (16)

Thus from the stability and properness of�ij
F

V
, the result can be

established from (16).
Remarks 4.1:

1) In the proof of Lemma 4.1, the effects of some exponentially
decaying terms due to nonzero initial conditions have been
absorbed byd0.

2) The constant�ij indicates the strength of the interactions
between subsystemsi and j when i 6= j, and the unmodeled
dynamics of theith subsystem are coupled to the nominal
model wheni = j.

3) In terms of the bounding signals, the bound for the modeling
error in (15) allows the effects of the unmodeled dynamics and
interactions to have infinite memory, thus it is looser than those
given in existing literature, such as [1] and [2]. The class of
modeling errors considered can also be enlarged to include any
nonlinear unmodeled dynamics satisfying (15).
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Now, if sup0���t k!i(�)k = k!i(t)k and sup0���t k!j(�)k �

sup0���t k!i(�)k for all j 6= i and t > t0i , then (15) becomes

jmi(t)j � �k!i(t)k+ d0; for all t � t0i (17)

where� is a nonnegative constant depending on�ij .
From (17), some useful properties of the local estimators can be

obtained.
In the remaining part of this section, we will usemk

i ; k = 1; � � � ; 5
to denoteMk

i (D)mi whereMk
i (D) is a vector containing proper

stable transfer functions. Thus,mk
i (t); k = 1; � � � ; 5 also satisfy

the same bounds as in (17) under the same conditions. Note that
the constants� and d0 in (17) have been made uniform for all
i = 1; 2; � � � ; m and k = 1; � � � ; 5. Also in this section, allcj ;
j = 1; 2; � � � stand for generic constants.

We now derive an equation to describe the closed-loop system of
the ith loop. It can be shown that the plant in theith loop has the
following state representation:

_xi = Aixi + biui +m1
i (t); yi = hTi xi +m2

i (t) (18)

where(Ai; bi; h
T
i ) is a minimal state representation ofHi(D). Note

that Dm2
i also satisfies (17) from the strict properness of��Hij(D).

Now the closed-loop system of theith loop can be described as

_�x
c
i = �Ac

i �x
c
i + bci �!

T
i
~�i + bciri +m1

i (t)

yi = hci
T
�xci +m2

i (t)
(19)

where �Ac
i is a stable matrix satisfying(hci )

T (DI � �Ac
i )
�1bci =

W i
m(D) and �xci = [xTi ; !

T
i;1; !

T
i;2]

T .

Let ��Ti = [�Ti ; �
(1)
i ; � � � ; �

(n �1)

i ]. Then �(k)i = DkW i
m(D)

I �!i; k = 0; 1; � � � ; n�i � 1 can have the following realization:
_��i = A�

��i +B� �!i

= A�
��i +B� ;1!i;1 +B� ;2!i;2 +B� ;3h

T
i xi +B� ;3m

2
i (t)

(20)

�
(k)
i = Ck

��i (21)

whereCk = [0; 0; � � � ; I; 0 � � � 0] with zero being(2ni�1)�(2ni�1)
block matrices andI an identity matrix at the(k+1)th position.A�

is a stable matrix satisfyingCT
k (DI � A� )�1B� = DkW i

m(D)I
andB� = [B� ;1; B� ;2; B� ;3].

Let xci = [�xci ; ��Ti ]
T . Then we have

_xci = Ac
ix

c
i +Bc

i �!
T
i
~�i +Bc

i r +m3
i (t) (22)

where

Ac
i =

�Ac
i 0

B� ;3h
T
i ; B� ;1; B� ;2 A�

: (23)

Bc
i is suitably augmented frombci . Clearly,Ac

i is a stable matrix.
We now establish the relationship between!i and xci . It can be

shown, by taking the modeling errormi into account and following
similar steps in the proof of [16, Th. C.1], that

kxi(t)k � c1k�!i(t)k+ m4
i (t) : (24)

Then

xci (t) = xTi (t); !
T
i;1(t); !

T
i;2(t); ��

T
i

T

� c2k!i(t)k+ m4
i (t) : (25)

Also

k!i(t)k = !T
i;1(t); !

T
i;2(t); hci

T
�xci (t) +m2

i (t); ��
T
i ; �!

T
i

� di0I; � � � ; d
i
n �1I ��i

T T

� c3 xci (t) + m5
i (t) : (26)

Before establishing the stability of the system, we now explore some
properties of the estimator (7)–(9).

Lemma 4.2: The estimator (7)–(9), when applied to the plant given
in (1), has the following properties.

1) j�!i(t)
T ~�i(t)j

1 + !T
i (t)!i(t)

1=2
� c4; for t � 0: (27)

2) SupposeM0 is a positive constant s.t.d0=M0 � �. If k!i(t)k
> M0; sup0���t k!i(�)k = k!i(t)k and sup0���t k!j(�)k
� sup0���t k!i(�)k 8j 6= i and for all t > t0 with some
t0 � 0, then

t

t

j�!i(�)
T ~�i(�)j

1 + !T
i (�)!i(�)

1=2
d� � c5=�0 + (�1 + �2)(t� t0 );

for t � t0 (28)

where

�1 = (c6=�0 + �)�; �2 = (c6=�0 + �)� + c7�
�
0 (29)

and � > 0; �0 2 (0; 1].

Proof:

1)

�!i(t)
T ~�i(t)

1 + !T
i (t)!i(t)

1=2
�

k�!i(t)k

1 + !T
i (t)!i(t)

1=2
j~�i(t)j

� c1:

2) From (8) and (10), we have

�ei;1 = �Ti ~�i +mi(t): (30)

Then consider the following positive definite function:

Vi =
1

2
~�Ti �

�1
i

~�i: (31)

Using (7) and (30) gives

_Vi � �
1

2

~�Ti �i
2

1 + !T
i !i

+
1

2

(mi)
2

1 + !T
i !i

: (32)

From the assumption of the lemma and (17), we have

mi(t)

1 + !T
i !i

1=2
� �+ �; for t � t0 : (33)

Then for t � t0 , (32) becomes

_Vi � �
1

2

~�Ti �i
2

1 + !T
i !i

+
1

2
(�+ �)2: (34)

Then
t

t

�Ti (�)~�i(�)
2

1 + !T
i !i

d� � c8 + (�+ �)2(t� t0 ): (35)

From (9), we can note that
k� k

(1+! ! )
; k = 0; 1; � � � ; n�i are

bounded. From (3), (6), (18), and (24), we can have

_�!i

1 + !T
i (t)!i(t)

1=2
� c9(�+ �) + c10: (36)

Now

�
(n +1)

i =
D Dn �Di

m(D)

Di
m(D)

I �!i + _�!i

= �di0�
(1)
i � di1�

(2)
i � � � � � din �1�

(n )

i + _�!i: (37)

Therefore, similar bounds to (36) can be obtained for

�
(n +1)

i

(1 + !T
i (t)!i(t))

1=2
;

d
dt (1 + !T

i !i)
1=2

(1 + !T
i !i)

1=2
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and

d

dt
(

~�Ti �
(k)
i

(1 + !T
i !i)

1=2
)

k = 0; 1; � � � ; n�i . Note that�!i =
n

k=0 d
i
k�

(k)
i . Thus if

�Ti (t)~�i(t)
2

1 + !T
i (t)!i(t)

� �0 8t 2 [tj ; tj +�tj ];

and for sometj � t0 (38)

we can establish

j�!i(t)
T ~�i(t)j

1 + !T
i (t)!i(t)

1=2
� c11�

�
0 + (�+ �)

c12
�0

;

8t 2 [tj ; tj +�tj ]: (39)

Then (28) can be established from (35) and (39).

Remark 4.2:�1 can be made arbitrary small by reducing� and
�2 by makingM0 a sufficiently large number.M0 is used here for
the purpose of analysis only. It is not a design parameter.

From Lemma 4.2, (25), and (26), the stability of the system can be
established under a special case. This is presented in the following
lemma.

Lemma 4.3: Consider the decentralized adaptive system consisting
of plant (1) and local adaptive controllers (6)–(9). Suppose that
k!i(t

0
i )k = M0 and for all t > t0i , sup0���t k!i(�)k = k!i(t)k

and sup0���t k!j(�)k � k!i(t)k for all j 6= i. Then under
Assumption 2.1, there exists a positive constant��1 such that for all
� � ��1 the closed-loop system ensures that

sup
0���t

k!i(�)k �M; 8i = 1; 2; � � � ;m (40)

whereM = c12M0 + c13 with c12 � 1.
Proof: The solution of (22) is

xci (t) = eA (t�t )xci (t0 ) +
t

t

eA (t��) Bc
i �!

T
i (�)~�i(�)

+Bc
i ri(�) +m3

i (�) d�:

As Ac
i is a stable matrix, there exist positive constantsc and� such

that

eA t � ce��t: (41)

Suppose that the intermediate numberM0 is also such thatkrik1 �
M0; 8i = 1; 2; � � � ;m. Then using (25), (26), (17), (27), and (41)
gives

k!i(t)k � c3ce
��(t�t ) c2 !i t0 + m4

i t0

+ c14
t

t

ce��(t��)
�!T
i (�)~�i(�)

(1 + k!i(�)k2)1=2
k!i(�)k

+
!T
i (�)~�i(�)

(1 + k!i(�)k2)1=2

+M0 + m3
i (�) d� + m5

i (t)

� c15M0 + c16� sup
0���t

k!i(�)k+ c17
t

t

ce��(t��)

�
!T
i (�)~�i(�)

(1 + k!i(�)k2)1=2
k!i(�)kd� + c18: (42)

After some rearrangement of (42), the Bellman–Grownwall lemma
can be applied. Then from Lemma 4.2, we can obtain that

k!i(t)k � c19M0 + c20 + c21� sup
0���t

k!i(�)k (43)

for � � ���1 and� � ��� where���1 and��� are sufficiently small constants
satisfying

c22(�
�
1 + ��2) < � (44)

with ��1 depending on���1 and��2 on ���.
Note that the right side of (43) is nondecreasing. Thus it can be

rewritten as

sup
0���t

k!i(�)k � c19M0 + c20 + c21� sup
0���t

k!i(�)k: (45)

Then from (45), we get

sup
0���t

k!i(�)k �
c19

1� c21�
M0 +

c20
1� c21�

(46)

if � � ����1 with the positive constant����1 satisfyingc21����1 < 1.
Finally, the result is proved by letting��1 = minf���1;���

�
1; g and

c12 = maxf c
1�c �

; 1g; c13 =
c

1�c �
.

To establish the stability result for the general case, we explore the
parameter estimator further, and this gives Lemma 4.4 as follows.

Lemma 4.4: If k!i(t)k > M0 for all t � t0 , and
sup0���t k!j(�)k � c12M0 + c13 for all t 2 [0; t1] and j =
1; 2 � � � ;m, and sup0���t k!i(�)k = k!i(t)k; sup0���t k!j(�)k
� sup0���t k!i(�)k; 8j 6= i for all t � t1 with somet1 � t0 , then

t

t

j!i(�)
T ~�i(�)j

1 + !T
i (�)!i(�)

1=2
d� � c5=�0 + (��1 + �2) t� t0 ;

for t � t0 (47)

where

��1 = [c6=�0 + (c12 + c13)�](c12 + c13)�: (48)

Proof: By noting the condition of the lemma and using (17),
we have

jmi(t)j

(1 + k!i(t)k2)1=2
� �(c12 + c13) + �; 8t 2 [t0 ; t1]: (49)

For t � t1, (33) becomes valid. Noting thatc12 � 1, we can have
(49) for all t � t0 . Then replacing (33) by (49) and� by �(c12+c13)
in the proof of (28), we can establish (47).

Remark 4.3: Note that the property in the above lemma is quite
similar to (28) in Lemma 4.2 except that� is changed to�(c12+c13).

From Lemmas 4.2–4.4, we can establish our main stability result
as follows.

Theorem 4.1: Consider the decentralized adaptive system con-
sisting of plant (1) and local adaptive controllers (6)–(9). Under
Assumption 2.1, there exists a constant�� such that for all� � ��,
we have the following.

1) The closed-loop system is globally stable in the sense that all
signals remain bounded8t and for all finite initial states, any
boundedri, and arbitrarily bounded external disturbances.

2) The tracking errorei;1(t) = yi � ym satisfies
t

t

e2i;1(�)d� � �1 + �2(�+ d0 + �0) t� t0i ; for all t0i � 0

(50)

where�1; �2 are positive constants.

Proof:

1) To show the boundedness of all the trajectoriesk!ik; i =
1; 2; � � � ; m, we consider a functionk!(t)k defined as

k!(t)k = maxfk!1(t)k;k!2(t)k; � � � ; k!m(t)kg: (51)

Clearly, the result is proved ifk!(t)k is bounded. It can be
noted thatk!(t)k is continuous and thus, starting with�0 = 0
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andk = 1; 2; � � � ; we can divide the time axis[0;1) into the
following two subsequences:

<�
k
= [�k�1; sk] <+

k
= (sk; �k)

where

<�
k
= ft j k!(t)k �M0g and <+

k
= ft j k!(t)k > M0g

(52)

i.e.,

[0;1) =

1

k=1

<�
k

[

1

i=1

<+i : (53)

Obviously, it suffices to prove thatk!(t)k is bounded in<+k ;
8k � 1. This can be shown through induction. Thus we
considert 2 <+1 first. From the continuity ofk!(t)k; 9t1 2
<+1 and ani 2 f1; 2; � � � ;mg such thatsup0���t k!(�)k =

k!(t)k and k!(t)k = k!i(t)k for all t � t1 and t 2 <+1 .
Thussup0���t k!i(�)k = k!i(t)k andsup0���t k!j(�)k �

sup0���t k!i(�) 8j 6= i, for all t � t1 and t 2 <+1 .
Therefore, the conditions of Lemma 4.3 are satisfied for all
t � t1 and t 2 <+1 . Then from this lemma and noting that
k!i(t0 )k = k!(t0 )k = M0, we can have, for allt � t1 and
all � � ��1, that

sup
0���t

k!(�)k �M (54)

i.e.,

sup
0���t

k!i(�)k �M; 8i = 1; 2; � � � ;m: (55)

If the conditions of Lemma 4.2.2 or 4.3 are violated fort � t1

and t 2 <+1 , the following two possibilities may occur to
k!(t)k.

• Case 1: sup0���t k!(�)k = k!(t)k but k!(t)k =
k!j(t)k; j 2 f1; 2; � � � ;mgni for all t > t1.

In this case, the condition thatsup0���t k!j(�)k �
sup0���t k!i(�)k; 8j 6= i cannot be satisfied. Thus
Lemma 4.3 cannot be applied fort > t1. However, we
now considerk!j(t)k. Clearly, there exists at1j such that
k!j(t

1
j )k = M0 andk!j(t)k > M0 for all t 2 [t1j ; t1] � <+1 .

Also in this case, we have, fort > t1

sup
0���t

k!j(�)k = k!j(t)k

and

sup
0���t

k!i(�)k � sup
0���t

k!j(�)k i 2 f1; 2; � � � ;mgnj:

(56)

Thus from (55) and (56), Lemma 4.4 can be applied tok!j(t)k
for t � t1j . Then following the same steps as in the proof of
Lemma 4.3 and applying Lemma 4.4 with “initial condition”
k!j(t

1
j )k = M0, we shall obtain (54) or (55) for allt � t1

and all � � �� where

�
� =

��1

c12 + c13
: (57)

• Case 2:sup0���t k!(�)k 6= k!(t)k for t 2 [t1; t2] � <+1
and sup0���t k!(�)k = k!(t)k for t > t2.

In this case, the condition thatsup0���t k!i(�)k = k!i(�)k
cannot be satisfied fort � t1. However, (54) or (55) automati-
cally holds fort 2 [t1; t2]. If t2 is infinite, the result is proved.
For a finite t2 and whent > t2, (54) or (55) can be shown
under the condition (57) by following the same argument as
in Case 1.

In this way, the boundedness ofk!(t)k is established over<+1 .
Now assuming (54) or (55) holds8t 2 <+k , it can be shown that,

by following the proof of Lemma 4.3 and the above argument, (54)
is also true8t 2 <+k+1 from Lemma 4.4 with the “initial condition”
k!i(t

k+1
i )k = M0 for i 2 f1; 2; � � � ; g and tk+1i 2 <+k+1.

After establishing the boundedness ofk!i(t)k; 8i = 1; 2; � � � ; m,
we can haveyi(t) and ui(t) bounded.

2) Once the boundedness of all the signals is established, then
the tracking properties can be obtained by following similar
analyses used in [15].

Remarks 4.4:

1) Note that trajectoryk!(t)k only has three possibilities. That is,
it satisfies the condition of Lemmas 4.2.2 and 4.3, or Case 1,
or Case 2.

2) In the stability analysis, we only need to take care of the
subsystem in which the static normalizing signal has maximum
magnitude among all the subsystems over a certain time interval
and consider the situation that the magnitude exceeds a certain
level, i.e.,k!(t)k � M0. In this case, the locally normalized
parameter estimation prediction error in the subsystem con-
cerned becomes small and satisfies certain conditions specified
in Lemmas 4.2 and 4.4. Also the inductive technique used and
the division of time interval into two subsequences are crucial
in the establishment of a uniform bound fork!(t)k over all
subintervals.

V. CONCLUSION

In this paper, we have relaxed the subsystem relative degrees re-
quirement imposed in model reference decentralized adaptive control
using first-order local estimators. These local estimators are designed
using parameter projection together with static normalization. In the
implementation of the local controllers, noa priori knowledge of
the subsystem unmodeled dynamics and no information exchanges
between subsystems are required. It has been shown that global
stability of the overall adaptive feedback system can be ensured,
provided the strength of the interactions and subsystem unmodeled
dynamics is sufficiently weak. For each subsystem, the effect of the
modeling error, including interactions from other subsystems, can be
allowed to have infinite memory. Despite the modeling error, we have
shown that small in the mean tracking error can be achieved.

REFERENCES

[1] P. Ioannou and P. Kokotovic, “Decentralized adaptive control of in-
terconnected systems with reduced-order models,”Automatica, vol. 21,
pp. 401–412, 1985.

[2] P. Ioannou, “Decentralized adaptive control of interconnected systems,”
IEEE Trans. Automat. Contr., vol. 31, pp. 291–298, 1986.

[3] D. T. Gavel and D. D. Siljak, “Decentralized adaptive control: Structural
conditions for stability,” IEEE Trans. Automat. Contr., vol. 34, pp.
413–426, 1989.

[4] C. Wen and D. J. Hill, “Decentralized adaptive control of linear
time varying systems,” inProc. 11th World Congr. Automatic Control,
Tallinn, 1990, vol. 4.

[5] , “Global boundedness of discrete-time adaptive control just using
estimator projection,”Automatica, vol. 28, pp. 1143–1157, 1992.

[6] C. Wen, “Indirect robust totally decentralized adaptive control of
continuous-time interconnected systems,”IEEE Trans. Automat. Contr.,
vol. 40, pp. 1122–1126, 1995.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 7, JULY 1999 1469

[7] A. S. Morse, “A comparative study of normalized and unnormalized
tuning errors in parameter-adaptive control,” inProc. 30th IEEE Conf.
Decision and Control, 1991.

[8] R. Ortega and A. Herrera, “A solution to the decentralized stabilization
problem,” Syst. Contr. Lett., vol. 20, pp. 299–306, 1993.

[9] R. Ortega, “An energy amplification condition for decentralized adaptive
stabilization,”IEEE Trans. Automat. Contr., vol. 41, pp. 285–288, 1996.

[10] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, “A new generation of
adaptive controllers for linear systems,”IEEE Trans. Automat. Contr.,
vol. 39, pp. 738–752, 1994.

[11] C. Wen, “Decentralized adaptive regulation,”IEEE Trans. Automat.
Contr., vol. 39, pp. 2163–2166, 1994.

[12] C. Wen and Y. C. Soh, “Decentralized adaptive control using integrator
backstepping,”Automatica, vol. 33, pp. 1719–1724, 1997.

[13] S. Jain and F. Khorrami, “Global decentralized adaptive control of large
scale nonlinear systems without strict matching,” inProc. American
Control Conf., 1995, pp. 2938–2942.

[14] A. Datta and P. Ioannou, “Decentralized adaptive control,” inAdvances
in Control and Dynamic Systems, C. T. Leondes, Ed. New York:
Academic, 1992.

[15] P. A. Ioannou and K. S. Tsakalis, “A robust direct adaptive controller,”
IEEE Trans. Automat. Contr., vol. 31, pp. 1033–1043, 1986.

[16] K. S. Narendra and A. M. Annaswamy,Stable Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[17] S. M. Naik, P. R. Kumar, and B. E. Ydstie, “Robust continuous-time
adaptive control by parameter projection,”IEEE Trans. Automat. Contr.,
vol. 37, pp. 182–197, 1992.

[18] J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation
from the Lyapunov equation,”IEEE Trans. Automat. Contr., vol. 37,
pp. 729–740, 1992.

[19] R. H. Middleton, G. C. Goodwin, D. J. Hill, and D. Q. Mayne, “Design
issues in adaptive control,”IEEE Trans. Automat. Contr., vol. 33, pp.
50–58, 1988.

A Diagonal Recurrent Neural Network-Based
Hybrid Direct Adaptive SPSA Control System

Xiao D. Ji and Babajide O. Familoni

Abstract—A direct adaptive simultaneous perturbation stochastic ap-
proximation (DA SPSA) control system with a diagonal recurrent neural
network (DRNN) controller is proposed. The DA SPSA control system
with DRNN has simpler architecture and parameter vector size that
is smaller than a feedforward neural network (FNN) controller. The
simulation results show that it has a faster convergence rate than FNN
controller. It results in a steady-state error and is sensitive to SPSA
coefficients and termination condition. For trajectory control purpose,
a hybrid control system scheme with a conventional PID controller is
proposed.

Index Terms—Diagonal recurrent neural network (DRNN), neural
network controller (NNC), simultaneous perturbation stochastic approx-
imation (SPSA).

I. INTRODUCTION

Nonlinear adaptive control system design is a challenge in nonlin-
ear control system theory. In general, one may use neural networks
(NN) to identify and/or control unknown and/or uncertain nonlinear
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Fig. 1. Block diagram of the DA SPSA neural network-based control system.

systems. To accomplish this, one needs to train (usually, offline)
an inverse neural network as a controller. This is generally difficult
since the system is unknown. An ideal scheme is a direct adaptive
(DA) neural network control system. Spall described a generalized
NN based on the simultaneous perturbation stochastic approximation
(SPSA) approach to estimate the gradient of the performance function
of an unknown nonlinear system [1]. Such a direct adaptive SPSA
approach does not require any prior knowledge of the unknown
system and does not need a separate training phase. An SPSA direct
adaptive control system will converge to an optimal neural network
parameter set, if it exists [3]. The NN-based SPSA approach as
discussed in [2] and [3] uses a forward neural network (FNN) as
the controller. The parameter vector size, in general, is large. For
example, a network which contains four layers, two inputs, one out-
put, with two hidden layers containing 20 and 10 nodes, respectively
(denoted as@42;20;10;1), has 280 elements in the parameter vector.
Other things being equal, its increased computational cost results in
a slow performance measurement period (i.e., sampling period), and
the performance measurement period is very important for a real-time
control application.

As is well known, a recurrent neural network (RNN) has some
advantages over FNN such as faster convergence, more accurate
mapping ability, etc., but it is difficult to apply the gradient-descent
method to update the neural network weights in RNN [4]. Kuet
al. [5], [6] proposed the DRNN scheme that captures the dynamic
behavior of a system and, since it is not fully connected, training
is expected to be much faster than RNN. DRNN with time delay
has RNN behavior but simple connections and is easy to use when
applying the gradient-descent method. Therefore, in this paper, a
diagonal recurrent neural network (DRNN) is employed in a DA
SPSA control system. Simulation results are compared with those of
the FNN SPSA scheme. These results also show that in general, after
the SPSA process, the fixed DA SPSA neural network-based control
results in a steady-state error because of the finite sample constraint
of the SPSA approach. To improve the control performance, a
conventional PID controller was employed to form a hybrid DA
SPSA scheme. The proposed hybrid DA SPSA control system was
examined by simulation and showed good performance.

II. SPSA BACKGROUND

Consider the problem of finding a root�� of the gradient equation

g(�) �
@L(�)

@�
= 0 (1)

for some differentiable cost functionL : Rp
! R1. There

are many methods for finding��. In the case whereL is
observed in the presence of noise, an SA algorithm of the generic
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