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Looking on the analysis carried out in Section III and additional ex-
amples in [5], we may say that the following situation is typical: the
sampled zeros are mostly located neither close to the unit circle nor
on the negative real axis close to the point z = —1, provided the
process is not sampled unreasonably slow. This is an attractive prop-
erty since it is precisely such zero positions that can create difficulties in
estimation, prediction, and control problems. Note that zeros close to the
unit circle correspond to a spectrum with a deep notch. If a continuous-
time process has a deep notch in the spectrum, then this notch is evened
out after sampling, due to the frequency folding. This is an interpreta-
tion why sampled zeros are kept away from the unit circle. In Fig. 2(a)
and (b), the zero is located close to the point 2 = —1 for wh ~ 7. Note
that such a slow sampling rate is not reasonable, since it introduces a
lot of frequency folding. For appropriate sampling intervals with A at
most equal to 1/w, the zero location is always far away from the point
z=-1

V. ConcLusions

We have investigated possible zero locations for sampled stochastic
systems. The zero locations have a significant influence on estimation
and prediction algorithms. The locations depend in a quite involved way
on the continuous-time process and the sampling interval. The findings
can be summarized as follows.

e Zeros can appear only in a restricted area within the unit circle.
Hence, there are ARMA models (and, in fact, even AR models) that
cannot be obtained by sampling a continuous-time process.

o For a very short sampling interval, the zeros cluster around z = 1
and, provided the continuous-time process has a pole excess larger than
one, some positions at the negative real axis.

e A detailed analysis was carried out for second-order systems and
all possible zero locations have been characterized. It has been shown
how the zero location in this case depends on the continuous-time model
parameters and the sampling interval.
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linearization about a trajectory of a nonlinear system. Then standard
adaptive control based on a linear model can be interpreted as one way
to realize a nonlinear controller for a nonlinear plant. The implications
of this view are studied. Analytically, the stability problem is seen to be
equivalent to showing robustness to time-varying parameters and a
locally bounded model uncertainty. It is shown that if the trajectory is
known to be within a bound, a parameter estimator with projection can
ensure boundedness of departures from the trajectory.

I. INTRODUCTION

Adaptive control is commonly presented as a technique, whereby a
self-tuning linear controller is used on a linear plant with unknown
parameters. The theory and design principles for such controllers are
becoming quite well understood. The literature is enormous; some
attempts to cover recent developments are provided by [1]-[4]. The
theory of stable parameter adaptive control has advanced to allow linear
slowly time-varying plants [S]-[8]. A more honest view is that the
linear time-varying systems are derived from inexact linearization about
a trajectory of a nonlinear system. We then see that adaptive linear
control is one approach to deriving a nonlinear dynamic controller
which can cope with nonlinear dynamics. It is a continuation of the
linearization tradition in the control field aided by techniques for
parameter estimation. In this note, we begin to study the implications of
the nonlinear controller view and extend the results for stability in the
presence of time-varying parameters [5]-[8] to allow for the higher
order nonlinear terms in a linearized model. Also, our treatment of the
time variation is somewhat new.

Thirty years ago, there were no general tools for designing nonlinear
controllers. The adaptive viewpoint offered a way to apply conventional
linear control techniques. The nonlinear system can be viewed [9], [10]
as a time-varying linear part (with unknown parameters) and higher
order terms which are ignored. We propose to analyze a typical adaptive
linear control algorithm which has been applied to the time-varying
linear part. We employ an algorithm along the lines used in [1]-[4]
which has been subjected to extensive theoretical analysis in other
situations. Implicit in the linearization view is our knowledge of the
trajectory about which linearization occurs. Of course, this can only be
known if the nonlinear system is known or at least has predictable
behavior. Nevertheless, this is inherent in the adaptive linear solution
which is used in practical control.

Conditions are given on the nonlinear system functions and certain
bias signals which ensure useful boundedness properties of the overall
adaptive system. It is shown that it is only necessary to know the
nominal trajectory to within a bound.

The structure of the note is as follows. Section II gives the nonlinear
problem formulation. Section III transforms the model to a perturbed
nonlinear regressor form. Section IV describes the adaptive control
scheme. The stability results are presented in Section V.

This note is based on the report [13} where more details can be found.

II. NoNLINEAR CONTROL PROBLEM

The class of plant to be considered in this note is described by the
difference equation

y(O) =f(y(t= 1), y(t=2),-, y(t = n),

w(t =1y, u(t - n).

s d(t= 1), d(i - p)) 2.1)
where y, u, and d represent output, input, and disturbance signals,
respectively.

Assumption 2.1: n is a known integer.

In simpler notation, we rewrite (2.1) as

(1) = (o= 1), (s~ 1)) (22)
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where

v (= 1) == 1), y(t=2), - u(t = 1), -, u(t = n)]

oT(r=1y=[d(t—1),---.d(t - p)].

For any function f: R%" X R” — R, signals u, d, and given initial
conditions v(0), w(0), model (2.2) generates a unique solution y. We
use v, i=1,++,2n,and w;, i = 1,---, p to denote the components
of the vectors v and w.

The control problem is assumed to be regulation about a given desired
output signal y*. In many applications, function f is complicated, but
known at least approximately. Otherwise, system behavior may be
sufficiently understood that there is some knowledge of a nominal
trajectory. We establish this property precisely as the following.

Assumption 2.2: For given y* and d, 3 an input signal u* s.t.

() = F(*(t = 1), (1 - 1) (23)

where v* is derived from (u*, y*). Suppose that u, is known s.t.

for all i

n+i 172
{ S (w(r) - ux(0))’y  <U (2.4)

=i
and U is a constant.

At this stage, it is convenient to introduce the variables

Au(r) = u(t) —u (1),  Ay(r):=y(t) - y*(1), (2.5)
i.e., departures from the known nominal values. Our formulation de-
scribes precisely how standard adaptive (linear) control is implemented
in a nonlinear real-world context. To aid clarification of this point,
consider the scheme shown in Fig. 1. The nonlinear system modeled by
(2.2) is controlled by two loops. The high level control establishes the
nominal trajectory. For instance, in power systems, it represents the
slower control actions due to a human operator, the governor, etc.; in
aircraft control it could represent the action of the pilot. This loop
senses the system state x. If it is acting successfully, y will be
somewhat close to y* under the action of u,. Assumption 2.2 effec-
tively says just this (although there is no constraint that U is small).

Of course, u; and y* are known, so the departures Au, Ay are
measurable. The second loop in Fig. 1 is an indirect parameter adaptive
controller [1]. This serves to automatically improve the performance of
the system on a faster time scale. In power systems, it could be an
adaptive AVR loop. We will be concerned here with conditions under
which this adaptive loop is stable.

Clearly, in order to analyze the adaptive regulator, we need to invoke
an exact lincarization model, i.e., one which relates A y(¢) to Av(t — 1)
via a linear system and whatever else is needed to make the model
exact.

III. MoDEL TRANSFORMATION

We consider the plant with representation (2.2) and use the Taylor
expansion around a nominal trajectory to separate a linearized model
from the nonlinear error term. The following assumption imposes some
additional smoothness restrictions to those implied by Assumption 2.2
on the function f: R2" x R? - R.

Assumption 3.1: The partial derivatives f,, := i=1,2n

av;
exist and are locally Lipschitz in v and w.

We let #(xg,r):= {x| ||x — xo|l < r} where | -] denotes the
Euclidean norm. Also let %, = (0, r).

We now rewrite model (2.2) in terms of the incremental variables
(2.5). It is convenient to denote the signal vector (y*, u,) by v,. From

Assumption 3.1, the system can be linearized about y,. Note that

Ay(t) =y(t) — y*(1) from (2.5)
=f(u(e=1),0(t= 1)) = f(v*(r = 1), (1 - 1))
using (2.2) and (2.3)

=¢T(t—1)8(r— 1) + R(¢) (3.1)
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Fig. 1. Adaptive linear control scheme.

where
87(1) = [04(1),, 824(1)]
¢T(t=1) = [Ap(t=1),--,ay(t - n),
Au(t = 1), -, Au(t — n)]

i=1,++,2n (3.2)

0:(1) = £, (vi(1), (1))
and R(t) is the remainder term, made of two components

where R(1) = Ry(1) + Ro(1)

Ri(1) =f(v(t = 1), w(t = 1) = f(vs(1 - 1),
w(t—1) —¢"(r-1)6(r - 1) (3.3a)

Ry(t) =f(ui(r = 1), (1 = 1)) = f(v*(1 = 1), w(t - 1)).
(3.3b)

R(r) will be referred to as the nonlinear error and R,() as the
reference solution error.

Note that (3.1) has the so-called regression form commonly used in
analysis of parameter estimation algorithms. We refer to 6 and ¢ as the
parameter and regression vectors, respectively. We now make a further
assumption.

Assumption 3.2: The reference signals, disturbance, and derivatives
fu,- are such that 6(¢f)e #vt where #C R2" is a known compact
convex region.

This assumption restricts the slope of f along v, to be within finite
limits.

As a consequence of Assumption 3.2, we note that

o, - 6.1 < k. (3.42)
161 < k (3.40)

v0,0,,0,€ %. k., kq are constants depending on the size of %.
A key property of the linearization model (3.1) is that the remainder
term R is linearly bounded by ¢.
Fact 3: 3¢, IeR, s.t.
|R(D] < ello(c = 1) +1
vo(t—1)e%,. (3.5)°

Proof: From Assumption 3.1 and the mean value theorem applied
to (3.3a)

R(1) - (—z—fL)T(v(z— D -nte-n)- (3 UI)TW- )

where v = w(r — 1) + (1 = Ny (1 - 1)
for some e [0, 1]

afl  af \"
(5] -5 -

v
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Then let

af
S

af
v

(3.6)

v s.t.
—ulsr
and clearly, | Ry(#)| < €,.[|o(f — D|Vo(¢ — 1) € #,. Similarly, we
get from (2.4) | R,(¢)| < LU where L is a constant (bounded by any
Lipschitz constant of f). Taking /:= LU, the result follows. 0O
Comments 3.1:
1) Clearly (3.6) links the bound in (3.5) to changes of the derivative

b 1]

™ in the ball 4,. The value of parameter ¢, thus reflects the degree of

nol:ﬂinearity of the plant. This is clearly demonstrated in (3.6). Loosely
speaking, a more nonlinear plant will have larger ¢, for smailer r.

2) While being aware of its existence, we do not need to know the
value of ¢, or /.

3) In the use of linear models [1], the system with unstructured
disturbances is effectively described relative to signals (0, u*). In the
design of adaptive control, we implicitly use #; = O to approximate u*.
The number U can be large.

We now make some assumptions which restrict the speeds of the
signals u;, y*, and d. These will be passed through the smoothness
Assumption 3.1 into the time variations of the linearized form (3.1).

Assumption 3.3: 38,, 61, 6” €[R, s.t. y*, d satisfy

| y*(1) = y*(t - 1)| <6, vt
ld(t) —d(r—-1)| <8] vt

and u; (Assumption 2.2) satisfies
fur(1) = w (e = D[ <&

From Assumption 3.3, we easily conclude that there exists &,
8, > 0 such that

fo(e) —vi(r=1)| <8, e
fo(r) = w(t- D] <8,

From Assumption 3.1, the f, are locally Lipschitz continuous.
Specifically, there exists F;, F, 2 0, and §,, 65 such that

vi.

(3.7a)

vi. (3.7v)

fo (v, @) = £,(5, )| <Fllv - 7| (3.11a)
for a given w, v — De.ﬂaz, i=1,--+,2n, and
fov, @) = £,(v, &) < Fylle - & (3-11b)

for a given v, w — D€ Fsy, i =1,---,2n.

Assumption 3.4: The signal variations in Assumption 3.3 are slow
enough to ensure 8, > 8, and 85 > 5.

Combining inequalities (3.7) and (3.8), gives a restriction on the time
variation of 8(?), i.e.,

[6:(1) = 8,(1 = D)| =] £, (vi(1), () = £, (v (1 = 1), (1 = 1)}
L (vi(0), () = £, (011 = D). w(1))]
+70:(vi(1 = 1), (1))

Lot = 1), 0(t = )]

using (3.7), (3.8),
and Assumption 3.5.

<

< Fié, + F,6,,

It follows that there exists €, > 0 such that
le(r)y —0(r— 1) <ep v (3.9)

Comments 3.2: The essential parameters of the nonlinearity in (2.2)
are 1, €, and ¢,. These are clearly related. In the bounds (3.5) and
(3.9), €, and ¢4 will typically be larger for larger r.
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IV. ADAPTIVE CONTROL SCHEME

We study a certainty equivalence adaptive controller along the lines
studied previously in many situations [1]. The parameter estimator is
taken as the simple gradient scheme

(1 - Ve(r)
1+o7(t - Do(r—1)

where é(t) denotes the estimate of 6(t), # denotes the projection
operator which ensures that 8(¢) e #v¢ [1], and

e(t) = Ay(e) — ¢7(r — DE(1 - 1)

e(t) is the prediction error.

The stability analysis relies on several key properties of the estimator.
The following result can be proved using standard steps. It is related to
results in [5], [14] but is closest in detail to the result in [15]; the main
difference here is the need to accommodate the locally bounded error

6(1) = 2{6(t—1) + (4.1)

(42)

i
term R(f). Suppose r > ry€ R, is such that — < 6.
7o

Lemma 4.1: The estimator (4.1), (4.2), applied to system (2.3) [or
(3.1)] has the properties:

1) 3keRr, s.t.|&(1)| <k (4.3)
provided ¢(¢f — 1) € 4, where
e(t)
—
(1+let= 1)

2) ||6(e) - 8- 1| <lee)|  ve

é(1):=

(4.4)
3N #) e+ a(i- o) + el 1)

(4.5)

provided ¢(i)€ %4, and |[¢()| > ro, i =ty, 1o+ 1,-++, 1 — 1 where
o, oy, and oy are given by

o) = kZ as = 0(8). (4.6)

ay = 0(e,, fe)

Comments 4.1:

1) The form of (4.5) is special in that a, can be made arbitrarily
small by reducing €, and ¢,.

2) The more commonly used (in practice) least-squares estimator has
similar properties, but the analysis is more tedious [1].

The estimator is combined with a conventional (nonadaptive) con-
troller with the system parameters replaced by 6(#). Here, we consider
a pole assignment regulator of the form

L(r - Dau(t) = —P(t - 1)ay(r)
where I’: P are derived from
Ay =1-6(0g " =~ ()g "
B(1) =8, ()q™" + - +65,(0)a 7"

A(r = 1D)L(r—1) + B(t - 1) P(1 - 1) = 4*.

(4.7)

(4.8a)
(4.8b)
4.9)

A* is a given monic polynomial in shift operator ¢~ of degree 2n.
Then L and P provide a strictly proper regulator. We express these in
the form

Ly =1+0()g "+ - +1,(1)g™"
P(t) =po(t)g™" + -+ +p,(Da "

Assumption 4.1: The polynomial z2"4* is strictly (discrete-time)
Hurwitz.

Just as in all previous discussions of indirect adaptive control, a
technical difficulty (invariant under problem reformulation) arises in the
solution of (4.9). We require || L], | B| to be bounded where || - ||

(4.10a)
(4.10b)
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denotes the norm of the vector of polynomial coefficients. Thus, we
require a further restriction on the system model [4], [7].

Assumption 4.2: The convex region % in Assumption 3.2 has the
additional property that for all § € %, the linearized system model is
uniformly stabilizable.

Comments 4.2:

1) An arbitrarily large region of the parameter space can be covered
by the use of multiple convex regions [4]. The analysis presented below
can be extended to this situation.

2) Assumption 4.2 effectively introduces a local controllability re-
quirement on the nonlinear plant.

V. STABILITY ANALYSIS

The main stability results establish that the overall adaptive system is
locally bounded in a sense where all variables are departures from the
nominal trajectory represented by v,.

The establishment of a framework for analysis follows standard steps
for certainty equivalence adaptive controllers [1]. Then the closed-loop
system equations (4.2) and (4.7) can be combined to give
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Thus, for the linear time-varying system
d(t+ 1) =A(t)o(t)
we conclude that the transition matrix $(¢, 7) satisfies
|@(t, )] < Ca'" (5.6)

for t > 7if o, < @%, ro>F4 and ¢(r)€ B, for 7 =0,1,---, £ — 1.
a% is a sufficiently small positive constant, 7§ is a sufficiently large
constant, and ¢ € (0, 1).

The general solution of (5.1) is

(5.5)

-1
(1) = &(r,19)0(15) + > ®(1,7)be(r+1). (5.7)
7=l
Using (5.6) and the Schwarz inequality in standard steps, we get
t—1

o) <2 (1) + & X o e() |2 + D[

=1y

(5.8)

where
d(t+1) =A()o(t) + be(t+ 1) (5.1)
) =A@ $2(1) = 2C% o (10) | + Ci. (5.9)
where
91(’) éﬂ(’) én+1(t) é2n(’)
1 0 0 0
Afrye= |-- 2o 0 S (5.22)
- Bo(1) —Paa(t)  —h(2) =1 (1)
0 0 1 0
0 0 0 1 0
»T=[1 o0 o ol. (5.2b)  Applying the discrete Grownwall lemma [12] to (5.9), using the theo-

The stability analysis of (5.1) makes use of the following lemma. It is
a refinement of a result given by Kreisselmeier [5]; the proof in [13]
shows it completely as a discrete-time counterpart of one by Middleton
and Goodwin [7]. Many similar results exist in the adaptive control
literature.

Lemma 5.1: Consider a linear time-varying system of the form

x(t+1) = A(1)x(1). (5.3)
Suppose:
1) A(?) is bounded,
2) Lol A — A(r = D2 S ko + ky(t — tg) for t> ¢,
where kg, k| are positive constants with k, sufficiently small,
3) |IN(A)| < 1forall t,i=1,"+ n.
Then the transition matrix of (5.3), denoted ¥/(¢, 7), satisfies

(RCR) R

where p €(0, 1) and ¢ is a constant.

Our first stability result can now be proved.

Theorem 5.1: Consider the adaptive scheme consisting of plant (2.2)
[modeled by (3.2)], estimator (4.1), (4.3), and regulator (4.12)-(4.14).
Under all above assumptions 3r*, e¥, ef, and ry s.t. r > r*, €, < €*,
€ < €f, and ¢(0) e ﬂ,o ensures ¢(f) € 4¥¢. In particular, the control
signal Au(t) and tracking error A y(¢) remain bounded.

Proof: Only an outline proof is given. Many of the details are
similar to those given elsewhere by Wen and Hill (see [15] and the
report [13]).

Divide the time sequence Z . into two subsequences

Z, = {teZ+|I|¢(t)|| > "0} Z, = {’GZ+|“¢’(t)" < rO}'

Recall r > rg. Clearly, we only need to show |¢(7)| < r for 7€ Z,.
Also, constrain the initial condition to satisfy || ¢(0) < .

We use an inductive proof by assuming || ¢(£)|| < M, 7=0,--,1¢
— 1 and choose 7, so that 1, — 1€ Z, and ty," ", — 1€ Z,.

From Lemma 4.1, it is easy to check that A(¢) in (5.2a) satisfies all
the conditions in Lemma 5.1 provided ¢(7)e &, for 7 =0,1,---, ¢ —
1. In condition 2), we have k;, = k(a, + «3) where k is an indepen-
dent constant.

fort 27

(5.4)

rem of the arithmetic and geometric means [12] and Lemma 4.1, we get
[13]

2
o) =2¢2(ax)" (1 + k) (| #(20) || + C3)
for ay < @¥ and ry = 7§ (5.10)
where o < 0¥ <1, &% is a small constant, and F¥ is a sufficiently
large constant.
Equation (5.10) gives

ls()I < ()] + Cs. (5.11)

So if r2 > C; and

rr-c
lo(r0)|” < —04—3 (5.12)

we have
le)]f <r,

i.e., ¢(#) € 4,. The induction proof is complete.
It remains to identify the constants in the Theorem statement. We
2
. =G
have already r* = max {ry, \/C;}, r2 = max {F}, 7§, —C—}
4

Now set a¥ = min {&%, &%} and select ef and e} so that «,, given by
(4.6b), satisfies ay < af.

Comments 5.1:

1) Referring back to Comment 3.3, we see that the bounds on e,, €,
and also r > r* are simply restrictions on the class of nonlinearities
allowed.

2) A further qualitative result that can be derived from the bounds
concerns the degree of stability in A*. A smaller o allows larger values
of ¢, and ¢y, i.e., more severe nonlinearities. If the bound on R(1) at
(3.5) is global in the sense that ¢,,/ are independent of r, a simpler
result is easily seen to hold.

Theorem 5.2: Suppose the conditions of Theorem 5.1 are altered to
allow f(-, w) to be globally Lipschitz. Then 3ef and €} s.t. €, < €f
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and ¢y < €f ensure the system is BIBS stable (about the nominal
trajectory).

From the proof of Theorem 5.1, we can see that / does not affect
stability in this case. This justifies our earlier Comment 3.1.3.

VI. CONCLUSIONS

The interpretation of adaptive linear control as a design technique for
well-defined discrete-time nonlinear systems has been studied. The
stability conditions essentially limit the gradient of the functional giving
a difference equation description. For global stability, this functional is
required to be globally Lipschitz.

The novel proof technique based on induction with respect to regres-
sor boundedness does not have an immediate counterpart in continuous
time. Nevertheless, it is interesting to speculate that a similar result
holds.
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1. INTRODUCTION

The study of a family of matrices is primarily motivated by the need
to check robust stability of a dynamical system which may be subjected
to parameter perturbations. The perturbations in the system matrix can
arise because of changes in operating conditions, linearization, data
errors, etc. Hence, there has been considerable interest in the stability
analysis of matrices with uncertain coefficients in the recent literature
(11-[12].

If there is no knowledge about the structural perturbation of the
system matrix, then a simple sufficient condition for the stability of the
system matrix is given by the bound on the singular value of the
perturbed matrix [1], [2]. The bound on the perturbation matrix can be
improved if the error matrix is highly structured [6]-[10]. In addition,
state transformation [8] may be used to improve the result.

In this note, we shall extend the use of the Lyapunov equation method
to check the stability of a family of matrices which is defined as the
convex hull of a finite number of matrices. The family of interval
matrices is a special case where each element has independent perturba-
tion. While the stability of interval matrices cannot be inferred from the
stability of its vertex matrices [11], [12], we shall show that the family
of matrices will be stable if the symmetric matrices associated with the
vertex matrices have matrix measures less than two.

II. PrROBLEM FORMULATION
Consider the following linear system:

x(t) = Ax(¢)
[4°+ Elx (1)

(2.1)

where x(f) = R" is the state vector, A° is the n X n time-invariant,
nominally asymptotically stable system matrix, and E is the perturba-
tion matrix.

Explicit bounds for robust stability of 4 under unstructured perturba-
tions have been examined in [1] and [2]. In here, we are interested in
the case where the perturbation matrix E is highly structured. In
particular, we are interested in determining the stability of the family of

matrices
SAéconv{A,-, i=1,2,--+,m}

22)

where A; are the vertex matrices of S . The set S, may also be
redefined as

S48 A% +conv{E, i=1,2,",m} (2.3)
where A°€ S, defined in (2.2) and
E;=A; - A° (2.4)

The choice of A° is quite arbitrary, but a popular choice of A4° is
given by

m
> A,

1
A° = —
mi-\

(2.5)
An iterative approach to search for a better A° has been proposed in
[15].

III. MATHEMATICAL PRELIMINARIES

Conceptually, any robustness analysis method which is based on
Lyapunov’s method can be traced back to the following theorem.
Theorem 3.1: The matrix A in (2.1) is stable if

ETP + PE <21 (3.1)
where P is the solution to the Lyapunov matrix equation
(A°)"P+PA° +21=0.

Proof: The matrix A will be stable [13] if

(3.2)

ATP+PA=-Q

0018-9286,/90,/1100-1257$01.00 © 1990 IEEE



