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Robust Adaptive Control of Proper Systems

Changyun Wen

Abstract—To date, all the adaptive control algorithms have been
proposed only for strictly proper systems. In this paper, a scheme is
proposed to design an adaptive controller for proper systems. To study
the robustness of the adaptive controller, both additive and multiplicative
types of unmodeled dynamics are considered and can also be allowed to be
proper, or even improper. Global bounded input bounded output stability
is established. The achievement of a small in the mean tracking error
and perfect tracking/rejection of deterministic trajectories/disturbances
in the absence of system unmodeled dynamics are discussed. The results
are also verified by simulation studies.

Index Terms—Adaptive control, proper systems, robustness, stability,
tracking.

I. INTRODUCTION

Stability results of adaptive control systems have been well es-
tablished and understood [1]–[12]. However, all the adaptive control
algorithms, from which system stability were established, were pro-
posed only based on strictly proper transfer functions. As shown
in [13], the stability properties can no longer be guaranteed in the
presence of throughputs. Thus a scheme was proposed to consider
systems with proper transfer functions in [13] and [14]. The idea is
to cascade a first-order filter with the system such that a strictly proper
system can be obtained. The adaptive controller is still designed from
the resulting strictly proper transfer function. Under this scheme, the
problem formulated is to force the filtered output to follow that of a
reference model. Also in the context of robust adaptive control, no
result has been obtained in the presence of proper additive unmodeled
dynamics so far.

The strict properness restriction discussed above is perhaps due to
the requirement that the order of the filter employed for controller
design cannot be greater than that of the nominal system model ([3],
[4], [8], [9], [11], [13], and [14]). In this paper, a scheme using
higher order filters is proposed, and this allows us to design an
adaptive controller directly from the nominal plant transfer function
which may be proper. In the design, the plant output itself is
formulated to track a given reference trajectory. The robustness of the
adaptive controller is also examined. Both additive and multiplicative
unmodeled dynamics considered can be proper, or even improper.
By using an analysis technique similar to those in [4], it is shown
that global stability is guaranteed in the presence of unmodeled
dynamics and bounded external disturbances. The achievement of
a small in the mean tracking error and perfect tracking/rejection
of deterministic trajectories/disturbances in the absence of system
unmodeled dynamics are discussed. Our simulation studies also show
the effectiveness of the control scheme.

The remaining part of the paper is organized as follows. The math-
ematical model of the class of plants to be controlled is presented in
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Section II. The adaptive scheme is proposed in Section III. Stability is
established in Section IV. In Section V, the control scheme is verified
by simulation results. Finally, the paper is concluded in Section VI.

II. PLANT MODELS

Let p denote the differential operatord
dt
; and lety(t) andu(t) be

the plant output and input, respectively. Then the class of plants to
be controlled is modeled as follows:

y(t) = fH(p)[1 + �1H1(p)] + �2H2(p)gu+ !(t) (1)

whereH(p) is the nominal transfer function of the plant defined as

H(p) =
B(p)

A(p)

A(p) = p
n + an�1p

n�1 + � � �+ a0

B(p) = bmp
m + bm�1p

m�1 + � � �+ b0

�1; �2 are nonnegative constants,H1(p) andH2(p) are the multiplica-
tive and additive unstructured uncertainties, respectively, and!(t)
denotes external disturbances.

For the plant, we make the following assumptions.
Assumption 2.1:

� A1) n is known andm is less than or equal ton.
� A2) The coefficients of the polynomialsA(p) and B(p) are

inside a known compact convex region in whicĥA and
B̂ are uniformly coprime, wherêA; B̂ are the estimates of
A;B.

� A3) H1 andH2 are stable and their relative degrees should be
greater than or equal to�1.

� A4) !(t) is bounded.

Remark 2.1: From the above assumption, we note that the nominal
transfer functionH(p) can be proper and uncertaintiesH1; H2 can
be improper. This implies thatj�1H1(j!)j and j�2H2(j!)j may be
large at high frequencies.

Model (1) is now transformed into the following form:

A(p)y(t) = B(p)u(t) + �(t) (2)

where�(t) denotes the effect of the modeling error and is given as

�(t) = [�1BH1 + �2AH2]u(t) +A!(t): (3)

Similar to [17] in reducing the effects of the modeling errors in-
cluding the bounded noise and high frequency unmodeled dynamics,
a low-pass filter 1

F
is introduced, whereF is a monic Hurwitz

polynomial given as

F (p) = p

 + f
�1p


�1 + � � �+ f0

and the order
 is chosen to be greater thann. (If the relative degrees
of H1 andH2 are equal to�1, 
 is chosen to be greater thann+1.)

Remark 2.2: As shown later, the order of the filter is a key point
to relax the strict properness restriction of previous adaptive control
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schemes. Earlier in [3], [4], [8], [9], [11], [13], and [14], the order
cannot be higher thann.

With this filter, the following filtered variables are defined:

yf(t) =
1

F
y(t) (4)

uf(t) =
1

F
u(t) (5)

�f(t) =
1

F
�(t): (6)

Now operating this filter on (2), we get

Ayf (t) = Buf (t) + �f(t): (7)

To derive a suitable adaptive control algorithm, (7) is rewritten as

pnyf = (pn � A)yf +Buf (t) + �f(t)

= �T (t)�� + �f(t) (8)

where

�T (t) = [yf (t); � � � ; p
n�1yf (t); uf(t); � � � ; p

muf (t)] (9)

�T� = [�a0; � � � ;�an�1; b0; � � � ; bm]: (10)

Note that (8) is differentiator-free since the order ofF , i.e., 
, is
greater thann. Also from Assumption 2.1, we have�� 2 C whereC
is a compact convex set in<n+m. Thus we have

k�1 � �2k � k� (11)

wherek� is a constant depending on the size ofC andk � k denotes
the Euclidean norm.

From the stability of the unmodeled dynamics, we can readily
obtain an overbounding function of the modeling error�f . This is
given as follows.

Lemma 2.1: For all members of the class of systems satisfying
Assumption 2.1, there exists a constant� � 0 such that for allt

j�f(t)j � � sup
0���t

kx(�)k+ d0 (12)

where

xT (t) =
y

F
; � � � ; pn�1

y

F
;
u

F
; � � � ; p
�1

u

F
(13)

d0 is a constant boundingA
F
!(t); and an exponentially decaying

term depending on initial conditions.
Proof: SupposeV (p) is a stable polynomial of the form

V (p) = p
�1 + v
�2p

�2 + � � �+ v0:

From (6) and (3), we have

�f(t) =
�1BH1 + �2AH2

V
V
u

F
+

A!

F

=
�1BH1 + �2AH2

V
xu +

A!

F

where

xu = v0
u

F
+ v1p

u

F
+ � � �+ v
�2p


�2 u

F
+ p
�1

u

F

= vTx (14)

where

vT = [0; 0; � � � ; v0; v1; � � � ; v
�2; 1]:

Clearly

jxu(t)j � kvkx(t)k (15)

wherekv is a constant depending on the coefficients ofV (p).
Then the result follows from Assumptions A3, A4, and (15).

Remarks 2.3:

1) The constant� in (12) can be made sufficiently small by
reducing�1 and �2. While being aware their existence, we do
not assume any knowledge of the constants� andd0.

2) Also note that vectorx(t) can be obtained from measurement.
This vector will be used for the adaptive controller design in
the next section.

Supposey� is a given reference set-point for outputy. The control
problem is to design a controller for the class of plants satisfying
Assumption 2.1 so that the closed-loop system is stable in the sense
that all signals in the system are bounded for arbitrary boundedy�

and initial conditions.

III. A DAPTIVE CONTROL SCHEME

An indirect adaptive control scheme is proposed to solve the control
problem in this section. The adaptive controller can be obtained
by the design of two independent modules: a parameter estimator
and a linear controller designed based on theCertainty Equivalence
Principle [1].

A. Parameter Estimator

The following estimation algorithm with projection is introduced
to the estimator:

_̂
�(t) = P �

�(t)e(t)

1 + xT (t)x(t)
(16)

where� is a positive constant denoting the adaptation gain,�̂ is the
estimate of��; x(t) is defined in (13),e(t) is the prediction error
defined as

e(t) = pnyf (t)� �T (t)�̂(t) (17)

andPf�g denotes a projection operation proposed by Pomet and Praly
in [15]. Such an operation can ensure that all the estimated parameter
vector �̂(t) 2 C for all t if �̂(0) 2 C.

Remark 3.1: For the estimator in (16) and (17), the vectorsx(t)
is used in the normalization. As seen from the stability analysis of
the next section,x(t) is the state vector of the closed-loop system.
The normalization in the estimator is static.

Now some useful properties of the estimator in (16) and (17) can
be stated as in the following lemma.

Lemma 3.1: SupposeM0 is a positive constant s.t.d0=M0 � �
where� is a sufficiently small positive constant. The estimator (16)
and (17), applied to plants given in (1), has the following properties.

1) Define

~e(t) =
e(t)

(1 + xT (t)x(t))1=2
:

If kx(t)k � M0 andsup0���t kx(�)k = kx(t)k for all t � t0,
then

a)

j~e(t)j � �(k1 + �+ �); for t � t0 (18)

wherek1 is a constant depending onk� in (11);
b)

t

t

~e2(�)d� � k2 + �1(t� t0) + �2(t� t0); for t � t0

(19)
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where

k2 =
1

2�
k
2
� (20)

�1 = �(k1 + 2�)� (21)

�2 = �(k1 + 2�)� (22)

2) k
_̂
�(t)k � �j~e(t)j: (23)

Proof: Comparing (9) with (13), we have

k�(t)k � kx(t)k: (24)

Once (24) is established, the results of the lemma follow from a
similar analysis as in [4].

Remark 3.2:�1 in (21) and �2 in (22) can be made small
by reducing � and by making a sufficiently large numberM0,
respectively.M0 is used here for the purpose of stability analysis
only. It is not a design parameter.

B. Control Law Synthesis

Although there are many control schemes available [1], here we
just employ the pole assignment strategy to tune the controller
parameters based on the Certainty Equivalence Principle. The control
u(t) is then given by

L̂
u

F
= �P̂

y

F
+ P̂

y�

F
: (25)

In (25), L̂ and P̂ are polynomials of the form

L̂(p) = p
n + l̂n �1p

n �1 + � � �+ l̂0

P̂ (p) = p̂n p
n + p̂n �1p

n �1 + � � �+ p̂0

and are determined from the following Diophantine equation:

Â(t)L̂(t) + B̂(t)P̂ (t) = A
� (26)

whereA� is a monic polynomial of degreen + 
 and its zeros are
chosen to be the required closed-loop poles according to guidelines
in [16]. The degreesnl andnp are set to be
 andn�1, respectively.

The resulting controller can be implemented by transforming (25)
to the following form:

u = (F � L̂)
u

F
� P̂

y

F
+ P̂

y�

F
: (27)

From Assumption A2, (26) gives a bounded solution forL̂; P̂ ; 8t.

IV. STABILITY ANALYSIS

In this section, global stability of the closed-loop adaptive system
is established. We now derive an equation to describe the closed-loop
system. This can be achieved by considering the estimator and the
controller equations. From (17), we get

Â
y

F
= B̂

u

F
+ e: (28)

Then from (28) and (25), the closed-loop system can be described
as

_x(t) = Âcx(t) + b1e(t) + b2r(t) (29)

where

b
T
1 =[0; � � � 0; 1; � � � ; 0]; b

T
2 = [0; � � � 0; 0; � � � ; 1]; r(t)= P̂

y�

F
(30)

and (31), as shown at the bottom of the page.
As in [4], it can be shown, using Lemma 3.1, that9c > 0; � > 0

such that the transition matrix of the homogeneous part of (29)�(t; �)
satisfies

k�(t; �)k � ce
��(t��)

; for t � � � t0 (32)

if kx(t)k � M0; sup0���t kx(�)k = kx(t)k 8t � t0, and for all
� � ���; � � ���; where bounds���; ��� are sufficiently small numbers
to ensure(�1 + �2) � ��. Here�1; �2 are given in (21) and (22)
and �� is a sufficiently small number. Then we can establish the
system stability in a special case.

Lemma 4.1: Suppose thatkx(t0)k = M0; kx(t)k > M0 for all
t > t0 andsup0���t kx(�)k = kx(t)k. Consider the adaptive system
consisting of estimator (16) and (17) and controller (25)–(27). Under
Assumption 2.1, there exists a constant��1 such that for all� � ��1
the closed-loop system ensures that

kx(t)k � M (33)

whereM = c1M2
0 + c2 andc1; c2 are positive generic constants.

Proof: From (29) and (32), we have

kx(t)k�ce
��(t�t )kx(t0)k+c

t

t

e
��(t��)(je(�)j+ jr(�)j)d�

�cM0+c
t

t

e
��(t��)[j~e(�)j(1 + kx(�)k2)1=2+jr(�)j] d�:

(34)

Suppose the intermediate numberM0 is also such that

kr(t)k1 � M0:

Clearly such anM0 always exists for any boundedy�. Now
squaring both sides of (34) and applying the Schwartz inequality,
we get

kx(t)k2 � c3M
2
0 + c3

t

t

e
��(t��)j~e(�)j2(1 + kx(�)k2)d� (35)

for a positive constantc3. Multiplying both sides of (35) bye�t gives

e
�tkx(t)k2 � s

2(t) + c3

t

t

e
��kx(�)k2j~e(�)j2 d� (36)

where

s
2(t) = e

�t
c3M

2
0 + c3

t

t

e
�� j~e(�)j2 d�: (37)

Âc =

0 1 0 � � � 0 0 � � � 0

0
. . .

...
...

...
...

1
�â0 � � � �ân�1 b̂0 � � � b̂m; 0 � � � 0
0 � � � 0 1 0 � � � � � � 0
...

. . .
...
1

�p̂0 � � � �p̂n�1 �l̂0 �l̂
�1

(31)
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Fig. 1. System response whenH2(p) = 2(p+2)
(P+5)

.

Then applying the Bellman–Grownwall lemma to (36) and using
Lemma 3.1, we have

kx(t)k2 � e
��t

s
2(t) + c3

t

t

e
��tj~e(�)j2s2(�)e c j~e(� )j d�

d�

� c1M
2
0 + c2 (38)

for � � ���� and� � �� where���� and�� are sufficiently small constants
satisfying

c3(�
�
1 + �

�
2) < � (39)

with ��1; �
�
2 depending on���� and��. Taking ��1 = minf���;����g, the

result is proved.
Clearly,c1 andc2 are independent of� if it is replaced by its bound

��1; which is a generic constant.
To establish the stability result for the general case, we explore the

parameter estimator further and this gives Lemma 4.2 as follows.
Lemma 4.2: If kx(t)k > M0 for all t � t0; kx(t)k �
c1M

2
0 + c2 for t 2 [0; t1] and sup0���t kx(�)k = kx(t)k for

all t � t1 where t0 and t1 are some constants satisfyingt1 � t0,
then

1)

j~e(t)j = �(k1 + �(
p
c1 +

p
c2) + �); for t � t0 (40)

2)
t

t

~e2(�)d� � k2 + �1(
p
c1 +

p
c2)(t� t0) + �2(t� t0);

for t � t0: (41)

Proof: By noting the condition of the lemma, the results can be
established from a similar analysis as in Lemma 3.1.

Remark 4.1: Note that the properties in the above lemma are quite
similar to Lemma 3.1 except that the constantsc1 andc2 appear here.

From Lemma 4.2, we get our main stability result as stated in the
following theorem.

Theorem 4.1: Consider the adaptive system consisting of plant
(1), estimator (16) and (17), and controller (25)–(27). Under
Assumption 2.1 there exists a constant�� such that for all� � ��,
the closed-loop system is globally stable in the sense that all signals
remain bounded8t for all finite initial states, any boundedy�; and
arbitrarily bounded external disturbances.

Proof: First, we consider the trajectorykx(t)k and show that
the constantM in Lemma 4.1 is a uniform bound ofkx(t)k. From
(29), kx(�)k is continuous and thus we can divide the time interval
[0;1) into two subsequences<+

i = [si; �i] and<�i = (�i; si+1)
with �0 = 0 such that

[0;1) = [1i=1 <+
i [ [1i=0 <�i (42)

kx(t)k �M0; t 2 <+
i ; kx(t)k < M0; t 2 <�i : (43)

In (43), M0 is also satisfyingkx(0)k � M0.
kx(t)k can be ensured bounded if we can show that it is bounded

in <+
i ; 8i � 1, which can be done through induction. Thus we

now considerkx(t)k for t 2 <+
1 . From the continuity ofkx(t)k;

9t1 2 <+
1 such thatsup0���t kx(�)k = kx(t)k for t � t1. Then

using Lemma 4.1 and noting thatkx(s1)k = M0, we can show that



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998 1583

Fig. 2. System response whenH2(p) = 2(p�8)
(p+5)

.

for t � t1

sup
0���t

kx(�)k �M (44)

for all � � ��1. Suppose thatsup0���t kx(�)k 6= kx(t)k for
t 2 [t1; t2] � <+

1 . Then (44) automatically holds fort � t2. Now if
sup0���t kx(�)k = kx(t)k for t � t2 and t 2 <+

1 , then following
the same steps in the proof of Lemma 4.1 and applying Lemma 4.2
yields

sup
0���t

kx(�)k �M (45)

for all � � �� where�� =
�p

c +
p
c

. In this way, (45) can be shown

to be true for allt 2 <+
1 .

Then assuming (45) holds8t 2 <+
k , it can be shown that (45)

is also true8t 2 <+
k+1 from the fact thatkx(sk+1)k = M0 and

Lemma 4.2.
After establishing (45), we can have�f(t); �(t); e(t);

_̂
�; and u

bounded from (12), (24), (23), and (27). From (29),_x is bounded.
Consider the last row of (29). We can ensurep(p
 u

F
) bounded from

the boundedness of̂�; _̂�; _x; andx. Thuspu = pF u

F
is bounded from

the last row of (29). We now establish the boundedness ofy. From

(2) and (3), we get

A

F
y(t) =

B

F
u(t) +

�1BH1 + �2AH2

F
u(t) +

A

F
!(t): (46)

Since pu is bounded, then pi(AS
F
y), i.e., pi+n( y

F
) +

an�1pi+n�1(
y

F
)+ � � �+a0p

i( y
F
) is bounded fori = 0; 1; � � � ; 
�n

from Assumption 2.1. From this fact and the boundedness of
pk( y

F
); k = 0; 1; � � � ; n, we can successively show thatpi y

F
is

bounded fori = n+ 1; � � � ; 
. Thusy = F y

F
is bounded.

Remarks 4.1:

1) Note that some ideas used in [4] are applied to analyze the
robustness of the proposed adaptive controller and thus to
establish Theorem 4.1. However, due to the use of a higher
order filter, the boundedness establishment of the inputu and
outputy becomes much more involved. Also the technique is
refined and improved here. Thus the presentation in this paper
is more elegant and clearer than that in [4].

2) Suppose the disturbance!(t) and the reference signaly� are
purely deterministic. In other words, there exists a polynomial
S(p) such that

S(p)!(t) = 0

S(p)y�(t) = 0:
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In this case,d0 at (6) is exponentially decaying. Thus having
proven the boundedness of all states in the closed-loop system, it
can be shown from (19) that the prediction errore(t) satisfies

t

t

e
2(t) � �1 + �2o(�)(t� t0) (47)

where�1; �2 are constants ando(�) satisfieslim�!0 o(�) = 0. If the
internal model principle is employed in the controller synthesis, the
tracking errory � y� can be shown to be� small in the mean. In
the absence of unmodeled dynamics, the tracking error tends to zero.
This is shown in the following test example.

V. AN EXAMPLE

The adaptive scheme is applied to control the following system:

y(t) = ku(t) +H2(p)u(t): (48)

In the design, the nominal transfer functionH(s) = k is used.
The value ofk is unknown, but taken to be three for simulation
studies. The required set point,y�, is a square waveform of amplitude
5 and period 50 s. An integrator is introduced to achieve better
tracking performance and thus the filter employed is s

(s+4)(s+0:1) .
The estimator gain� is chosen to be ten and we assume the
unknownk is within the interval[0:1; 40]. The required closed-loop
characteristic polynomialA� is selected to be

A
� = s

2 + 2s+ 2:

The following two cases with different additive unmodeled dy-
namics are simulated:

• H2 =
2(p+ 2)

p+ 5

The system response in this case is given in Fig. 1.

• H2 =
2(p� 8)2

(p+ 5)2
:

The system response in this case is presented in Fig. 2.
Comparing the results of the above two cases, we note that

the system performance is degraded in the second case because
unmodeled dynamics is more complicated and the overall plant is
nonminimum phase. However, in both cases, the closed-loop system
is stable and the performance is improved gradually as the adaptation
continues.

VI. CONCLUSION

In this paper, an adaptive control algorithm proposed is directly
based on the nominal transfer function of the plant. The transfer
function can be proper and both the additive and multiplicative
unmodeled dynamics are allowed to be proper, or even improper.
It has been shown that the proposed adaptive control scheme can
globally stabilize the system with modeling errors due to unmodeled
dynamics and bounded external disturbances. An example also shows
the effectiveness of the adaptive control scheme.
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One-Machine -Part-Type Optimal Setup Scheduling:
Analytical Characterization of Switching Surfaces

Eugene Khmelnitsky and Michael Caramanis

Abstract—The authors consider optimal setup scheduling of a single
reliable machine. Production flow ofn different part types and the setup
process are described by differential equations. Setup change rates are
control variables. Necessary conditions on optimal setup changes are
characterized analytically, and optimal setup change times are derived
for a given setup change sequence. The linearization of optimal setup
switching surfaces is derived, indicating the existence of attractors ob-
served in numerical optimal solutions. The approach developed in this
paper establishes a strong basis for studying multimachine production
systems and for constructing tractable near-optimal numerical solution
techniques.

Index Terms—Attractors, necessary setup conditions, one-machine
scheduling, optimal control, switching surfaces.
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