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Correspondence

Robust Adaptive Control of Proper Systems Section II. The adaptive scheme is proposed in Section IIl. Stability is
established in Section IV. In Section V, the control scheme is verified
Changyun Wen by simulation results. Finally, the paper is concluded in Section VI.

Abstract—To date, all the adaptive control algorithms have been IIl. PLANT MODELS
proposed only for strictly proper systems. In this paper, a scheme is  Let p denote the differential operatef, and lety(t) andu(t) be
proposed to design an adaptive controller for proper systems. To study he plant output and input, respectively. Then the class of plants to
the robustness of the adaptive controller, both additive and multiplicative b trolled i deled foll .
types of unmodeled dynamics are considered and can also be allowed to be € controfled 1s modeled as Tollows:
proper, or even improper. Global bounded input bounded output stability
is established. The achievement of a small in the mean tracking error . _ , CH () Vs .
and perfect tracking/rejection of deterministic trajectories/disturbances y(&) ={HP)L + e Hi(p)] + e Ha(p)}u+ w(t) (1)
in the absence of system unmodeled dynamics are discussed. The results

are also verified by simulation studies. where H (p) is the nominal transfer function of the plant defined as
Ind_ex Terms—Adaptive control, proper systems, robustness, stability,
tracking. Hip) = %
A(p)
I. INTRODUCTION AP)=p" +an 1p" -+ ao
Stability results of adaptive control systems have been well es- B(p) = bup™ +bm-ap™ ' 4+ bo

tablished and understood [1]-[12]. However, all the adaptive control

algorithms, from which system stability were established, were prer, ¢; are nonnegative constanf$; (p) andH,(p) are the multiplica-
posed only based on strictly proper transfer functions. As showine and additive unstructured uncertainties, respectively, caftd
in [13], the stability properties can no longer be guaranteed in tidenotes external disturbances.

presence of throughputs. Thus a scheme was proposed to consid€or the plant, we make the following assumptions.

systems with proper transfer functions in [13] and [14]. The idea is Assumption 2.1:

to cascade a first-order filter with the system such that a strictly propels A1) 1 is known andm is less than or equal to.

system can be obtained. The adaptive controller is still designed fromy A2) The coefficients of the polynomialsi(p) and B(p) are

the resulting strictly proper transfer function. Under this scheme, the inside a known compact convex region in which and
problem formulated is to force the filtered output to follow that of a B are uniformly coprime, wherel, B are the estimates of
reference model. Also in the context of robust adaptive control, no A. B.

result has been obtained in the presence of proper additive unmodelegl A3) 1, and H- are stable and their relative degrees should be
dynamics so far. greater than or equal te-1.

The strict properness restriction discussed above is perhaps due t aA4) w(t) is bounded.

the requirement that the order of the filter employed for controller Remark 2.1: From the above assumption, we note that the nominal
design cannot be greater than that of the nominal system model (|3, <fer functionf (p) can be proper and uncertaintié , i, can

[4], [8], [9], [11], [13], and [14]). In this paper, a scheme usingO : This imolies that H. (i. dles Holiw b
higher order filters is proposed, and this allows us to design ?jglg]zioﬁgﬁ freI;uI:anan;ilgi deLH (ju)] and|e; Ha(jw)| may be

adgptive controller directly from the _nominal plant transfer f_unctio_n Model (1) is now transformed into the following form:
which may be proper. In the design, the plant output itself is
formulated to track a given reference trajectory. The robustness of the /
adaptive controller is also examined. Both additive and multiplicative Alp)y(t) = Blp)u(t) +n(t) @)
unmodeled dynamics considered can be proper, or even improper.
By using an analysis technique similar to those in [4], it is showwheren(t) denotes the effect of the modeling error and is given as
that global stability is guaranteed in the presence of unmodeled
dynamics and bounded external disturbances. The achievement of n(t) = [e. BH, 4 e AHoJu(t) + Aw(t). (3)
a small in the mean tracking error and perfect tracking/rejection
of deterministic trgjectorlegld|sturbances in the.absenc_e of SySten%imilar to [17] in reducing the effects of the modeling errors in-
unmodeled dynamics are discussed. Our simulation studies also sh?w. : . )

. cluding the bounded noise and high frequency unmodeled dynamics,
the effectiveness of the control scheme.

The remaining part of the paper is organized as follows. The mat"?ln-IOW pass f.llterf’ 's introduced, wheref” is a monic Hurwitz
) . polynomial given as
ematical model of the class of plants to be controlled is presented’in
F(p) =" T
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schemes. Earlier in [3], [4], [8], [9], [11], [13], and [14], the order Remarks 2.3:

cannot be higher than. 1) The constant in (12) can be made sufficiently small by
With this filter, the fO”OWing filtered variables are defined: reducingel and €. While being aware their existence, we do
, ! not assume any knowledge of the constangddy.
yr(t) = fy(t) Q) 2) Also note that vector(¢) can be obtained from measurement.
wp(t) = 1 () 5) This vector will be used for the adaptive controller design in
AN T the next section.
t) = 1 t 6 Suppose/™ is a given reference set-point for outputThe control
ng(t, n(t). (6) ; . L
F problem is to design a controller for the class of plants satisfying
Now operating this filter on (2), we get Assumption 2.1 so that the closed-loop system is stable in the sense
, _ that all signals in the system are bounded for arbitrary bounded
Ayys(t) = Buys(t) + ns(t). () and initial conditions.
To derive a suitable adaptive control algorithm, (7) is rewritten as
P yr = (" — A)ys + Bus(t) + ns(t) Ill. ADAPTIVE CONTROL SCHEME
= o7 (t)8. + ns(t) ®) An indirect adaptive control scheme is proposed to solve the control
problem in this section. The adaptive controller can be obtained
where by the design of two independent modules: a parameter estimator
‘ n— and a linear controller designed based on @eetainty Equivalence
o (1) = [ys(t)y-- 0"y () up(t), - p g (D] (9) Principl'e 1] 9 iy Equv
HI = [_(”0:\"'5_("71—19;}01"'5’)771]' (lo) .
Note that (8) is differentiator-free since the orderfofi.e.,v, is A. Parameter Estimator
greater tham. Also from Assumption 2.1, we have € C whereC  The following estimation algorithm with projection is introduced
is a compact convex set iR"*". Thus we have to the estimator:
161 = Ba]| < ko (11) i) /P{ S S(De(t) } (16)
= ) /L D ———
whereky is a constant depending on the sizeCofind|| - || denotes L4 2T (t)x(t)

the Euclidean norm. ) . ) )
From the stability of the unmodeled dynamics, we can readifn€re/ is a positive constant denoting the adaptation gaiis, the

obtain an overbounding function of the modeling ermgr This is €Stimate oft., x(#) is defined in (13)¢(¢) is the prediction error

given as follows. defined as
Lemma 2.1: For all members of the class of systems satisfying

Assumption 2.1, there exists a constant 0 such that for allt e(t) = p"ys(t) = " (DA(D) A7)
[ns(®)| < e sup ||lz(7)]| + do (12) andP{-} denotes a projection operation proposed by Pomet and Praly
vsrst in [15]. Such an operation can ensure that all the estimated parameter
where vectord(t) € C for all ¢ if A(0) € C.
g y o1y U S Remark 3.1: For the estimator in (16) and (17), the vectetg)
e (t) = [f’ REY Ll LR f] (13)  is used in the normalization. As seen from the stability analysis of

the next sectiong(t) is the state vector of the closed-loop system.
The normalization in the estimator is static.

Now some useful properties of the estimator in (16) and (17) can
be stated as in the following lemma.

dy is a constant boundingi—w(f), and an exponentially decaying
term depending on initial conditions.
Proof: Supposé/(p) is a stable polynomial of the form

Vip)=p" "+ vy op” P4+ 0. Lemma 3.1: Supposeld, is a positive constant s.to /Mo < &
where$é is a sufficiently small positive constant. The estimator (16)
From (6) and (3), we have and (17), applied to plants given in (1), has the following properties.
etBH) +eAHy _u | Aw 1) Define
ne(t) = S _
_ ElBHl-FEQleQ Aw ~ _ e(t
=5ty = TraTmamre
where . . . . If [Jo(t)]] > Mo andsup,, <, [l2(r)|| = [|l=()]| for all ¢ > to,
Ty = U?f + ’Ulpf 4t ’U.’,_priz ya + p771 ya then
=o' (14) a)
where [e(t)] < Bk1 + e+ 96), fort > to (18)
v = [0,0,--,vp, 01, , Uy_2, 1]. . . .
wherek; is a constant depending dn in (11);
Clearly b)
lza ()] < Follz()]] (15)

1
i . - / éZ(T:)dTS]{2+(J’1(t—to)+(}2(f,—to), fOftZto
wherek, is a constant depending on the coefficientd/gp). to
Then the result follows from Assumptions A3, A4, and (15)1 (19)
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where Then from (28) and (25), the closed-loop system can be described
1 as
_ L2 .
k= g5k (20) #(t) = Ava(t) + bre(t) + bar() 29)
ar = B(k1 + 2¢)e (21) where

az = Bk +26)6 (22) - - oy

’ ' b{:[ovoﬂl*‘o]ﬁ b;r:[o,o,oﬁ,l], I(t):PyF
2) 16O < Ble(t)]. (23) (30)

Proof: Comparing (9) with (13), we have and (31), as shown at the bottom of the page.

As in [4], it be sh , using L 3.1, thhat> 0, 0

oIl < lla(t)]]- (24) s in [4], it can be shown, using Lemma > 0,0 >

such that the transition matrix of the homogeneous part of$28)7)
Once (24) is established, the results of the lemma follow from satisfies

similar analysis as in [4]. O —o(t—7)
. . , < ce , > T >

Remark 3.2: «; in (21) and a2 in (22) can be made small 12t )l < ce ’ fortzr2to (32)
by reducinge and by making a sufficiently large numbéilo, if ||x(t)|| > Mo, supo<. < [lz(7)|| = [lx(t)|| ¥t > to, and for all
respectively. M, is used here for the purpose of stability analysis < €*,6 < §*, where bounds™, §* are sufficiently small numbers
only. It is not a design parameter. to ensure(a; + az) < o*. Hereas, az are given in (21) and (22)

and o™ is a sufficiently small number. Then we can establish the
B. Control Law Synthesis system stability in a special case.

Although there are many control schemes available [1], here wele8Mma 4.1: Suppose thalle(to)|| = Mo, [l«(t)]| > Mo for all
just employ the pole assignment strategy to tune the controlfer T @ndsupo< <, [|2(7)ll = [|(#)]]. Consider the adaptive system
parameters based on the Certainty Equivalence Principle. The conG@isisting of estimator (16) and (17) and controller (25)—(27). Under
u(t) is then given by Assumption 2.1, there exists a constahtsuch that for alle < €}

. the closed-loop system ensures that
Yy _p(Y pl Y
(7)) = P(F)+P<F)~ (29) (0l < M (33)
In (25), L and P are polynomials of the form whereM = /c1 Mg + ¢, andei, c» are positive generic constants.

. s _ - Proof: From (29) and (32), we have
Lip) =p™ +luy—1p™ " 4+ 1o

ot
P(p) = Prpp™” + Pr,—1p"" " 4o 4 o =(H)ll < ce"’“‘“)llw(to)llﬂ/ e~ (Je(r)] + |r(7)]) dr
to
and are determined from the following Diophantine equation: -t (s - 211/2
o N . ScMo+c/ e Te(mIL + le(D)II*) 7 +1r ()] dr.
A(#)L(t) + B(t)P(t) = A (26) to
where A* is a monic polynomial of degree + + and its zeros are (34)
chosen to be the required closed-loop poles according to guidelineSuppose the intermediate numbf is also such that
in [16]. The degrees; andn,, are set to be; andn — 1, respectively. I (®)llo < M,
The resulting controller can be implemented by transforming (25) o = o
to the following form: Clearly such anM;, always exists for any boundedg". Now
e (F o ﬁ)(i) ~ P(l) P Yy 27 squaring both sides of (34) and applying the Schwartz inequality,
U= F F F - we get
"t
From Assumption A2, (26) gives a bounded solution fot?, V¢, ||«(t)||* < csM; + c;;/ e TP+ |la()*) dr (35)
to
IV. STABILITY ANALYSIS for a positive constant;. Multiplying both sides of (35) by”" gives

In this section, global stability of the closed-loop adaptive system oty 2 _ o, L. 2o 12
is established. We now derive an equation to describe the closed-loop ¢ eI < s7(8) + s /LO el (D7 le(n)dr (36)
system. This can be achieved by considering the estimator and tr}%e
controller equations. From (17), we get where

-t
iy Yl () = e es My + c TIe(7)|P d 37
AN plL s7(t) = e s 0—1—%/ e’"e(r)|” dr. (37)
(F) (F)J”’ (28) to
r o 1 0 0 0 0 7
0 :
1
P Y T B S | EEE 0
Ae = 0o - 0 10 e oees 0 (31)
. Al
-_ﬁo e _]371.—1 _lO _l'y—l J
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Fig. 1. System response whel(p) =

Then applying the Bellman—Grownwall lemma to (36) and using Proof: By noting the condition of the lemma, the results can be
Lemma 3.1, we have established from a similar analysis as in Lemma 3.1. O
9 ol 2 L e [t esle(r)Pin Remark 4.1: Note that the properties in the above lemma are quite
lz@®)[I" < e™"s7(2) +C3/f e Tle(r) s (r)els AT similar to Lemma 3.1 except that the constantsindc, appear here.
0 From Lemma 4.2, we get our main stability result as stated in the

<M+ (38) following theorem.
fore < & andé < §" wheree* ands™ are sufficiently small constants  Theorem 4.1: Consider the adaptive system consisting of plant
satisfying (1), estimator (16) and (17), and controller (25)-(27). Under
o, x Assumption 2.1 there exists a constahtsuch that for alle < €*,
es(a] +a3) <o (39)

the closed-loop system is globally stable in the sense that all signals
with a7, a3 depending orf" andé*. Takinge] = min{&*,&"}, the remain boundedt for all finite initial states, any boundeg", and

result is proved. arbitrarily bounded external disturbances.
Clearly,c; andc; are independent efif it is replaced by its bound Proof: First, we consider the trajectoju:(¢)|| and show that
€1, which is a generic constant. O the constanf/ in Lemma 4.1 is a uniform bound dfz(¢)||. From

To establish the stability result for the general case, we explore ##9), ||=(-)|| is continuous and thus we can divide the time interval
parameter estimator further and this gives Lemma 4.2 as follows.[0, oc) into two subsequencéﬁ;" = [si, ] and R = (77, Si+1)
Lemma 4.2:If ||z(¢¥)|]] > Mo for all + > to, ||z(t)]] < with o = 0 such that

ertMg + ey for t € [0.1:] andsupgc, <, |lz(7)]| = [[=(#)]| for
all t > t; wheret, andt; are some constants satisfying > to, [0,00) = (U, RF) U (U0 RY) (42)
then el > Mot € RT: [le(D)]l < Mo,t € R (43)
1)

[e(t)] = B(k1 + e(\/c1 + e2) + 6), fort >ty  (40) In (43), M, is also satisfying|«(0)|| < Mo.
[|z(#)|| can be ensured bounded if we can show that it is bounded
y in ®F,¥i > 1, which can be done through induction. Thus we
52 ( . , V(f — o (F — now consider||=(t)|| for ¢ € RF. From the continuity of|=(#)]],
e (r)dr <ks+a 1+ o2 )(t —to) + ao(t — to), 1
/LO Jdr < k2 + ar(yer + Ve2)(t = to) (t —to), 3t: € Ri such thatsup,., ., [l=(r)|| = ||l=(#)|| for + < #. Then
fort > ¢o. (41) using Lemma 4.1 and noting thi&(s,)|| = Mo, we can show that

2)
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Fig. 2. System response whefds(p) = '“’((]f;:));.
for t < # (2) and (3), we get
A B eeBH, + e2oAH» A
sup ||lz(7)|| < M 44 =, = = SO T 22 2
ogr}g” (Ml < (44) Fy(t) Fu(t)-l— i u(t) + Fw(t). (46)

for all ¢ < €7. Suppose thatup,...l|z(7)| # [lz(#)| for
t € [t1,t2] C RT. Then (44) automatically holds far< t». Now if
supg< < [l(T)|| = [l=(t)]| for ¢ > > andt € R, then following

the same steps in the proof of Lemma 4.1 and applying Lemma 2 )k

yields

sup fle(r)ll < M (45)
o< <t

In this way, (45) can be shown

for all e < €* wheree* m
to be true for allt € R},

Then assuming (45) holdét € R, it can be shown that (45)
is also truevt € R/, from the fact that||x(sz41)|| = Mo and
Lemma 4.2. .

After establishing (45), we can havef(f),(b(t),c(t),(;, and u
bounded from (12), (24), (23), and (27). From (29)js bounded.
Consider the last row of (29). We can enspfe” + ) bounded from

the boundedness éf 4, #, andx. Thuspu = pF % is bounded from
the last row of (29). We now establish the boundedness. ¢from

Since pu is bounded, thenp'(47y), ie., pt"(%) +
An—1p TN L) + - +aop’ (£) is bounded fof = 0,1,---,v—n
from Assumption 2.1. From this fact and the boundedness of
0,1,---,n, we can successively show thﬁ’t% is
O

bounded fori = n +1,---,~. Thusy = F £ is bounded.
Remarks 4.1:

1) Note that some ideas used in [4] are applied to analyze the
robustness of the proposed adaptive controller and thus to
establish Theorem 4.1. However, due to the use of a higher
order filter, the boundedness establishment of the impand
outputy becomes much more involved. Also the technique is
refined and improved here. Thus the presentation in this paper
is more elegant and clearer than that in [4].

Suppose the disturbancgt) and the reference signal are
purely deterministic. In other words, there exists a polynomial
S(p) such that

2)

S(p)w(t)
Spy™(t) =

0
0
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In this case,dy at (6) is exponentially decaying. Thus having [4] C. Wen, “An indirect robust continuous-time adaptive controller with
proven the boundedness of all states in the closed-loop system, it minimal modifications,’Automatica vol. 31, pp. 293-296, 1995.

it
g ofi [5] ——, “A robust adaptive controller with minimal modifications for
can be shown from (19) that the prediction ere¢f) satisfies discrete time-varying systemslEEE Trans. Automat. Conirvol. 39,

o, ) pp. 987-991, 1994.
/ e“(t) < B+ Paole)(t —to) (47) 6] C. Wen and D. J. Hill, “Global boundedness of discrete-time adap-
to tive control just using estimator projectionAutomatica vol. 28, pp.

1143-1157, 1992.
—, “Robustness of adaptive control without deadzones, data normal-
ization or persistence of excitation&utomatica vol. 25, no. 6, pp.

wheref;, 82 are constants and ¢) satisfiedim._, o(e) = 0. If the 7l
internal model principle is employed in the controller synthesis, thé

tracking errory — y* can be shown to be small in the mean. In 943-947, 1989.
the absence of unmodeled dynamics, the tracking error tends to zef8] S. M. Naik, P. R. Kumar, and B. E. Ydstie, “Robust continuous-time
This is shown in the following test example. adaptive control by parameter projectidBEE Trans. Automat. Contr.

vol. 37, pp. 182-197, 1992.
[9] R. H. Middleton, G. C. Goodwin, D. J. Hill, and D. Q. Mayne, “Design

V. AN ExampPLE issues in adaptive controlJEEE Trans. Automat. Contrvol. 33, pp.
. . . . . 50-58, 1988.
The adaptive scheme is applied to control the following SyStem[lO] G. Kreisselmeier and B. D. O. Anderson, “Robust model reference
u(#) = ku(t H w(t). 4 adaptive control,”IEEE Trans. Automat. Contrvol. 31, pp. 127-133,
y(t) = ku(t) + Hz(p)u(t) (48) 1086,

In the design, the nominal transfer functidh(s) = k is used. [11] P. A. loannou and K. S. Tsakalis, “A robust direct adaptive controller,”

; . : IEEE Trans. Automat. Conirvol. 31, pp. 1033-1043, 1986.
The value of# is unknown, but taken to be three for SIn“'llatlon[IZ] L. Praly, “Robustness of model reference adaptive control,Piac.

studies. The required set poipt,, is a square waveform of amplitude Yale Workshop on Adaptive Systert883, pp. 224-226.
5 and period 50 s. An integrator is introduced to achieve bettf3] P. A. loannou and P. V. Kokotovic, “Instability analysis and im-

tracking performance and thus the filter employe (8' 4)(85+0l1)_ provement of robustness of adaptive contréiitomatica vol. 20, pp.
The estimator gainj is chosen to be ten and we assume th 583‘5?4' 1984. . . .
. g . . F14] _, “Decentralized adaptive control of interconnected systems with
unknownk is within the interval[0.1, 40]. The required closed-loop reduced-order modelsAutomatica vol. 21, pp. 401-412, 1985.
characteristic polynomiall™ is selected to be [15] J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation
. 9 from the Lyapunov equation,lEEE Trans. Automat. Conirvol. 37,
AT =" +2s+2. pp. 729-740, 1992.

. . . - [16] R. H. Middleton and G. C. GoodwirDigital Control and Estimation:
The following two cases with different additive unmodeled dy="" A" pified Approach Englewood Cliffs, NJ: Prentice-Hall, 1990.

namics are simulated: 9 2) [17] C. E. de Souza, G. C. Goodwin, D. Q. Mayne, and M. Palaniswami,
. , =2 T2 n adaptive control algorithm for linear systems having unknown time
I, = 2wt “An adapti I algorithm for li having unk i
p+5 delay,” Automatica vol. 24, pp. 327-341, 1988.
The system response in this case is given in Fig. 1.
2(p — 8)?
. = 2e=8)" 1 .
(p+5)2

The system response in this case is presented in Fig. 2. One-Machine n-Part-Type Optimal Setup Scheduling:

Comparing the results .Of the above. two cases, we note that Analytical Characterization of Switching Surfaces
the system performance is degraded in the second case because

unmodeled dynamics is more complicated and the overall plant is
nonminimum phase. However, in both cases, the closed-loop system
is stable and the performance is improved gradually as the adaptation
continues.

Eugene Khmelnitsky and Michael Caramanis

Abstract—The authors consider optimal setup scheduling of a single
reliable machine. Production flow ofn different part types and the setup
VI. CONCLUSION process are described by differential equations. Setup change rates are
control variables. Necessary conditions on optimal setup changes are
In this paper, an adaptive control algorithm proposed is directiraracterized analytically, and optimal setup change times are derived

based on the nominal transfer function of the plant. The transfier a given setup change sequence. The linearization of optimal setup
function can be proper and both the additive and multiplicativ%NitChi”g surfaces is derived, indicating the existence of attractors ob-

unmodeled dvnamics are allowed to be proper. or even imoro served in numerical optimal solutions. The approach developed in this
Yy proper, p pgéper establishes a strong basis for studying multimachine production

It has been shown that the proposed adaptive control scheme g@iems and for constructing tractable near-optimal numerical solution
globally stabilize the system with modeling errors due to unmodelégthniques.

dynamics.and bounded externz_il disturbances. An example also Shonﬁdex Terms—Attractors, necessary setup conditions, one-machine
the effectiveness of the adaptive control scheme. scheduling, optimal control, switching surfaces.
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