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Decentralized Adaptive Regulation

Changyun Wen

Abstract—A new adaptive control scheme developed recently by Krstic
et al. [11] is employed to design decentralized adaptive regulators. The
interconnected system to be regulated consists of N coupled subsystems
having arbitrarily relative degrees. Global stability is established for the
closed-loop system and perfect regulation is ensured.

I. INTRODUCTION

In the control of a large scale system, one usually faces poor
knowledge on the plant parameters and interactions between sub-
systems. Thus the adaptive control technique in this case is an
appropriate strategy to be employed. If some subsystems distribute
distantly, it is difficult for a centralized controller to gather feedback
signals from these subsystems. Also the design and implementation
of the centralized controller are complicated. Therefore decentralized
controllers, designed independently for local subsystems and using
local available signals for feedback, are proposed to overcome such
problems. The resulting decentralized controllers are also reliable in
the sense that when some local controllers are out of order, the rest
can still be in operation. Such decentralized controllers, however,
should be robust against the ignored interactions.

In the context of decentralized adaptive control, only a limited
number of results have been obtained by employing the traditional
certainty equivalence principle to design the local adaptive controllers
[1]-[9]. In [1]-[3], totally decentralized indirect adaptive controllers
were designed with the use of parameter projections and global
stability was established. The result in [4] was obtained by including
a relative dead zone in each local estimator. To implement the
dead zone, information exchange between subsystems is required.
Therefore the local controllers are partially decentralized, and this
result is only applicable to multivariable systems having easily
obtainable feedback signals. In [5] and [6], robustness was achieved
using o-modification on the local estimators for subsystems with
relative degrees p; < 2 under the direct model reference control
approach. The extension with this technique to an arbitrary relative
degree case in [7] and [8], however, needs information exchange
between subsystems and thus also sacrifices total decentrality. This is
due to the requirement on the use of normalization and the augmented
error when this traditional approach is applied to systems with relative
degrees greater than two [10]. For the same reason, the result in {9]
was established only for an interconnected system with all subsystems
having relative degree one when output feedback is used.

Recently, a new approach using integrator backstepping was pro-
posed to design adaptive controllers in [11]. Due to the use of
nonlinear damping terms, normalization and the augmented error are
not required for global stability and also better transient performance
can be obtained. Based on this observation, here we apply the
technique in [11] to design totally decentralized direct adaptive
controllers for a class of interconnected systems with subsystems
having arbitrarily relative degrees. It is shown that the global stability
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of the closed-loop system and perfect regulation are achieved in the
presence of unmodeled interactions. A similar result on the relaxation
of subsystem relative degrees was also obtained in [12] by using the
concept of higher order tuning given in [13]. Again this result is
due to the use of unnormalized estimation errors in the higher order
estimators.

The remaining part of the paper is organized as follows. Section II
gives the class of systems to be controlled, and Section III presents the
decentralized controllers. The closed-loop system is analyzed and the
main result is given in Section IV. Finally, the paper is concluded
in Section V.

II. PLANT MODELS AND PROBLEM FORMULATION

A system consisting of N interconnected subsystems modeled as
below is considered.

N
For = Ao To, +bosui + Y _Fo(ts y)) M
J#i
T . .
Yi = Co,To;, fori=T1,--- N 2)

where z,;, € R™, u; € R, and y; € R are the states, input,
and output of the ith subsystem, respectively. ?i](t, y;) € R
denotes the nonlinear interactions from the jth subsystem to the ith
subsystem. The matrices and vectors in (1) and (2) have appropriate
dimensions, and their elements are constant but unknown. For each
decoupled local system, we make the following assumptions.

Assumption 2.1:

* Al: n; is known;

* A2: The triple (Ao,, bo,, ¢o,) are completely controllable and

observable;
* A3: In the transfer function
Gi(s) = ¢ (sT — Ao,) " "bo,
_ Ni(s)
- D;(s)
b s™ 4+ bls 4+ 8D
= . n;—1 . 1 0 (3)
stida] T smiTl 4o ajs 4+ al

Ni(s) is a Hurwitz polynomial. The sign of )" and the relative
degree pi(= n; — m;) of G;(s) are known.
For the nonlinear interaction term £, ;(t, y,), we have the following
assumption.
Assumption 2.2:
o A4:

758wl < 7,5lu5 )

where || - || denotes the Euclidean norm and ¥

7,; are constants
denoting the strength of the interaction.

The control objective is to design totally decentralized adaptive
controllers for system (1) and (2) satisfying Assumptions Al-A4
such that the closed-loop system is stable and the states x,,(t) are
regulated to zero.

III. DECENTRALIZED ADAPTIVE CONTROLLERS

In this section, the decentralized adaptive controllers are presented.
The local controller of each subsystem is designed by ignoring the
interactions with the other subsystems. Its design procedures are the
same as that in [11] for a scalar system. Therefore, in this paper, the
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design details are omitted. Certain manipulation on the system models
is necessary, however, to aid the stability analysis of later sections.

Clearly, there exists a nonsingular matrix 7; such that, under
transformation z,, = Tix;, (1) and (2) can be transformed to the
form of [11], i.e.,

. 0
io=Ajri Faiy + [b ]ui + fi (5
yi = ez, fori=1,---.N (6
where
0 7a’l”'z_1 b:nz
A= | T . oa; = = :
0 --- 0 —a° I
N
fo= Y Tt v )

J#
and e* denotes the kth coordinate vector in R":.
An ‘estimate’ of state x; is given by

n;—1

gi- Y aler +Zb"vf ®

k=0

where £F and vF are generated from the following two local filters

0= Ajni +eltyi )
e =(AD ., 0<k<ni—1, (10)
= —(A)) i (11)
Xi=AiXi+eltu (12)
vE = (AD)* AL 0<k<m; (13)

where A7 = A; —l,(e})T with l; = [l}, e ,l:”]T and is chosen to be
Hurwitz. It can be shown that the ‘state estimation error’ €; = x; —&;
satisfies

&= Ale; + fi. (14)

Following [11]), we now define

6] =[a;. b/]

ol = (€7 + (e Ty o]

o = + () Ty T
where

B = gm0,

S Ay
and

‘(2) [O ml—l,Z"”‘ly?,Z].

Suppose that the positive constants 7;, ek, d¥, k=1, --,p; and the

positive definite matrix I'; of dimension (n;+m.:+ 1)x(ni+m;+1)
are the design parameters. Let p; = b, 1 and Pis f; be the estimates
of p; and 6, respectively. Also define z! = y; and

pi= ez hdis €7+ T 0 (1)
For illustration of the controller design procedures, we now give a
brief description on the first step.
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Step 1: It can be shown that

12 n;—1 1
Li=ai—a i+ f,

=0t € T 0+ A+ f (16)

where z? is the second state in z;, €7 is the second element of the
‘state estimation error’ €;, and f; is the first element of vector f;
defined in (7).

Let 22 2 _ o}, and substitute this to (16). If v > were the
actual control and all the parameters in (16) were known, a} would
be chosen so that 3} = —¢!z! + €2 4 f}. Since this is not the case,
one may think to employ the integrator backstepping technique and
replace the unknown parameters with their estimates as in {11]. To
do this, a Lyapunov function given below is considered

=™
=,

VI = L 4 S0 - 00T - )

2
pmi o 1 -
].‘ i = 50 + el Ple;
27 d,
where P is positive deﬁmte and sausﬁes PP A + ATpY = -1,

d, > 0 and satisfies d} = d + d for a posmve d

Remark 3.1: Splitting d! into d and d is just to make the
[_)Eesenlatlon easier in the stability analysis of the following section.
d; and d! deal with the terms having ¢? and f; in the evaluation
of V., respectively.

After calculating V;' as in [11], we choose

1 A
a; = —pipi

P = visgn (b )pizi
6, = Twiz

With the above choices, (16) becomes

2l = —clzl —dlet e+ wl (6 -6

b Mpips — i)+ e + £ (T

and we can obtain
o1 1,142 mi 12
Vi € —cilz)” +0" 2z

+ (8 — 67T ! !

(Comiz! — 00) — = iles) + 2!

1

f.l

where

Qi) = (1) + 2(eD)” + (D) 4 + (e

Following Steps 2 to p; in [11], the ith local adaptive controller

(Z=1,---,N) can be designed and is given as
Py = yesgn (b )piz) (18)
i L xRdalt 1.2 T
0, =T Wiz — Y ——w;z! L0020 220,
{w Z 3y, J400,---.0 0,---.0]
Jj=2
19
pi—1
u; = (.P1 F’z dpz (aa(gyl ) 191 —_ :ﬂ._l 3571
1 pi—1 —1 i—1
T O L S
Y. i=2 i Y
dari—t Pi 5ol
: [ {7z, L w2
M { ; By
+[0,--+.0. 2220 .0]7} (20)
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where :!:2 appears in the (n; + 1)th entry of the row vector and

_]31731

dalt\? daj
2 2.2 _ : 2 _ 52 L F Mz
- gy 2oty 00 Th
a; Ciz, '(3yi> i z'*‘ayl»«)z i
1 1
+g;r{;wf %?w“?+m 0,227, 0 “ﬁf}

k=1 kzl g -1 k—1

+ 801 MT& _ ZZ{ 8Ql rzaaz i
ay; = 06 0yz
30571 1 k 60{_1 j

+ 8w - Y

j=2
+00.0++.0. 2} 27, 00,07
k41 my. k+1 k

31,1 =2.---. p; denotes some known terms and its detailed structure
can be found in [11].

Remark 3.2: When going through the details of the design proce-
dures, we note that in the equations concerning éf, F=1,2.--,p;,
just function f} from the interactions appears and is always together
with €2, This is because only ¢; from the plant model (5) and (6) was
used in the calculation of &~ for steps k+ 1. k=1,2,---,p, — 1.

IV. STABILITY ANALYSIS

In this section, the stability of the overall closed-loop system
consisting of the interconnected plant and decentralized controllers
will be established. First, a mathematical model for each local closed-
loop control system is derived from (17) and the rest of the design
steps.

2 2! e
12 =2 ~ By
; % 2 24
e _-4: o +["~) (‘9 —8i)+e +fz] ~ By;

P ~Pi 3;91 1
‘ ' -3y

by —yti
0 2}
+pi—p)| O |+@ri-dry)| O @21

0 0

where A{ is a matrix having the same structure as in the scalar
system given in [11].

To show the system stability, the variables of the »-filters in (9) and
the zero dynamics of subsystems should be included in the Lyapunov
function. Under a similar transformation as in [11], the variables
C: associated with the zero dynamics of the ith subsystem can be
shown to satisfy

Ci=AYG+biz! + T, 22)
where the eigenvalues of the m; x m; matrix A,lfi are the zeros of
the Hurwitz polynomial N:(s), b; € ™ and f; € ™ denoting
the effects of the transformed interactions.
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Now define a Lyapunov function of the overall decentralized
adaptive control system as

N
= Zvj
i=1

where
pi m
; 1 1 70 ;"] .2
Vi= () + =€ Pei | + 2 (pi — pi)
;(2 d 2

1 s _ - 1 1
+ 500 - 6778 - 6) + k—?:mTP?nz + E(,TPLL’Q (23)
and P} satisfies PP(A) + (A2)TPY
constants satisfying

—I, BV RS are

0 ,mi 2
s SR

¢

0T (12
s SIPAEE.

1
¢

k¢

Under the same manipulation as in [11] and using (5), (14), (9) and
(21)—~(22), we can obtain

¢ c} 1,2 “
Vis —(;(m _244 (fH )
-yl : (—Illel - el ) = Sl )

]11 =2

;0al” 1 :
_ZdJ 2 3 ij} —
Yi le

2 —
ch Gl + G IR Tl

< —[— ~ 7l Z<—+Zn | )

1 2
el

4, ZNEE
- P mn] —;TZHQH

2i . . 5 1 . 2
_zcz<zf) Zd ( oot +2_37f’>

- gl = el o

< + 5%)/2 was used. From (4) in
Assumption A4, we can show that

£ Z(— + 2P0 )
d J#
(25)

where v;; are constants depending on 7, ; and indicating the coupling
strength from the jth subsystem to the ith subsystem, d;, i =
1,2,---,N are constants depending on d;, a, |1POl, &S, and
IP||. Now taking the summation of the first term in (24) into
account and using (25), we get

a c 1,2 vpi 1 2 012
— | = (z A — + =P
) [2< P =+ S0P

i=1 =1 i i

where the inequality ab < (a®

e lIPIT < Zd iz

i"llll?‘,li} < -5z (26)
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where
:IT = [:i B :1\]
and
S={si}vxy
l'l . .
=17 L= @7
{_(dz'\;zj+dj'}ji) 1#]
Thus if matrix S is positive definite, then
N
=3
i=1
<0 (28)

and the right side of (28) is zero only at the origin.

This proves the uniform stability and the uniform boundedness of
2L (e, yi), 22, L P 6;, e, N, Cis iy Ai, and u;. Following the
similar argument as in [11], it can be shown that both V and V are
bounded as well as V is integrable over [0, oc]. Therefore, 1 tends
to zero and thus the system states x; converge to zero from (24)
and (28).

This establishes the main result of the paper which is stated as in
the following theorem.

Theorem 4.1: Consider the closed-loop decentralized adaptive
control system consisting of plant (1), (2) and decentralized
controllers (18)—(20). If the interactions are such that the matrix
S in (27) is positive definite, then the origin is a globally uniformly
stable equilibrium and all the states of the system asymptotically
to zero.

Remark 4.1: From Theorem 4.1, the allowable size of the interac-
tions defined in class (1) and (2) can be arbitrarily large by suitable
selection of the controller gains c;. This is consistent with the result
established in [14] where a nonadaptive decentralized scheme was
proposed to stabilize a similar class of interconnected systems with
arbitrarily bounded interactions.

V. CONCLUSION

This paper provides a solution to the longstanding problem on
the relaxation of subsystem relative degrees in direct decentralized
adaptive control (see [5], [6], [9]) by applying the new adaptive
control scheme developed for single-loop systems in [11]. It is shown
that global stability is ensured, and all states in the closed-loop system
are guaranteed to converge to zero. This implies that the adaptive
controller in {11] has a certain degree of robustness with respect to
ignored interactions between subsystems. Thus this paper partially
solves the robustness problem of the controller in [11].
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‘First Come, First Served’ Can be Unstable!

Thomas I. Seidman

Abstract—We consider flexible manufacturing systems using the ‘first
come, first served’ (FCFS or FIFO) scheduling policy at each machine. We
describe and discuss in some detail simple deterministic examples which
have adequate capacity but which, under FCFS, can exhibit instability;
unboundedly growing WIP taking the form of a repeated pattern of
behavior with the repetitions on an increasing scale.

I. INTRODUCTION

We consider network models involving multiple flows with buffer-
ing/queuing at each node (processor). Specifying a queue discipline
(i.e., a scheduling policy for the processing at nodes) then defines
the dynamics for the system. A queue discipline is called stable if
the queue lengths (WIP) remain uniformly bounded in time for any
realization—configuration, initial state—with input rates subject to
the obvious capacity limitations. We quote from {3] the observation
that, “We have been unable to resolve whether FCFS is stable—a
significant open question.” It is the point of this note to resolve that
question,' to show by examples that the popular ‘first come, first
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! Subsequent to the original submission of this paper, we learned of
related work by Bramson [1] considering a rather different configuration and
demonstrating there almost sure instability in a stochastic context, i.e., with
the probability 1 the total WIP has infinite liminf. A subsequent paper [2]
shows that when even subject to a stronger capacity condition (replacing
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