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Adaptive Output Control of Nonlinear Systems With
Uncertain Dead-Zone Nonlinearity

J. Zhou, C. Wen, and Y. Zhang

Abstract—In this note, we present a new scheme to design adaptive
controllers for uncertain systems preceded by unknown dead-zone non-
linearity. The control design is achieved by introducing a smooth inverse
function of the dead-zone and using it in the controller design with back-
stepping technique. For the design and implementation of the controller,
no knowledge is assumed on the unknown system parameters. It is shown
that the proposed controller not only can guarantee stability, but also
transient performance.

Index Terms—Adaptive control, backstepping, dead-zone, nonlinear sys-
tems, stability.

I. INTRODUCTION

Adaptive control is popular in engineering and science. However,
it still faces many important challenges, such as the handling of non-
smooth nonlinearity. Nonsmooth nonlinearity characteristics including
dead-zone, backlash, and hysteresis are common in mechanical con-
nection, hydraulic servo valves, piezoelectric translators, and electric
servomotors. Several adaptive control schemes have recently been pro-
posed to handle such nonlinearity; see, for example, [1]–[3]. In these
papers, an adaptive inverse approach was presented to deal with non-
smooth nonlinearity in the design of continuous time model reference
adaptive controllers. The proposed inverse functions are cascaded with
the plant to cancel the effects of hysteresis in [3], backlash in [4],
dead-zone in [5], and actuator failure in [6]. In the controller design, the
termmultiplying the control and the uncertain parameters of the system
and nonsmooth nonlinearity must be within known bounded intervals.
Dead-zone precompensation using neural network have also been used
in feedback control systems [7]. With these developed schemes, the
transient performance is usually not guaranteed due to their design
methods. In [8]–[12], state feedback control was considered for non-
linear uncertain systems, where the hysteresis or dead-zone was treated
in a similar way to disturbance. The characteristics of the nonlinearity
were not considered in the controller design, so the performance, es-
pecially steady-state performance, may not be good enough. In [9] and
[10], it is also assumed that the dead-zone slopes in both positive and
negative sides must be the same.

In this note, we will address the output feedback control of similar
class of nonlinear systems as in [8]–[11], in the presence of unknown
dead-zone actuator nonlinearity. We take the dead-zone into account in
our controller design unlike in [9], [10], and [12]. A new smooth in-
verse of the dead-zone will be introduced to compensate the effect of
the dead-zone in controller design with backstepping approach. Note
that ideas of using smooth inverse were also suggested in [15]. Such
a smooth inverse can avoid chattering problems that may occur in the
nonsmooth inverse approach proposed in [2], [5], and [13]. The spe-
cific treatment of the dead-zone may bring performance improvement.
As system output feedback is employed, a state observer is required. To
obtain such an observer, a new parametrization of the state observer for
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the plant is proposed to include two sets of parameters: one from the
dead-zone nonlinearity and the other from the plant, similar to [16].
With our approach, a priori knowledge on system parameters is no
longer needed. Besides showing stability of the system, the transient
performance in terms of L2 norm of the tracking error is derived to be
an explicit function of design parameters and, thus, our scheme allows
designers to obtain the closed-loop behavior by tuning design parame-
ters in an explicit way.

II. PROBLEM STATEMENT

A. System Model

We consider the same class of systems as in [8], [10], and [11]. For
completeness, the system model is given as follows:

x
(n)(t) + a1Y1(x(t)) + a2Y2(x(t)) + � � �+ arYr(x(t)) = bu

(1)

y = x u = DZ(v) (2)

where Yi are known continuous linear or nonlinear functions, param-
eters ai and control gain b are unknown constants, v(t) is the output
from the controller,u(t) is the input to the system and y(t) is the system
output. The actuator nonlinearity DZ(v) is described as a dead-zone
characteristic.

The control objective is to design an output feedback control law for
v(t) to ensure that all closed-loop signals are bounded and the plant
output y(t) tracks a given reference signal yr(t) under the following
assumptions.
Assumption 1: The sign of b is known, and yr(t) and its first nth

derivatives are known and bounded.
Assumption 2: The dead-zone parameters mr and ml satisfy

mr � mr0 andml � ml0, wheremr0 andml0 are two small positive
constants.

B. Dead-Zone Characteristic

The dead-zone characteristic DZ( � ) can be represented as [15]

u(t) = DZ(v(t)) =

mr(v(t)� br) v(t) � br

0 bl < v(t) < br

ml(v(t)� bl) v(t) � bl

(3)

where br � 0; bl � 0 and mr > 0;ml > 0 are constants. In general,
the break-points jbrj 6= jblj and the slopes mr 6= ml. The essence
of compensating dead-zone effect is to employ a dead-zone inverse as
shown in [5], [13], and [15]. In this note, we propose a smooth inverse
for the dead-zone as follows:

v(t) = DI(u(t)) =
u(t) +mrbr

mr
�r(u) +

u(t) +mlbl

ml
�l(u) (4)

where �r(u) and �l(u) are smooth continuous indicator functions de-
fined as

�r(u) =
eu=e

eu=e + e�u=e
�l(u) =

e�u=e

eu=e + e�u=e
(5)

where e0 > 0 is chosen by designer. Such an inverse is shown in Fig. 1.

Remark 1: Note that the use of smooth functions �r(u) and �l(u)
can avoid possibly chattering phenomenon in the recursive backstep-
ping control.
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Fig. 1. Dead-zone inverse.

To design adaptive controller for the system, we parameterize the
dead-zone as

u(t) = ��T! (6)

where � = [mr;mrbr;ml; mlbl]
T

!(t) = [��r(t)v(t); �r(t);��l(t)v(t); �l(t)]
T (7)

�r(t) =
1; if u(t) > 0

0; otherwise

�l(t) =
1; if u(t) < 0

0; otherwise:
(8)

As � is unknown and ! is unavailable, the actual control input to the
plant ud(t) is designed as

ud(t) = ��̂T !̂(t) (9)

where �̂ is an estimate of �, i.e.,

�̂ = [mr;mrbr;ml;mlbl]
T

!̂(t) = [��r(v)v(t);�r(v);��l(v)v(t); �l(v)]
T
: (10)

Then corresponding control output v(t) is given by

v(t) = DI(ud(t)) =
ud(t) +mrbr

mr

�r(ud)

+
ud(t) +mlbl

ml

�l(ud(t)): (11)

The resulting error between u and ud is

u(t)� ud(t) = (�̂ � �)T !̂(t) + dN(t) (12)

where dN(t) = �T (!̂(t)�!(t)). The bound of dN(t) can be obtained
as

jdN(t)j = j�T (!̂(t)� !(t))j

�

1

2
e�1jmr �mlje0 +

jm b �m b j

e +1
v(t) � br

maxfmr;mlgjbr � blj bl < v(t) < br
1

2
e�1jmr �mlje0 +

jm b �m b j

e +1
v(t) � bl

(13)

where we have used that jvje�jvj � e�1. Note that when bl � v � br
the bound of dN(t) decreases as e0 increases, while outside this range
the bound decreases as e0 decreases. It has the desired properties that
dN(t) is bounded for all t � 0 and dN(t) approaches to 0 as �̂ ! �

and e0 ! 0.

III. STATE OBSERVER

As we consider output feedback, a state observer is required. To de-
sign such an observer, we rewrite plant (1) as

_x = Ax + a
T
Y en + buen y = cx u = DZ(v) (14)

where

A =

0
... In�1

0 � � � 0

a =

�a1
...

�ar

Y =

Y1
...
Yr

c =

1
...
0

T

en =

0
...
1

:
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To construct an observer for (14), we choose k = [k1; . . . ; kn]
T

such that all eigenvalues of A0 = A � kc are at some desired stable
locations. If the signal u(t) were available then we would implement
the following filters:

x̂(t) = �0 �

r

i=1

ai�i + b� (15)

_� = A0� + enu _�0 = A0�0 + ky + �

_�i = A0�i + Yien; i = 1; . . . ; r (16)

where � is a design signal specified later. It can be shown that the state
estimation error � = x(t)� x̂(t) satisfies _� = A0� � �.

Note that the signal u(t) is not available. Thus the signal � in (16)
needs to be reparameterized. Let p denote (d)=(dt). With �(p) =
det(pI � A0), we express �(t) as

�(t) = [�1(t); �2(t); . . . ; �n(t)]
T

= [q1(p); q2(p); . . . ; qn(p)]
T 1

�(p)
u(t) (17)

for some known polynomials qi(p); i = 1; . . . ; n. Using (17) and
u(t) = ��T !̂(t) + dN(t), we obtain

�i(t) = ��T !̂i(t) + di(t) (18)

where

!̂i(t) =
qi(p)I4
�(p)

!̂(t) di(t) =
qi(p)

�(p)
dN(t) (19)

where I4 is a 4� 4 identity matrix. Based on (18), !̂i is available for
controller design in place of u. Denoting the second component of �i
as �i2; i = 0; . . . ; r, we have

x̂2 = �02 �

r

i=1

ai�i2 � b�T !̂2(t) + bd2(t) (20)

!̂2(t) =
(p+ k1)I4

pn + k1pn�1 + � � �+ kn�1p+ kn
!̂(t): (21)

IV. DESIGN OF ADAPTIVE CONTROLLERS

As usual in backstepping approach, the following change of coordi-
nates is made:

z1 = y � yr

zi = ��̂T !̂
(i�2)
2 � êy(i�1)r � �i�1; i = 2; 3; . . . ; n (22)

where ê is an estimate of e = 1=b and �i�1 is the virtual control at
the ith step and will be determined in later discussion. As in [11], we
define functions sgi(zi) and fi(zi) as follows:

sgi(zi) =

z

jz j
jzij � �i

z

(� �z ) +jz j
jzij < �i

fi(zi) =
1 jzij � �i
0 jzij < �i

(23)

where �i(i = 1; . . . ; n) is a positive design parameter and
q = roundf(n � i + 2)=2g, where roundfxg means the ele-

ment of x to the nearest integer. Clearly 2q + 1 � (n� i+ 2). It can
be shown that sgi(zi) is at least (n� i+ 1)th-order differentiable.

Even though the backstepping design procedures are similar to [11],
the first and the last steps of the design are quite different and elaborated
in details. The results of other steps, i.e., step i; i = 2; . . . ; n � 1 are
only presented without elaboration.

• Step 1) We start with the equation for the tracking error z1 ob-
tained from (14) and (20) to obtain

_z1 = �02 + aT �2 + bz2 + b�1 � b~�T !̂2(t)+ d(t)+ �2 � b~e _yr (24)

where d(t) = bd2(t); ~� = � � �̂. From (13) and (19), there
exists a positive constant D such that

jd(t)j � D:

Remark 2: The unknown boundD of d(t) will be estimated online
and thus it is not assumed to be known in contrast with [5], [13], and
[15]. In fact, bounded external disturbance can also be treated in the
same way, even though disturbance is not considered explicitly in this
note.

Now, select the first virtual control law �1 as

�1 = ê��1 (25)

��1 = � c1 +
b̂2

4
(jz1j � �1)

nsg1 � �02 � âT �2

� D̂1sg1 � (�2 + 1) b̂2 + �0 � sg1

where �0 is a small positive real number, ê; â and b̂ are estimates of
e; a, and b; D̂1 is an estimate of D

_z1 = � c1 +
b̂2

4
(jz1j � �1)

nsg1(z1)

+ ~aT �2 + bz2 � b(��1 + _yr)~e� b~�T !̂2(t)

+ d(t)� D̂1sg1 + �2 � (�2 + 1) b̂2 + �0 � sg1: (26)

We define a positive–definite function V1 as

V1 =
1

n+ 1
(jz1j � �1)

n+1f1 +
1

2
jbj~�T��1

�
~�

+
1

2
~aT��1a ~a+

jbj

2
1
~e2 +

1

2
d1
~D2
1 +

1

2l1
�TP� (27)

where ~a = a � â; ~e = e � ê;��;�a are positive definite matrices,

1; 
d1 are positive constants, and P = P T > 0 satisfies the equation
PA0 +AT

0 P = �2I . Let �i = eTi �; i = 1; . . . ; 4; ei is identity 4� 1
vector. We select the adaptive update laws as

_̂
�i = eTi ��; i = 2; 4

_̂
�i = Proj eTi �� ; i = 1; 3 (28)

�� = �sign(b)��!̂2(t)(jz1j � �1)
nf1sg1

_̂e = �sign(b)
1(��1 + _yr)(jz1j � �1)
nf1sg1 (29)

_̂
D1 = 
d1(jz1j � �1)

nf1 (30)

whereProj( � ) is a smooth projection operation to ensure the estimates
m̂r(t) � mr0 and m̂l(t) � ml0. Such an operation can be found
in [14].
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Then from (26)–(29) and using _� = A0� � � and the property
�~�T��1� Proj(��) � �~�T��1� �� , we obtain the time derivative of
V1 as

_V1 = (jz1j � �1)
n
f1sg1 _z1 � jbj~�T��1�

_̂
� � ~aT��1a

_̂a

�
jbj


1
~e _̂e�

1


d1
~D1

_̂
D1 +

1

l1
�
T
P _�

� � c1 +
b̂2

4
(jz1j � �1)

2n
f1 + jbj~�T

� sign(b)!̂2(jz1j � �1)
n
f1sg1 � ��1�

_̂
�

+ ~aT �2(jz1j � �1)
n
f1sg1 � ��1a

_̂a

� jbj~e sign(b)(��1 + _yr)(jz1j � �1)
n
f1sg1 +

1


1
_̂e

+ ~D1(jz1j � �1)
n
f1 �

1


d1
~D1

_̂
D1

+ �
T

e2(jz1j � �1)
n
f1sg1 �

1

l1
P� �

1

l1
�
T
�

+ (jz1j � �1)
n
f1sg1 bz2 � (�2 + 1) b̂2 + �0sg1

� � c1 +
b̂2

4
(jz1j � �1)

2n
f1 + ~aT (�a1 � ��1a

_̂a)

+ �
T

��1 �
1

l1
P� �

1

l1
�
T
�

+ (jz1j � �1)
n
f1sg1 bz2 � (�2 + 1) b̂2 + �0sg1 (31)

�a1 = �2(jz1j � �1)
n
f1sg1 ��1 = e2(jz1j � �1)

n
f1sg1 (32)

where e2 = [0; 1; 0; . . . ; 0]T .

• Step i; i = 2; . . . ; n) As detailed in [11], we choose

�i = �(ci + 1)(jzij � �i)
n�i+1

sg2 � �i � (�i+1 + 1)sgi

+
@�i�1

@y
â
T
�2 �

@�i�1

@y
�̂T

!̂2(t)

+ k
@�i�1

@y
k2 + �0 � D̂isgi +

@�i�1

@â
�a�ai

+
@�i�1

@�0
l1P

�1
��i +

@�i�1

@�̂
����i

+

i�1

k=2

(jzkj � �k)
n�k+1

fksgk �
@�k�1

@â

@�i�1

@y
�2

�
@�k�1

@�0

@�i�1

@y
l1P

�1
e2

�

i�1

k=3

(jzkj � �k)
n�k+1

fksgk
@�k�1

@�̂

@�i�1

@y
!̂2 (33)

_̂
b = 
2(jz1j � �1)

n
f1sg1z2

_̂
Di = 
di k

@�i�1

@y
k2 + �0 � (jzij � �i)

n�i+1
fi (34)

�ai = �ai�1 �
@�i�1

@y
�2(jzij � �i)

n�i+1
fisgi (35)

��i = ��i�1 �
@�i�1

@y
(jzij � �i)

n�i+1
fisgie2 (36)

��i = ��i�1 �
@�i�1

@y
(jzij � �i)

n�i+1
fisgi!̂2 (37)

Vi =

i

k=1

1

n� k + 2
(jzkj � �k)

n�k+2
fk

+
1

2
dk
~D2
k +

1

2
jbj~�T��1�

~�

+
1

2
~aT�a~a+

jbj

2
1
~e2 +

1

2
~�T��1�

~�

+
1

2
2
~b2 +

1

2l1
�
T
P� (38)

where �̂; D̂k are estimates of � = b� andD; ~� = �� �̂;~b =
b� b̂; ~Dk = D� D̂k; �i contains all known terms, 
2; 
di; i =
1; . . . ; n are positive constants, �� is a positive–definite matrix.

• Step n) Using (11) and (21), we have

�̂
T
!̂
(n�1)
2 = �̂

T (pn + k1p
n�1)I4

pn + k1pn�1 + � � �+ kn�1p+ kn
!̂(t)

= �ud(t) + !0 (39)

where !0 is given by

!0 = �
k2p

n�2 + � � �+ kn�1p+ kn I4

pn + k1pn�1 + � � �+ kn�1p+ kn
!̂(t): (40)

With this equation, the derivative of zn = ��̂T !̂
(n�2)
2 � êy

(n�1)
r �

�n�1 is

_zn = ud + �n �
@�n�1

@y
a
T
�2 +

@�n�1

@y
�T

!̂2(t)

�
@�n�1

@â
_̂a�

n�1

j=1

@�n�1

@D̂j

_̂
Dj

�
@�n�1

@�̂

_̂
��

@�n�1

@�0
��

@�n�1

@y
d(t)�

@�n�1

@y
�2 (41)

where �n contains all known terms. Define a positive–definite Lya-
punov function Vn as

Vn = Vn�1 +
1

2
(jznj � �n)

2
fn +

1

2
dn
~D2
n: (42)

We choose the update laws for â; �̂; D̂n

_̂a = �a�an;
_̂
� = �����n

_̂
Dn = 
dn k

@�n�1

@y
k2 + �0 � (jznj � �n)fn (43)

and the design signal � as

� = l1P
�1

��n: (44)

Finally, the control law is given by

v(t) =
ud(t) +mrbr

mr

�r(ud) +
ud(t) +mlbl

ml

�l(ud) ud = �n

(45)
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With this choice and similar steps in Step 1) for _V1, the derivative of
Vn becomes

_Vn � �

n

i=1

ci(jzij � �i)
2(n�i+1)fi �

1

l1
�T �: (46)

From (46), we get the following Lemma.
Lemma 1: The adaptive controller designed above ensures that

z1; . . . ; zn; �̂; ê; b̂; â; �̂; D̂i; � are all bounded.
With Lemma 1, all the signals in the closed-loop can be shown to be

bounded and a bound can be established for the tracking error, as stated
in the following theorem.
Theorem 1: Consider the system consisting of the parameter es-

timators given by (28), (29), and (43), adaptive controllers designed
using (45) with virtual control laws (25) and (33), and plant (1) with a
dead-zone nonlinearity (3). The system is stable in the sense that all sig-
nals in the closed-loop are bounded. Furthermore, the following hold.

• The tracking error approaches �1 asymptotically, i.e.,

lim
t!1

jy(t)� yr(t)jf1 = �1: (47)

• The transient tracking error performance is given by

k jy(t)� yr(t)j � �1k2

�
1

c2n1

1

2
~a(0)T��1a ~a(0) +

jbj

2��

~�(0)2 +
1

2��
~�(0)2

+
jbj

2
1
~e(0)2 +

n

i=1

1

2
di
~Di(0)

2 +
1

2
2
~b(0)2 +

1

2l1
�(0)2

1=2n

(48)

with zi(0) = 0; i = 1; . . . ; n.
Proof: From Lemma 1, we have that z1; . . . ; zn; �̂; ê; b̂;

â; �̂; D̂i; � are bounded. The tracking error performance can be ob-
tained from (46) following similar approaches to those in [11]. What
we need to prove is the boundedness of state x, controller output v
and plant input u.

From state observers �i in (16), we have that �0; . . . ; �r are bounded.
Rewriting plant (1) as

pny +

r

i=1

aiYi(y; py; . . . ; p
n�1y) = bu (49)

and using (17), we have

�2 =
q2(p)

�(p)
u =

pnq2(p)

b�(p)
y +

q2(p)

b�(p)

r

i=1

aiYi(y): (50)

Since �(p) = pn + k1p
n�1 + � � � + kn is Hurwitz, so

(q2(p))=(b�(p)) is stable. We have that �2 is bounded because
y is bounded. From (18), we have

�2 = ��T !̂2(t) + d2(t) (51)

As d2(t) 2 L1, then �T !̂2 2 L1.
Express (21) as

!̂2(t) = �
q2(p)

�(p)
�r(v)v(t);

q2(p)

�(p)
�r(v)(t);

�
q2(p)

�(p)
�l(v)v(t);

q2(p)

�(p)
�l(v)(t)

T

(52)

�T !̂2(t) = �mr
q2(p)

�(p)
�r(v)v(t) +mrbr

q2(p)

�(p)
�r(v)(t)

�ml
q2(p)

�(p)
�l(v)v(t) +mlbl

q2(p)

�(p)
�l(v)(t): (53)

Because �r(v) 2 L1; �l(v) 2 L1 and (q2(p))=(�(p)) is stable,
the terms (q2(p))=(�(p))�r(v) and (q2(p))=(�(p))�l(v) in (52) are
bounded.

We now show that !̂2 is bounded in two cases.

Case 1) If v(t) is bounded, !̂2 is bounded directly from (52).
Case 2) In case that v(t) is unbounded, we divide R+ = [0;1)

into two subsequences R+ = R1 [ R2, where R1 =
ftjv(t) � 0g and R2 = ftjv(t) < 0g. Then, the fol-
lowing two situations are considered.
i) t 2 R1. From (5) we get

�l(v) � v =
e�v=e

ev=e + e�v=e
� v =

v

1 + e2v=e

Thus �l(v) � v ! 0; when v ! +1 for t 2 R1: (54)

So, in (53), the third term ml(q2(p))=
(�(p))�l(v)v(t) ! 0, with the boundedness of
second term and fourth term and �T !̂2 2 L1, we
see that the first term mr(q2(p))=(�(p))�r(v)v is
bounded for t 2 R1.

ii) t 2 R2. Similarly, from (5), we can show that

�r(v) � v ! 0; when v ! �1 for t 2 R2: (55)

and the third term ml(q2(p))=(�(p))�l(v)v is
bounded for t 2 R2.

Combining i) and ii), we get that for all t 2 R+; (q2(p))=
(�(p))�r(v)v and (q2(p))=(�(p))�l(v)v are bounded. Then !̂2 is
bounded from (52).

In summary, from the two cases we obtain the boundedness of !̂2.
Since �̂T !̂2 and z2 are bounded, from z2 = ��̂T !̂2� ê _yr ��1 we

can obtain the boundedness of �1. From (25), we have ��1 is bounded.
From (33), �2; . . . ; �n are bounded, and so is �. From (45) we have
that ud(t) is bounded, and so are v = D̂I(ud) and u = DI(v). It
following from (19) that !̂i 2 L1; i = 1; . . . ; n. From (16), we have
that � is bounded. Then x̂ is bounded from (15) and finally x(t) =
x̂(t) + �(t) is bounded from (15)–(16). 444
Remarks 3: From (47) and (48), we can discuss how the initial esti-

mate errors and the choices of the adaptation gains affect the transient
performance in terms of L2 norm of the tracking error.

• The closer the initial estimates to the true values, the better the
transient performance.

• We can decrease the effects of the initial error estimates on
the transient performance by increasing the adaptation gains

1; 
di; 
2 and �a;��;��. However, increasing these gains
may influence other performance such as _x, following similar
discussion in [11].

V. SIMULATION STUDIES

In this section, we illustrate the previous methodology on the fol-
lowing two examples.
Example 1: We consider the same system as in [8] and [9], which

is described as

_x = a
1� e�x(t)

1 + e�x(t)
+ bu(t) (56)

u = DZ(v)

where u represents the output of the dead-zone nonlinearity. The ac-
tual parameter values are b = 1 and a = 1, and the dead-zone pa-
rameter values are mr = 1:05;ml = 1:05; br = 0:3; bl = �0:5.
The objective is to control the system state x to follow a desired trajec-
tory yr(t) = 8:5 sin(2:5 t). In the simulations, taking c1 = 4;�a =
0:1; 
1 = 0:3; 
2 = 0:2;�� = [0:1; 0:1; 0:1; 0:1]T ; e0 = 1; �1 =
0:02 and the initial parameters ê(0) = 0:3; â(0) = 1:5; D̂(0) =
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Fig. 2. Tracking error.

Fig. 3. Control signal v(t).

0:4; �̂(0) = [1; 1; 0:2;�0:3]T . The initial state is chosen as x(0) =
�0:5. The parameters and the initial states are the same as in [9]. For
comparison, the scheme in [9] and our proposed scheme are both ap-
plied to the system. The simulation results presented in the Figs. 2 and 3

are the tracking error and the controller output v(t). Clearly, the simu-
lation results verify our theoretical findings and show the effectiveness
of our control scheme. Also system performance is improved by our
scheme.
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Fig. 4. Tracking error.

Fig. 5. Control signal v(t).

Example 2: Consider the following system:

�x = ax
2 + u u = DZ(v) (57)

where u represents the output of the dead-zone nonlinearity, parameter
a is unknown and dead-zone parameters mr; br;ml; bl are unknown,
but mr � 0:1;ml � 0:1. The actual parameter values are chosen
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as a = 1,mr = 1; ml = 1; br = 0:5; bl = �0:5. The objective
is to control the system state x to follow a desired trajectory yr(t) =
4 sin(2t). First, we choose the dead-zone inverse v(t) = D̂I(ud(t)) as
in (11) and the filters

_�0 = A0�0 + ky + � _�1 = A0�1 + Y1e2

_� = A0� + e2u

(58)

!̂2 =
p+ k1

p2 + k1p+ k2
I4[!̂] (59)

where Y1 = x
2

k = [k1; k2]
T = [1; 3]T

A0 =
�k1 1

�12 0
=

�1 1

�3 0
: (60)

Then we apply our control design to the plant. In the sim-
ulations, taking c1 = c2 = 2;�a = 0:1; 
2 = 0:2;�� =
[0:1; 0:1; 0:1; 0:1]T ; e0 = 1; �1 = 0:02 and the initial parameters
â(0) = 1:5; D̂(0) = 0:4; �̂(0) = [1; 1; 0:4;�0:4]T . The initial state
is chosen as x(0) = 0:4. The tracking error and the controller output
v(t) are shown in Figs. 4 and 5. Clearly, the simulation results verify
our theoretical findings and show the effectiveness of our control
scheme.

VI. CONCLUSION

This note presents an output feedback backstepping adap-
tive controller design scheme for a class of uncertain nonlinear
single-input–single-output system preceded by uncertain dead-zone
actuator nonlinearity. We propose a new smooth adaptive inverse to
compensate the effect of the unknown dead-zone. Such an inverse can
avoid possible chattering phenomenon which may be caused by non-
smooth inverse. The inverse function is employed in the backstepping
controller design. For the design and implementation of the controller,
no knowledge is assumed on the unknown system parameters. Besides
showing stability, we also give an explicit bound on the L2 perfor-
mance of the tracking error in terms of design parameters. Simulation
results illustrates the effectiveness of our schemes.
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Control for Networked Systems With Random
Communication Delays

Fuwen Yang, Zidong Wang, Y. S. Hung, and Mahbub Gani

Abstract—This note is concerned with a new controller design problem
for networked systems with random communication delays. Two kinds of
random delays are simultaneously considered: i) from the controller to the
plant, and ii) from the sensor to the controller, via a limited bandwidth
communication channel. The random delays are modeled as a linear func-
tion of the stochastic variable satisfying Bernoulli random binary distri-
bution. The observer-based controller is designed to exponentially stabilize
the networked system in the sense of mean square, and also achieve the pre-
scribed disturbance attenuation level. The addressed controller design
problem is transformed to an auxiliary convex optimization problem,which
can be solved by a linear matrix inequality (LMI) approach. An illustrative
example is provided to show the applicability of the proposed method.

Index Terms— control, linearmatrix inequalities (LMIs), networked
systems, random communication delays, stochastic stability.

I. INTRODUCTION

Recent advances in network technology have led to more and more
control systems whose feedback control loop is based on a network.
This kind of control systems are called networked control systems
(NCSs) [7], [10], [23]. The network itself is a dynamic system and
induces possible delays via network communication due to limited
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