
2350 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000

REFERENCES

[1] H. Al-Rahmani and G. F. Franklin, “A new optimal multirate control
of linear periodic and time-invariant systems,”IEEE Trans. Automat.
Contr., vol. 35, pp. 406–415, Apr. 1990.

[2] M. Araki and K. Yamamoto, “Multivariable multirate sampled-data sys-
tems: State-space description, transfer characteristics, and Nyqist crite-
rion,” IEEE Trans. Automat. Contr., vol. 31, pp. 145–154, Feb. 1986.
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Adaptive Backstepping Control Design for Systems with
Unknown High-Frequency Gain

Ying Zhang, Changyun Wen, and Yeng Chai Soh

Abstract—In this correspondence, Nussbaum gains are introduced in
the backstepping design to obtain adaptive controllers for systems with
unknown high-frequency gain. Two kinds of modified backstepping con-
trol design schemes are developed. It is shown that both schemes can give
asymptotic tracking.

Index Terms—Adaptive control, backstepping, high-frequency gain,
Nussbaum gain.

I. INTRODUCTION

High-frequency gain plays an important role in the adaptive control
design. It has been a common concern on how we can design an adap-
tive controller without the knowledge of the sign of the system high-fre-
quency gain [1], [2]. So far, some methods have been suggested to solve
this problem [4]–[7]. One potential way is to use Nussbaum gains that
usually take the forms of� cos(�) or�2 cos(�). This idea was first in-
troduced in [3] to design an adaptive controller for first-order systems.
Lately, in [4], it was extended to treat high-order systems with rela-
tive degrees less than two. The difficulty involved in using Nussbaum
gains is the need to set up a subsystem to properly relate the variable�

to some other signals of the system so that it is feasible to establish the
boundedness of� and finally the stability of the whole adaptive system.
This difficulty is increased further for high-order systems with relative
degree larger than two. In [5], this problem was solved, but a compli-
cated higher order subsystem was used to construct the Nussbaum gain.
It is worth mentioning that all of these results were obtained for model
reference adaptive controllers that are still based on the “certain equiv-
alence” principle.

An alternative adaptive control design scheme is the backstepping
technique proposed recently in [8]. This technique allows one to design
adaptive controllers for a class of minimum phase linear systems with
arbitrary relative degree. Because the adaptive law and the synthesis of
the control law are carried out at the same time in the design proce-
dure, the backstepping design technique provides a promising way to
improve the transient performance of the adaptive systems. The sign of
the high-frequency gain, however, has to be used in the control design
of [8]. Because the structure of backstepping controller is totally dif-
ferent from that in [5], the Nussbaum gain design scheme of [5] cannot
be applied to the backstepping design. Thus, it is of interest to devise
a method to remove the requirement on the sign of the high-frequency
gain in the backstepping design. Also, it is desired that the subsystem
introduced for this purpose should be of low order and have a simple
form whenever possible, for the sake of better transient performance.

This correspondence presents two modified backstepping design
schemes by using Nussbaum gains to relax the requirement on the sign
of high-frequency gain. In the first scheme, an auxiliary signal is added
to the system output tracking error to carry out the first step of the
backstepping design. As a result, a second-order auxiliary subsystem
has to be employed to construct the Nussbaum gain. This, though
slightly, increases the order of the controller. In the second scheme,
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only the output tracking error is used in the first step as in [8], but the
regressor used for parameter estimation is properly augmented, and
thus the order of the auxiliary subsystem is reduced to one. It is shown
that the controllers designed by the two proposed schemes can achieve
asymptotic tracking for minimum phase linear systems with unknown
high-frequency gain and arbitrary relative degrees. Compared with the
results in [3]–[5], the controllers proposed in this paper employ lower
order subsystems to construct the Nussbaum gain. Particularly in the
second scheme, the system order reaches its minimum level.

II. PROBLEM FORMULATION

Consider linear systems described by

y =
B(s)

A(s)
u =

bms
m + � � �+ b1s+ b0

sn + an�1sn�1 + � � �+ a1s+ a0
u (1)

whereai andbj (i = 1; 2; � � � ; n; j = 1; 2; � � � ; m) are unknown
constants.

The control objective is to force the system output to track a given
reference signalyr(t). To this end, the following assumptions are made
about the systems.

A.2) The system is minimum phase, i.e., all zeros of the polynomial
bms

m + � � � + b1s + b0, are stable.
A.3) The relative degree� = n �m is known.
A.4) yr; _yr; � � � ; y

(�)
r are known bounded and piecewise contin-

uous functions of time.

Remark 2.1: It is noted that the sign of the high-frequency gain, i.e.,
sgn(bm), is not assumeda priori for the controller design as required
in [8].

III. B ACKSTEPPINGDESIGN WITH A NUSSBAUM GAIN AND AN

AUXILIARY SIGNAL

The desired adaptive controller can be obtained by performing the
backstepping procedures [8] on the following system:

_y = �2 + !
T
� + �2 = bmvm; 2 + �2 + !

T
� + �2 (2)

_vm; i = vm; i+1 � k2vm; 1; i = 2; 3; � � � ; �� 1 (3)

_vm;� = vm; �+1 � k�vm; 1 + u (4)

where

� = [bm; � � � ; b0; an�1; � � � ; a0]
T (5)

! = vm; 2; vm�1; 2; � � � ; v0; 2; �(2) � ye
T
1

T

(6)

! = 0; vm�1; 2; � � � ; v0; 2; �(2) � ye
T
1

T

(7)

with vi; 2(i = m� 1; � � � ; 0), �(2), �2, and�2 denoting, respectively,
the second element of statesvi(i = m�1; � � � ; 0),�, �, and�, which
are defined by

vi =A
i
0�; i = 0; � � � ; m (8)

� = � A
n�1
0 �; � � � ; A0�; � (9)

� = �A
n
0 � (10)

_� =A0� (11)

_� =A0� + eny (12)
_� =A0� + enu (13)

� = [�1; �2; � � � ; �n]
T (14)

k
�
=[k1; k2; � � � ; kn]

T (15)

e1 = [1; 0; � � � ; 0]T 2 R
n�1 (16)

en = [0; � � � ; 0; 1]T 2 R
n�1 (17)

A0 =

�k1 1 0 � � � 0

�k2 0 1 � � � 0
...

...
...

. . .
...

�kn�1 0 0 � � � 1

�kn 0 0 � � � 0

: (18)

The vectork in (15) is chosen such that the matrixA0 is strictly stable;
i.e., all of the eigenvalues ofA0 have negative real parts.

In order to avoid using the sign of the high-frequency gain, we define

z1 = y � yr (19)

zi = vm; i � y
(i�1)
r � �i�1; i = 2; 3; � � � ; � (20)

where�i�1 is the virtual control at theith step and will be determined
in later discussions. In comparison with the coordinate transformation
used in [8], the estimate ofb�1m is no longer used here. To illustrate the
backstepping procedures, the first two steps of the design are given in
details as follows.

Step 1: For i = 2, it follows from (2), (19), and (20) that

_z1 = bmvm; 2 + !
T
� + �2 + �2 � _yr

= bm(z2 + �1 + _yr) + !
T
� + �2 + �2 � _yr

= � c1z1 + bm z2 + �1 +
bm � 1

bm
_yr + !

T 1

bm
�

+
1

bm
(c1z1 + �2) + �2: (21)

Define

!1 = !
T
; c1z1 � _yr + �2

T

(22)

�1 =
�T

bm
;

1

bm

T

: (23)

Then, (21) can be expressed as

_z1 = �c1z1 + bm z2 + �1 + !
T
1 �1 + _yr + �2: (24)

To obtain the virtual adaptive control laws for this step without using
the sign ofbm, we now introduce an auxiliary signal given by

z1 = z1 + � (25)

where

_� = � c1� � �
2
z1 (26)

� = 1
2
z
2
1 +  (27)

_ = c1 + �
2

z
2
1: (28)

Then, we take the following virtual control law�1 and adaptive law
�̂1 for estimating�1:

�1 = � !
T
1 �̂1 � _yr (29)

_̂
�1 = �N(�)�1!1z1 (30)

where�1 is a positive matrix ofR(n+2)�(n+2) and a Nussbaum gain
N(�) is chosen as

N(�) = � cos(�): (31)

With (24)–(29), it follows that

_z1 = � c1z1 + bm z2 + !
T
1
~�1 + �2 � c1� � �

2
z1

= � c1 + �
2

z1 + bm z2 + !
T
1
~�1 + �2 (32)

where~�1
�
= � �̂1 + �1.

Remark 3.1: Equation (32) actually gives the dynamics of the aux-
iliary signalz1. It is clear that if� is bounded andz approaches zero
ast!1, z1 also approaches zero. Thus,z1 can be used as an auxil-
iary signal reflecting the tracking error. In contrast with [8],z1 instead
of z1 is used as the first variable of coordinate transformation in the
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following backstepping design. As shown in later analysis, the bound-
edness of� and all other signals in the system can be readily obtained
after introducingz1.

To proceed, we define the Lyapunov function

V1 = ~�T1 �
�1
1

~�1 +
1

4d1
�TP� (33)

whereP is a positive matrix such thatPAT

0 +AT

0 P = �I andd1 is a
real positive number to be determined later. Then, the derivative ofV1
along with the (29), (30), and (32) is given by

_V1 = 2~�T1 �
�1
1

_~�1 �
1

4d1
�T � = 2N(�)~�T1 !1z1 �

1

4d1
�T �: (34)

Replacing~�T1 !1 in (34) by using (32) gives

_V1 =
2N(�)

bm
z1 _z1 + c1 + �2 z1 � bmz2 � �2

�

1

4d1
�22 �

1

4d1

n

i=1; i6=2

�2i : (35)

From (27) and (28), we have

z1 _z1 = _�� _ (36)

_� = z1 _z1 + c1 + �2 z21: (37)

Thus

_V1 =
2N(�)

bm
_�� 2N(�)z1z2 �

2N(�)

bm
z1�2

�

1

4d1
�22 �

1

4d1

n

i=1; i6=2

�2i

�
2N(�)

bm
_�� 2N(�)z1z2 +

2N(�)

bm
z1�2 �

1

4d1
�22

�
2N(�)

bm
_�+

jN(�)j2 jz1j
2

jbmj
�

1

jbmj
(jN(�)kz1j � j�2j)

2

� 2N(�)z1z2 �
1

4d1
�

1

jbmj
�22: (38)

Noting from (31) and (27), we have

jN(�)z1j
2 � �2z21 � _ = c1z

2
1 + �2z21:

Then, it follows that

_V1 �
2N(�)

bm
_�+

_

jbmj
� 2N(�)z1z2 (39)

if d1 � jbmj=4.
Remark 3.2: Note that constantd1 is used here only for analysis

purpose. It is no longer a control design parameter as used in [8]. Thus,
such a constant satisfyingd1 � jbmj=4 always exists once the plant
is given even if it is unknown. It should be mentioned that constants
di (i = 2; 3; � � � ; �), which appear later, are still control design pa-
rameters as in [8].

Step 2: Now, we evaluate the dynamic of the second statez2. Dif-
ferentiating both sides of (20) fori = 2 and using (3), we have

_z2 = vm; 3 � k2vm; 1 � �yr � _�1: (40)

Noting that�1 is a function of�̂1, y, �, vi; 2, andyr , it follows from
the same analysis as in [8] that

_z2 = vm; 3 � k2vm; 1 � �yr �
@�1
@�

(A0� + eny)

�
@�1
@y

�2 + !T � + �2 �
@�1
@yr

_yr

�

m+1

j=1

@�1
@�j

(�kj�1 + �j+1) +
@�1

@�̂1

_̂
�1 (41)

= vm; 3 � �2 � �yr �
@�1
@y

!T � + �2 (42)

where

~�
�
=� � �̂ (43)

�2
�
=k2vm; 1 +

@�1
@y

�2 +
@�1
@�

(A0� + eny) +
@�1
@yr

_yr

+

m+1

j=1

@�1
@�j

(�kj�1 + �j+1) +
@�1

@�̂1

_̂
�1: (44)

Substituting (20) withi = 3 into (42), we get

_z2 =�2 � �2 �
@�1
@y

�2 + !T � + z3

=�2 � �2 �
@�1
@y

�2 + !T ~� + z3 �
@�1
@y

!T �̂: (45)

Define the Lyapunov function for this step as

V2 = V1 +
1

2
z22 +

1

4d2
�TP�+

1

2
~�T��1~�: (46)

Using (30) and (45), it follows that

_V2 = _V1 + z2 _z2 �
1

4d2
�T �+ ~�T��1

_~�

�
2N(�)

bm
_�+

_

jbmj
� 2N(�)z1z2 � ~�T��1

_̂
�

+ z2 �2 � �2 �
@�1
@y

!T ~� + �2 + z3 �
@�1
@y

!T �̂

�
1

4d2
�T �

�
2N(�)

bm
_�+

_

jbmj
+ z2z3 + ~�T �

@�1
@y

!z2 � ��1
_̂
�

+ z2 �2 � �2 � 2N(�)z1 + d2
@�1
@y

2

z2 �
@�1
@y

!T �̂

� d2
@�1
@y

z2 +
1

2d2
�2

2

: (47)

We take the virtual control for this step as

�2 = �c2z2 + �2 + 2N(�)z1 � d2
@�1
@y

2

z2 +
@�1
@y

!T �̂: (48)

Then

_V2 � �c2z
2
2 +

2N(�)

bm
_�+

_

jbmj
+ ~�T��1 �2 �

_̂
� (49)

where

�2 = ��
@�1
@y

!z2: (50)

Step i(i = 3; � � � ; �): These steps are similar to those in [8], which
include definingVi = Vi�1 + (1=2)z2i + (1=4di)�

TP�, taking

�i = � cizi � di
@�i�1
@y

2

zi � zi�1 + �i +
@�i�1
@y

!T �̂

+
@�i�1

@�̂
��i �

i�1

k=3

zk
@�k�1

@�̂
�
@�i�1
@y

!

and choosing

�i = �i�1 � �
@�i�1
@y

wzi:

Finally, the actual adaptive controller is given by

u(t) =�� (51)
_̂
� = ��: (52)
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The final Lyapunov functionV� satisfies

_V� � �

�

k=2

ckz
2

k +
2N(�)

bm
_�+

_

jbmj
: (53)

We now prove the boundedness of�. To do this, we consider the
integration of both sides of (53) over an interval[0; t],

t

0

_V� d� � �
t

0

�

k=2

ckz
2

k d� +
2

bm

t

0

N(�) _�d�

+
t

0

_

jbmj
d�: (54)

Rearranging (54) and using the fact� >  [see (27)], we have

0 � V�(t) +
t

0

�

k=2

ckz
2

k d� � f(�(t))� f(0) + V�(0) (55)

where

f(�(t)) =
2

bm
(cos(�(t)) + � sin(�(t)))+

1

jbmj
�(t) (56)

f(0) =
2

bm
(cos(�(0))+ � sin(�(0)))+

1

jbmj
(0): (57)

To come up with the conclusion, the following property of the func-
tion f(�) is useful.

Lemma 1: If � is unbounded, then for any constantC, an interval
[��; �+] always exists such that

f(�) + C < 0; 8� 2 ��; �+ : (58)

Proof: Notice from the definition off(�(t)) that

lim
�!1

f(�(t))� 2�(t) sin(�(t))=bm � �(t)=jbmj

�(t)
= 0:

(59)

If �(t) is unbounded, then8 " 2 [0; (1=2jbmj)� (1=B)], whereB
is a sufficiently large number,X1 > BjCj exists such that

jf(�(t))� 2�(t) sin(�(t))=bm� �(t)=jbmk

< "�(t); 8� > �1 > 0: (60)

To show (58), we consider two cases.
Case 1—bm > 0: Because an interval[��; �+] always exists such

that�� > �1 and�1�2 sin(�(t)) � (1=2) for all �(t) 2 [��; �+],
we have

1

B
+ � bm �

1

2
� �1� 2 sin(�(t)): (61)

Rearranging (61) yields

"+
1

bm
+

2

bm
sin(�(t)) � �

1

B
: (62)

Thus, it follows from (60) that

f(�(t))< "+
1

bm
+

2

bm
sin(�(t)) �(t)

� �
1

B
�(t)

� � jCj (63)

which confirms (58) becausef(�) + C � f(�) + jCj.
Case 2—bm < 0: In this case, we can always find an interval

[��; �+] such that�� > �1 and�1 + 2 sin(�(t)) � (1=2) for all
�(t) 2 [��; �+]. Following the same analysis as inCase 1, it can be
shown that (59) also holds forbm < 0. Therefore, the conclusion of
the Lemma 1 is valid.

TakingC = �f(0) + V�(0) and using the result of Lemma 1, it is
shown that�(t) is bounded. Otherwise, it would result in a contradic-
tion to (55) because its left side is always positive for all�. With the

TABLE I
ADAPTIVE BACKSTEPPINGCONTROLLER WITH NUSSBAUM GAIN

boundedness of�(t), it is straightforward to show from (55), (27), and
(28) thatzi (i = 2; � � � ; �), �̂, , andz1 are bounded. From (32),_z1
is bounded. Also, it follows from (28) that

t

0

c1z
2

1 d� �
t

0

_ d� = (t)� (0)

which impliesz1 2 L2. Therefore, it follows from Barb̌alat lemma
thatz1 ! 0 ast!1. Using (26) and (25), it follows thatz1 ! 0 as
t ! 1. Finally, the stability of the whole system taking into account
the zero dynamics can be established as in [8] because the system is
minimum phase and thus the zero dynamics is stable.

So far, we have obtained one backstepping design scheme with the
Nussbaum gain chosen as (31). This scheme is now concisely presented
in Table I. To conclude this section, the stability results presented above
are summarized in the following theorem.

Theorem 1: Consider a minimum phase, linear, time-invariant
system with known relative degree�. The adaptive controller presented
in Table I can make the output of the system asymptotically track an
arbitrary signal with bounded derivatives of up to order�, while all of
the signals in the closed-loop system are bounded.

IV. BACKSTEPPINGDESIGNWITHOUT AUXILIARY SIGNAL

It is noted from Table I that an augmented errorz1 is used to
construct a Nussbaum gain. Thus, a second-order auxiliary subsystem
given by (T1.2) and (T1.5) has to be employed. This section presents
an alternative way to construct the Nussbaum gain so that the order of
the auxiliary subsystem reduces to one.

As in (31) and (28), we construct the following Nussbaum gain in
the first step of the backstepping design:

N(�) =� cos(�) (64)

� = 1

2
z21 +  (65)

_ =(c1 + �2)z21 (66)

where the tracking errorz1 is directly used, instead of using the aug-
mented errorz1.

Introduce a new regressor!2 as

!2 = !T ; c1z1 � �2z1 � _yr + �2
T

: (67)
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TABLE II
ADAPTIVE BACKSTEPPINGCONTROLLERWITHOUT AUGMENTED ERROR

Then, (21) can be rewritten as

_z1 = �(c1 + �2)z1 + bm z2 + !T2 ~�1 + �2: (68)

For this subsystem, we take the virtual control law�1 and the up-
dating law for�̂1 as follows:

�1 = � !T2 �̂1 � _yr (69)
_̂
�1 =N(�)�1!2z1: (70)

Remark 4.1: Here, the tracking errorz1 is still used in the back-
stepping design as in [8], but a term�2z1 is added in the regressor!2
instead of the regressor!1 used in the first scheme. By this way, only a
first-order subsystem (66) is involved in the construction of the Nuss-
baum gain. Thus, the order of the controller is reduced by one.

We define a Lyapunov function as in (33)

V1 = ~�T1 ��11 ~�1 +
1

4d1
�TP�: (71)

The derivative ofV1 along with (68)–(70) is given by

_V1 = 2~�T1 ��11
_~�1 �

1

4d1
�T � = 2N(�)~�T1 w2z1 �

1

4d1
�T �: (72)

Using (68), we have

!T2 ~�1 =
_z1 + (c1 + �2)z1 � bmz2 � �2

bm
: (73)

Substituting the above equation into (72) gives

_V1 =
2N(�)

bm
z1 _z1 + (c1 + �2)z1 � bmz2 � �2

�

1

4d1
�22 �

1

4d1

n

i=1; i6=2

�2i : (74)

On the other hand, it follows from (65) and (66) that

_� = z1 _z1 + (c1 + �2)z21 : (75)

Thus

_V1 =
2N(�)

bm
_�� 2N(�)z1z2 �

2N(�)

bm
z1�2

�

1

4d1
�22 �

1

4d1

n

i=1; i6=2

�2i

�
2N(�)

bm
_�� 2N(�)z1z2 +

2N(�)

bm
z1�2 �

1

4d1
�22

�
2N(�)

bm
_�+

jN(�)j2jz1j
2

jbmj
�

1

jbmj
(jN(�)kz1j � j�2j)

2

� 2N(�)z1z2 �
1

4d1
�

1

jbmj
�22: (76)

BecausejN(�)z1j
2 � �2z21 � _, we have

_V1 �
2N(�)

bm
_�+

_

jbmj
� 2N(�)z1z2 (77)

if d1 � jbmj=4.
By replacingz1 in (39) with z1, it is noted that (77) has the same

form as (39) . Thus, the remaining design steps and the stability anal-
ysis are exactly the same as those presented in the previous section by
replacingz1 with z1. The final controller and the stability results are,
respectively, summarized in Table II and Theorem 2.

Theorem 2: For a minimum phase, linear, time-invariant system
with known relative degree�, the adaptive controller presented in
Table II can ensure that the output of the system asymptotically tracks
an arbitrary signal with bounded derivatives of up to order� and all of
the signals in the closed-loop system are bounded.

V. CONCLUSION

In this correspondence, we have proposed an adaptive backstepping
design procedure for systems with unknown high-frequency gain. The
two proposed design schemes make use of the Nussbaum gains to relax
the requirement on the sign of high-frequency gain. One scheme is to
add an auxiliary signal to the system output tracking error, and the
other is to properly augment the regressor that is used for parameter
estimation into the first step of backstepping design. It is shown that
the controllers obtained by both schemes can ensure that the output of
the system asymptotically tracks a given signal and all of the signals
in the adaptive control system remain bounded. Comparing these two
schemes, the second one can yield adaptive controllers of lower order,
but the regressor used for parameter estimation is somehow more com-
plex than that in the first scheme.
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