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only the output tracking error is used in the first step as in [8], but the k1.0 -0
regressor used for parameter estimation is properly augmented, and —ky 0 1 -0
thus the order of the auxiliary subsystem is reduced to one. It is shown Ao = : A (18)

that the controllers designed by the two proposed schemes can achieve _knl—l 0 0 --- 1

asymptotic tracking for minimum phase linear systems with unknown —k 00 - 0

high-frequency gain and arbitrary relative degrees. Compared with the _ _ N .

results in [3]-[5], the controllers proposed in this paper employ lowdin€ VECO%: in (15) is chosen such that the matrl is strictly stable;
order subsystems to construct the Nussbaum gain. Particularly in e @ll Of the eigenvalues of, have negative real parts.

second scheme, the system order reaches its minimum level. In order to avoid using the sign of the high-frequency gain, we define
2=y —yr 19)
Il. PROBLEM FORMULATION Zi=vmi —yi T — iy, i=2,3 ,p (20)
Consider linear systems described by wherew;_; is the virtual control at théth step and will be determined

in later discussions. In comparison with the coordinate transformation

y = ﬁ(s) w=— buns :';1 ~+bis+ bo w (1) usedin [8], the estimate &f," is no longer used here. To illustrate the
(5) " ¥ dno1s T st ao backstepping procedures, the first two steps of the design are given in
wherea; andb; (i = 1,2, ---,n; j = 1,2, ---, m) are unknown details as follows.
constants. Step 1: Fori = 2, it follows from (2), (19), and (20) that

The control objective is to force the system output to track a given  :/ —p v, o + T 6+ & + €2 — 9,
reference signal- (). To this end, the following assumptions are made

. - , y ,—T o N
about the systems. =bm(zt o +9,) +T 0+ 6+ e -

L . . by — 1 . _rf 1
A.2) The system is minimum phase, i.e., all zeros of the polynomial = —ciz) +bn <22 + a1 + 5 e+ <b_ 9)
bims™ 4 -+ + bis + by, are stable. i "
A.3) The relative degreg = n — m is known. + 1 (crz1 + 52)) +oe. (21)
Ad) yr, Gy oo, y,(»”) are known bounded and piecewise contin- bm ‘
uous functions of time. Define
Remarll<2.1. Itis noted thgt the sign of the hlgh-frequency gain, i.e., Wy = |:w_'17 ciz— i + Ez} 22)
sgn(b,, ), is not assumed priori for the controller design as required . .
in [8]. 0 1
br=|—, —| . 23
! |:bm' brn ( )
Ill. BACKSTEPPINGDESIGN WITH A NUSSBAUM GAIN AND AN Then, (21) can be expressed as

AUXILIARY SIGNAL Z1=—c121 + b (/72 + a1 + W;r(')l + ?)r) + €. (24)

7o obtain the virtual adaptive control laws for this step without using
the sign ofb.,,, we now introduce an auxiliary signal given by

The desired adaptive controller can be obtained by performing th
backstepping procedures [8] on the following system:

y =&+ Wil +e = bV, 2 + & + T+ e 2 Zi =z +6 (25)
i’m,i =Um,i+1 — k72"«’m, 1, i = 25 37 s P 1 (3) where
Um, p = VUm, p+1 — KpUm, 1 + u (4) §= — 16— Xzfl (26)
where X =371 +7 (27)
- 2y =2
¥ =(c . 28
(9:[1)7”7“-,[)0’0%717...ﬂaO]T (5) Y (Cl + X )21 ( )
_ M7 _ Then, we take the following virtual control lam: and adaptive law
w= [t’m,z, Um—1,2, ***, V0,2, 2(2) — 1161] (6) 6, for estimatingd :
T T4 ,

. . _ . . f1= - NOOTwizy (30)
with v; 2(i =m — 1, ---, 0), E(2), &2, ande; denoting, respectively, . - ) (n42)x (nt2) )
the second element of statesi = m — 1, -- -, 0), Z, ¢, ande, which V\{here_l"l is a positive matrix ofR and a Nussbaum gain
are defined by N(x) is chosen as

vi=AiN,  i=0,---,m @8) N(x) = x cos(x)- (31)
E=—[A5 0. s Ao ] 9 with (24)—(29), it follows that
&=~ Ao (10) 7;1=—6121+b7n(22+wzé1)+€2—615—)(231
¢ = Age (11) ) vz
,,'] = ‘407’ +eny (12) = - (Cl + X )El + bon, (22 + wy 91) + €2 (32)
A=A+ enu (13)  wheref, & — 4, +6;.
A=A Ao, ool AT (14) Remark 3.1: Equation (32) actually gives the dynamics of the aux-
A T iliary signalz; . It is clear that ify is bounded and approaches zero
k=[ki, kay -+, k) (15) .
r a1 ast — oc, z also approaches zero. Thas,can be used as an auxil-
et =[1,0,---,0]" €R (16)

iary signal reflecting the tracking error. In contrast with [8],instead
en=[0,---,0,1]" € R™*! (17) of = is used as the first variable of coordinate transformation in the
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following backstepping design. As shown in later analysis, the boundhere
edness of¢ and all other signals in the system can be readily obtained

~ A .
after introducingz, . §=6—9 (43)
To proceed, we define the Lyapunov function Gy —kzvm L+ &l €+ a— (Ao + eny) + gal i
n Yr
Vi=6{0,"0:+ L pe (33) mt1
iy - Qo (=Fk;M + A (44)
whereP is a positive matrix such that Al + AT P = —IT andd, isa J=1 6>‘ 1

real positive number to be determined later. Then, the derivatiVg of

along with the (29), (30), and (32) is given by Substituting (20) with = 3 into (42), we get

e e | s g Oa T
Vi=20{T7"6, — h eTe=2N (X;)efwlzl - i e 34) o =g — B ;y (62 4w 0) + z3 ;
Replacingd? w in (34) by using (32) gives =ay — s — aiy] (Fz + wTé) + 25 — 5;1 w'h. (45)
. 2N X) _ 2\ . . .
1= b,< ) T1(F 4 (+ 1) 7 = bz — €2) Define the Lyapunov function for this step as
1 5 1 . 2 " = Vi L L P 9 T7'4. 4
—EEQ—E Z €;. (35) ‘/2 V1+2 +4]2€ E+ (6)
i=1, i#£2
Using (30) and (45), it foll that
From (27) and (28), we have sing (30) and (45), it follows tha
T =N— (36) Vo =Vi + 222 T7'¢
x=7171 + (c1 + 1) 7. 37 IN (v . ~ A
171 ( 1 ) 1 (37) < (x) s — ON(\)ZF120 — efr—14
ThUS bm |b‘m |
L AN . o 2N(X) g, _ (v _ a1y
Vi = o Y —2N(x)Z122 — b Z1€2 + 20| ag — B2 oy ( (7)+€z>+ 3 ay w g
IR IR S _ L,
BRI D i,
i=1, i2 2N(x) . 4 ~T< day -1}
9 . 9 . < X + 4 20z3 4+ 6 ———wz—I" 0
< 2N (x) X —2N(x)Z122 + _IZ& Z1€a| — ﬁ 6 U (D | dy
m m a1 2
. . p - _ (9(}1 001 TA
2N (x) . N[ |z 1 +zz oy =y = 2NOOZ + da <7> ST
<200 ¢ INQIET] (N OOl = e’ oy oy
bm |b7n| |b | 0 1 Py
e, 1 1Y 2 —d(ﬂz‘—l——t). 47
— 2]\/7()&),1~2 - <H - m) €. (38) 2 y 2 2ds €2 ( )
Noting from (31) and (27), we have We take the virtual control for this step as
Nz < CE| < d = ami+x7T ar \? 0 s
. |i ) 1| | l| ) e ! ag I—C222+ﬂ2+2;7\7(x)71—d2 <%> 22+%w1 6. (48)
Then, it follows that Jy Jy
. 2N
o 2N Gy T an s (3e)  Tnen
" ] Ty < —epd 4 2N g g 49
if (ll g |bm|/4 2 8 —C22p + b,n A + |bnl| + (TZ - ) ( )
Remark 3.2: Note that constant; is used here only for analysis
where
purpose. Itis no longer a control design parameter as used in [8]. Thus
such a constant satisfying < |b.»|/4 always exists once the plant = —T dar (50)
is given even if it is unknown. It should be mentioned that constants °T dy v
d; (i = 2,3, p), which appear later, are still control design pa- . . . i
rameters as in [8] Stepi(i = 3, ---, p): These steps are similar to those in [8], which
) H i A 9\ .2 R .
Step 2: Now, we evaluate the dynamic of the second stateDif-  include definingVi = Vi, + (1/2)= + (1/4di)e” Pe, taking
ferentiating both sides of (20) fér= 2 and using (3), we have it \? Bevi_ .
nl_—(’l/.l—(l'< _ ) Zi— Zi—1+ —L LTé
i? = Um,3 — k2v7n,1 - i/.r - d‘l . (40) ay
. . . A . i—1
Noting thata; is _afun(_:tlon off1, y, 1, vi, 2, andy,, it follows from i 00'7:;1 7 — Z o aa’k;l r Ooviy v
the same analysis as in [8] that 06 b a6 Jy
. . Oa .
2o =Um,3 — kotm,1 — r — OLJ; (Ao + eny) and choosing
0”1 T Oay . o1
9 o — Y T = Ti—1 — WZzi.
By (ﬁz-l-w —I—e) 8y,.y Ti=1i-1—T 3y
m—+1 .
- Z 8(“ (—k;X 4+ A acfi j, (41) Finally, the actual adaptive controller is given by
‘ ' 064
u(t) =, (51)
_ / doaq (1 -
=Um,3 B2 — yr W (W 0+ 62) (42) 0 = Tp. (52)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000 2353

The final Lyapunov functiorV/, satisfies TABLE |
o ) ADAPTIVE BACKSTEPPINGCONTROLLER WITH NUSSBAUM GAIN
. D 2_’7\,'(\/ . A
vV, < - K2k A _— 53
P = /; CrZk T+ b Xt 124! (53) Augmented error:
- . . Z=zn+6 (TL.1)
We now prove the boundedness-ofTo do this, we consider the ;5 _ _ 5 _ 25 (T1.2)
integration of both sides of (53) over an interj@l ¢], Nussbaum Gain:
5 ot Nlx) = xcos(x) (T1.3)
‘ dr < — / crzpdr + ;/ N(x)xdr X =3z +7 (T1.4)
/ 0 Z " b Jo ( v=(a+x)7 (T1.5)
A Virtual Cpntrol Laws:
+ / dr. (54) o1 =-~wlb ~y, (T1.6)
0 |bm| with wy = (@7, 121 — g + &7
Rearranging (54) and using the fact> v [see (27)], we have Gy = —cpza + Ba + 2N(x)E1 + do ( i )2 o+ a_;ij@ (T1.7)
) it P N oy = —¢z —d; (a‘gu")zz, zio1+ G + a“ 07 acé%/"wTﬁA
0<V,(t)+ /0 ’; crzrdr < F(x(1) = F(0)+V,(0) (55) (S A Py, =3 ,, (T1.8)
- u(t) = a, (T1.9)
where Adaptive Laws:
Fx(®) = b2 (cos(x(1)) + x sin(x(t))) + bl X(t)  (56) = -NOITwiz (T1.10)
; | 1| f=r1, (T1.11)
: __“ , o ~ with
F(0) = == (cos(x(0)) + xsin(x(0) + s 9(0). 67) M T T112)
To come up with the conclusion, the following property of the func 7 = 71 ~ T %5 wz,. i =3.....p (T1.13)
tion f(x) is useful.
Lemma 1: If y is unbounded, then for any constarit an interval
[x~, x*] always exists such that boundedness of(), it is straightforward to show from (55), (27), and
) ~ 4 (28) thatz; (i = 2, ---, p), g, ~, andz; are bounded. From (3251
f)+¢ <0, Ve [xTxT] (58)  is bounded. Also, it follows from (28) that
Proof: Notice from the definition off (x(¢)) that -t it
. . dr < dr = ~(t) —
- {f(x’(t)) = 2(#)sin(\(1)/brs = X(8)/ I } 0 fp estors [ air =t
X—20 X(t)

which impliesz, € L,. Therefore, it follows from Bardlat lemma

(59) thatz; — 0 ast — oco. Using (26) and (25), it follows that; — 0 as
If x(¢) is unbounded, theviz € [0, (1/2|bm|) — (1/B)], whereB t — oc. Finally, the stability of the whole system taking into account
is a sufficiently large numbe; > B|C| exists such that the zero dynamics can be established as in [8] because the system is
) . minimum phase and thus the zero dynamics is stable.
[F(X(1)) = 2x(#) sin(x(£))/bm — X (1) /|| So far, we have obtained one backstepping design scheme with the
< ex(t), Vx> x1 > 0. (60) Nussbaum gain chosen as (31). This scheme is now concisely presented

To show (58), we consider two cases. in Table |. To conclude this section, the stability results presented above

Case 1-b,, > 0: Because an intervé ~, y "] always exists such '€ summarized in the following theorem. _ o
thaty~ > y1 and—1—2sin(\(t)) > (1/2)foral|x() X~ xT] Theorem 1:Consider a minimum phase, linear, time-invariant

system with known relative degreeThe adaptive controller presented

we have : g
in Table | can make the output of the system asymptotically track an
<i i E) b < L 19 sin(x(1)). (61) arbitrary signal with bounded derivatives of up to ordewhile all of
B 2 ! the signals in the closed-loop system are bounded.
Rearranging (61) yields
1 2 1 IV. BACKSTEPPINGDESIGN WITHOUT AUXILIARY SIGNAL
=t b + brn sin(x(t)) < B (62) It is noted from Table | that an augmented ermr is used to
Thus, it follows from (60) that construct a Nussbaum gain. Thus, a second-order auxiliary subsystem
1 9 ’ given by (T1.2) and (T1.5) has to be employed. This section presents
Fix(t) < <€ ti—+y Sin(x(t))> x(t) an alternative way to construct the Nusshbaum gain so that the order of
1 the auxiliary subsystem reduces to one.
< — =x(t) As in (31) and (28), we construct the following Nussbaum gain in
< - |Bé,| (63) the first step of the backstepping design:
which confirms (58) becausg x) + C' < f(x) + |C]. N(x) = x cos(x) (64)
Case 2-5,, < 0: In this case, we can always find an interval X = ;—zf + 5 (65)
[x~, x*] such thaty™ > y; and—1 + 2sin(x(t)) > (1/2) for all Y= (e +X2)Zf (66)

x(t) € [x~, xT]. Following the same analysis as@ase 1 it can be
shown that (59) also holds fér,, < 0. Therefore, the conclusion of where the tracking error, is directly used, instead of using the aug-
the Lemma 1 is valid. O mented errok; .
TakingC = —f(0) + V,(0) and using the result of Lemma 1, itis Introduce a new regresses as
shown thaty(¢) is bounded Otherwise, it would result in a contradic- T , T
tion to (55) because its left side is always positive foralWith the w2 = [’T’ sz — X = g F &2} . (67)
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TABLE I
ADAPTIVE BACKSTEPPINGCONTROLLER WITHOUT AUGMENTED ERROR

Nussbaum Gain:

N(x) = xcos(x) (TL1)
y=(a+x)2 (T1.3)
Virtual Control Laws:
a, = —wlb; -3, (T1.4)
with wp = [LDT,6121 + X%z -y + §2]T
bl ~

Qg = —Ca22 + ,82 + 2N(X)21 + d2 (%‘L) 29 + %LUTQ (T15)
Qa; = _Ci21v —d; ga‘gy_l)zg,‘ -z + ﬁ,‘, + 0(;6_1 I'r, + MT';LwTé

- (St ) T8, i=3,..0 (TL6)
u(t) = a, (T1.7)
Adaptive Laws:
él = -N(x)Twz (T1.8
b=r, (T1.9
with
Ty = —F%(;LMZQ (TllO)
Ti=Ti —Fa‘;’;‘wzh 1=3,...,p (T1.11)

Then, (21) can be rewritten as
2 :—((}1 —|—X2)Z1 +bm(22 +w2T€~1)—|—€2. (68)

For this subsystem, we take the virtual control lawand the up-
dating law ford; as follows:

o =

(69)
(70)

T 45 .
—wy b1 — gr

é1 = N(x)l"lwzzl.
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Thus
. 2N (: 2N (:
V=2 () X —2N(x)z122 — - (X); 2
b‘rn b‘rn
1, 1 N,
“ o ST 2
i=1,i#2
IN(Y) . ) 2N 1
SﬁXT—QW(XT)/ﬁZz*— (X>31F2 - €
m bm 4(11
2N(x) ., INDOPI=)? 1 2
< = X - (NN =] = le2])
bm |bm| |bm|
1 1Y
—2N(y)z122— | — — . 76
N(x)z 22 <4d1 |bm|) € (76)
BecausgN (y)z1]* < x?27 < 4, we have
. 2N(x
<= SO |b” P2V (02 (77)
if di < [bm|/4.

By replacingz, in (39) with z, it is noted that (77) has the same
form as (39) . Thus, the remaining design steps and the stability anal-
ysis are exactly the same as those presented in the previous section by
replacingz, with z;. The final controller and the stability results are,
respectively, summarized in Table Il and Theorem 2.

Theorem 2: For a minimum phase, linear, time-invariant system
with known relative degree, the adaptive controller presented in
Table Il can ensure that the output of the system asymptotically tracks
an arbitrary signal with bounded derivatives of up to ordand all of
the signals in the closed-loop system are bounded.

V. CONCLUSION

In this correspondence, we have proposed an adaptive backstepping
design procedure for systems with unknown high-frequency gain. The

Remark 4.1: Here, the tracking errot, is still used in the back- two proposed design schemes make use of the Nussbaum gains to relax

stepping design as in [8], but a tergd z; is added in the regresson

the requirement on the sign of high-frequency gain. One scheme is to

instead of the regresser used in the first scheme. By this way, only aadd an auxiliary signal to the system output tracking error, and the
first-order subsystem (66) is involved in the construction of the Nussther is to properly augment the regressor that is used for parameter

baum gain. Thus, the order of the controller is reduced by one.
We define a Lyapunov function as in (33)

. 1
Vi=0] IT'6 + — ¢ Pe. (71)
4(11
The derivative oft; along with (68)—(70) is given by
Vi =267 174, — L Le=2N()0T wyzy — L e (72)
1 1 1 1 4d1 LVAX)V W21 4d1 .
Using (68), we have
P 2y, v — €
w2Tn91 _ A + (1 +x 1341 bmzo — €2 ) (73)
Substituting the above equation into (72) gives
. 2N (x . 2,
Vi==— W, (214 (1 4+ X2 — bz — )
1 9 1 i3 9
M €9 E ' Z €;. (74)
1=1,1#£2
On the other hand, it follows from (65) and (66) that
X =z 4 (e + 17 (75)

estimation into the first step of backstepping design. It is shown that
the controllers obtained by both schemes can ensure that the output of
the system asymptotically tracks a given signal and all of the signals
in the adaptive control system remain bounded. Comparing these two
schemes, the second one can yield adaptive controllers of lower order,
but the regressor used for parameter estimation is somehow more com-
plex than that in the first scheme.
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