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An Iterative Learning Controller
with Initial State Learning

Y. Chen, C. Wen, Z. Gong, and M. Sun

Abstract—In iterative learning control (ILC), a common assumption
is that the initial states in each repetitive operation should be inside a
given ball centered at the desired initial states which may be unknown.
This assumption is critical to the stability analysis, and the size of the
ball will directly affect the final output trajectory tracking errors. In
this paper, this assumption is removed by using an initial state learning
scheme together with the traditional D-type ILC updating law. Both
linear and nonlinear time-varying uncertain systems are investigated.
Uniform bounds for the final tracking errors are obtained and these
bounds are only dependent on the system uncertainties and disturbances,
yet independent of the initial errors. Furthermore, the desired initial states
can be identified through learning iterations.

Index Terms—Learning control, reinitialization error, repetitive sys-
tems, tracking control, uncertainty nonlinear systems.

I. INTRODUCTION

Learning can be regarded as a bridge betweenknowledgeandex-
perience. In control engineering,knowledgerepresents the modeling,
environment, and related uncertainties information whileexperience
is mainly from the system’s repetitive operations, previous control
efforts, and some resulting errors. When a system performs a given
task repeatedly, we may find some new properties by employing
control system theory. This was first started by Edwards and Owens
[1] in which the process was called themultipass process, based on
observations and analysis of a long-wall coal cutting process. Their
main objectives were to propose the system analysis methods [1],
[2]. Uchiyama [3] attempted to pursue a better control performance
from the repetitive movement of the plant to be controlled. Also in
1984, Arimotoet al. [4], Casalino and Bartolini [5], and Craig [6]
found that the performance of repetitive tasks can be improved by
using the information gathered in the previous cycles. The phrase
learning was first introduced in the control of the repetitive system
or multipass process. In many practical control systems, the task
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is executed in a finite time interval while the same task will be
repeatedly operated. In such cases, the idea ofiterative learning
control (ILC) is clearly applicable to improve the control performance
from run to run and hence has received increasing attentions from the
control community; some surveys can be found in [7]–[10]. It should
be pointed out that therepetitive control(RC), [7] for example, and
ILC are similar in nature [9]. However, the difference is that the ILC
needs an initialization, i.e., the system should be started with the same
initial condition at the beginning of each repetition, while the RC is
supposed to track the periodical reference trajectory, i.e., the initial
condition of current repetition is “automatically set” to the terminal
condition of the previous repetition.

Robustness of ILC algorithms is an important issue in the presence
of disturbances, uncertainties, and initialization errors. Arimotoet
al. [11] presented a robustness analysis for time-varying mechanical
systems with respect to initial state errors and differentiable state
disturbances by using a small signal analysis method. Based on
the nonlinear extension result of Hauser [12], Heinzingeret al.
[13] analyzed robustness of ILC in terms ofstability of ILC. The
robustness of delayed nonlinear systems with a higher order ILC
updating law was considered by Chenet al. [14]. Employing the
passivity properties of nonlinear system dynamics, Arimoto [15]
demonstrated the robustness of the P-type ILC algorithm, which
was generalized in [16] and [17]. All ILC analyses mentioned
above can guarantee the boundedness of the final tracking errors.
However, these error bounds are not only directly related to the
bounds of uncertainties and disturbances but also directly related
to the initialization error bounds due to the unknown desired initial
states. The concept ofclosed-loop ILCwas proposed to employ the
current iteration tracking error (CITE) error in the ILC updating law
[17]–[19]. With this, we do have a measure to reduce the effect of
initialization error on the final tracking error bounds by increasing
the learning gain of CITE. This was achieved at the expense of using
a high gain control. Also, one critical question raised is how the
first (initial) point iteratively learns because the ILC is in fact a
point-wisescheme as explained in [9]. Under the assumption that
the input transmission term appears in the system’s output equation,
for example the system model used for ILC convergence analysis
[20]–[22], [17], an impulsive initial input [23] could be used to
compensate the output tracking error so that it could finally approach
zero. But the use of an impulsive initial input is not practical.

Thus, how to totally eliminate the effect of the initialization errors
on the final tracking error bounds is still an open problem. Although
some efforts have been made [22], [24], [14], satisfactory results
are still unavailable. In this paper, a new method employing an
initial state learning scheme together with the traditional D-type ILC
updating law is proposed. Both linear and nonlinear time-varying
uncertain systems are considered. Through initial state learning, the
desired initial states can be identified and thus the requirement that
the initial state error should be inside a given ball is removed. In turn,
it is shown that the bounds of the tracking errors are independent of
the initial state errors. Simulation results are presented to illustrate
the effectiveness of the proposed method.

II. L INEAR TIME-VARYING UNCERTAIN SYSTEMS

Consider a repetitive linear time-varying system with uncertainty
and disturbance as follows:

_xi(t) = A(t)xi(t) +B(t)ui(t) + wi(t)
yi(t) = C(t)xi(t) + vi(t)

(1)
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where i denotes theith repetitive operation of the system;xi(t) 2
Rn; ui(t) 2 Rm; and yi(t) 2 Rr are the state, control input, and
output of the system, respectively;wi(t); vi(t) are uncertainties or
disturbances to the system;t 2 [t0; T ] � [0; T ] is the time and
t0; T are given; andA(t); B(t); andC(t) are uncertain time-varying
matrices with appropriate dimensions.

Given the realizable desired output trajectoryyd(t), the tracking
error ei(t) at ith repetition is thatei(t) yd(t) � yi(t). Then
the problem is formulated as follows. Starting from an arbitrary
continuous initial control inputu0(t) and an arbitrary initial state
x0(t0); which may be different from the unknown desiredxd(t0),
obtain the next control inputu1(t) and initial statex1(t0), and the
subsequent seriesfui(t); xi(t0) j i = 2; 3; � � �g for system (1), in
such a way that wheni!1; yi(t)! yd(t) andxi(t0)! xd(t0).
Furthermore,yi(t)� yd(t) andxi(t)� xd(t) are independent of the
initialization errorxi(t0) � xd(t0).

To solve the above problem, we shall use the D-type ILC updating
law [4], i.e.,

ui+1(t) = ui(t) + L(t) _ei(t) (2)

whereL(t) 2 Rm�r is a continuous learning gain matrix, together
with an initial state learning algorithm given by

xi+1(t0) = xi(t0) +B(t0)L(t0)ei(t0): (3)

For the analysis of the ILC process, the following norms are intro-
duced in this paper:

kfk = max
1�i�n

jfij; kGk = max
1�i�m

n

j=1

jgij j

kh(t)k� = sup
t2[t ;T ]

e��tkh(t)k; � > 0

where f = [f1; � � � ; fn]
T is a vector, G = [gij ] 2 Rm�n

is a matrix, andh(t) (t 2 [t0; T ]) is a real function. It should
be noted that the�-norm is equivalent to the infinity-norm be-
causekh(�)k� � kh(�)k1 � kh(�)k�e

�T , where the infinity-norm
kh(t)k1 supt2[0;T ] kh(t)k.

To restrict our discussion, the following assumptions are made.

A1) The uncertainty and disturbance termswi(t) and vi(t) are
bounded as follows,8t 2 [t0; T ] and8i :

kwi+1(t)� wi(t)k� � bw; kvi+1(t)� vi(t)k� � bv:

A2) For t 2 [t0; T ], matricesB(t) and C(t)B(t) have full
column ranks.

A3) B(t) andL(t) are differentiable over[t0; T ]: Furthermore,
it is required thatL(t0) 6= 0; B(t0) 6= 0.

Assumption A1) puts the boundedness restrictions on the differences
of the uncertainties and disturbances between two successive system
repetitions. A3) is a reasonable assumption which makes the initial
state correction possible. In this paper, a common fundamental
knowledge is that for a given bounded desired outputyd(t), there
exists a unique bounded inputud(t); t 2 [t0; T ] such that when
u(t) = ud(t), the system has a unique bounded statexd(t) and
yd(t) = C(t)xd(t); t 2 [t0; T ].

The general solution of state (1) can be written in the following
form:

xi(t) = �(t; t0) xi(t0) +
t

t

�(t0; �)[B(�)ui(�) + wi(�)] d�

(4)

where�(t; t0) stands for the state transition matrix of system (1).
For brevity of our discussion, in the sequel, the following notations

are used:

�(t0; t)
d

dt
(�(t0; t)B(t)L(t)); b� sup

t2[t ;T ]

k�(t0; t)k

bC sup
t2[t ;T ]

kC(t)k; b� sup
t2[t ;T ]

k�(t; t0)k

'(t) d(B(t)L(t))=dt; b' sup
t2[t ;T ]

k'(t)k

bBL sup
t2[t ;T ]

kB(t)L(t)k:

Theorem II.1: For the repetitive linear time-varying uncertain sys-
tem (1) with Assumptions A1)–A3), given the desired trajectoryyd(t)
over the fixed time interval[t0; T ], by using the ILC updating law
(2) and the initial state learning formula (3), then, the�-norm of the
output tracking error is bounded, if

kIr � C(t)B(t)L(t)k< 1; 8t 2 [t0; T ]: (5)

For a sufficiently large�

lim
i!1

kei(t)k� �
bv +O1(�

�1)

1� ��O2(��1)
; 8t 2 [t0; T ] (6)

where

� sup
t2[t ;T ]

kIr � C(t)B(t)L(t)k (7)

O1(�
�1) bwbCb�k�(t0; t)k�=� (8)

O2(�
�1) bCb�b�=�: (9)

In the case that the uncertainties and disturbances in the ILC iterations
tend to be the same, i.e.,bw ! 0 andbv ! 0, we haveei(t)! 0; i.e.,
yi(t) ! yd(t), and alsoxi(t) ! xd(t); ui(t) ! ud(t) as i ! 1
for all t 2 [t0; T ].

Proof: Using (4) together with (1)–(3), the tracking error
ei+1(t) can be expressed as

ei+1(t) = yd(t)� yi+1(t)

= yd(t)� vi+1(t)� C(t)�(t; t0)xi(t0)

� C(t)�(t; t0)B(t0)L(t0)ei(t0)

� C(t)�(t; t0)
t

t

�(t0; �)(B(�)ui(�) + wi(�))d�

� C(t)�(t; t0)
t

t

�(t0; �)B(�)L(�) _ei(�)d�

� C(t)�(t; t0)
t

t

�(t0; �)(wi+1(�)� wi(�))d�: (10)

Integrating the term_ei(�) in (10) by parts yields

�C(t)�(t; t0)
t

t

�(t0; �)B(�)L(�) _ei(�)d�

= �C(t)�(t; t0)�(t0; t)B(t)L(t)ei(t)

+ C(t0)�(t; t0)�(t0; t0)B(t0)L(t0)ei(t0)

+ C(t)�(t; t0)
t

t

d

d�
(�(t0; �)B(�)L(�)) ei(�)d�

= �C(t)B(t)L(t)ei(t)+ C(t0)�(t; t0)B(t0)L(t0)ei(t0)

+ C(t)�(t; t0)
t

t

�(t0; �)ei(�)d�: (11)

By substituting (11) in (10), we get

ei+1(t) = [Ir � C(t)B(t)L(t)]ei(t)� (vi+1(t)� vi(t))

� C(t)�(t; t0)
t

t

�(t0; �)(wi+1(�)� wi(�))d�

+ C(t)�(t; t0)
t

t

�(t0; �)ei(�)d�: (12)
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Taking the norm of (12), we have

kei+1(t)k � �kei(t)k+ bv + bwbCb�

t

t

k�(t0; �)kd�

+ bCb�b�

t

t

kei(t)kd�: (13)

Multiplying e��t on both sides of (13) and then taking the�-norm
gives

kei+1(t)k� � �kei(t)k� + bv + bwbCb�k�(t0; t)k�O(��1)

+ bCb�b�kei(�)k�O(��1) (14)

where

O(��1) =
1� e��(t�t )

�
�

1

�
; 8t 2 [t0; T ]: (15)

Referring to (8) and (9), we can simply write (14) as

kei+1(t)k� � ��kei(t)k� + " (16)

kei(t)k� � ��ike0(t)k� +
1� ��i

1� ��
" (17)

where

�� = �+O2(�
�1) (18)

" = bv +O1(�
�1): (19)

Clearly, 9�� > 0 such that�� < 1; 8� � ��. Thus

lim
i!1

kei(t)k� �
"

1� ��
=

bv +O1(�
�1)

1� � �O2(��1)
: (20)

When bw and bv tend to zero, asi ! 1; ei(t) ! 0, i.e.,
yi(t) ! yd(t). Obviously, we also havexi(t) ! xd(t); and
ui(t)! ud(t) 8t 2 [t0; T ] as i!1.

Remark II.1: Assumption A1) is less restrictive than the conven-
tionally proposed one such as in [16]. In the case that at every ILC
iteration the uncertainty and disturbance are all the same, i.e., they
are repeatable, the final tracking error bound will be zero.

From (6), it can be seen that the initialization error has no effect
on the final tracking error bound through the initial state learning
scheme given in (3) together with the D-type ILC updating law (2).
This property still holds for nonlinear systems by using the same ILC
updating law (2) and initial state learning scheme (3).

III. N ONLINEAR UNCERTAIN SYSTEMS

The repetitive nonlinear time-varying uncertain system is described
by

_xi(t) = f(xi(t); t) +B(t)ui(t)+ wi(t)
yi(t) = C(t)xi(t) + vi(t):

(21)

Now, with the same assumptions, notations, and definitions as in
Section II if not otherwise indicated, we intend to show that with the
same ILC updating law (2) and initial state learning scheme (3), a
similar conclusion can be made for the above nonlinear time-varying
uncertain system (21). Before presenting Theorem II.1, we need one
more assumption.

A4) f(�; �) : Rn � [t0; T ] 7! Rn is a piecewise continuous
function and satisfies a Lipschitz continuity condition, i.e.,
8t 2 [t0; T ]

kf(xi+1(t); t)� f(xi(t); t)k � kfkxi+1(t)� xi(t)k

wherekf > 0 is the Lipschitz constant.

Theorem III.1: For the repetitive nonlinear time-varying uncertain
system (21) with Assumptions A1)–A4), given the desired trajectory
yd(t) over the fixed time interval[t0; T ], by using the ILC updating
law (2) and the initial state learning scheme (3), if (5) is satisfied, then
the�-norm of the output tracking error is bounded. For a sufficiently
large �

lim
i!1

kei(t)k� �
2bv + 2bCbwT +O3(�

�1)

1� ��O4(��1)
; 8t 2 [t0; T ]

(22)

where

O3(�
�1) =

bCbwkfTO(��1)

1� kfO(��1)
(23)

O4(�
�1) = bCb'O(��1) +

bCkfO(��1)(b'O(��1) + bBL)

1� kfO(��1)
:

(24)

If the uncertainties and disturbances of successive ILC iterations tend
to be the same, i.e.,bw ! 0 and bv ! 0, we haveei(t) ! 0, i.e.,
yi(t) ! yd(t), and alsoxi(t) ! xd(t); ui(t) ! ud(t) as i ! 1
for all t 2 [t0; T ].

Proof: The idea is similar to that of the proof of Theorem II.1.
The formula for the tracking error at(i+ 1)th repetition is

ei+1(t) = ei(t)� (yi+1 � yi(t))

= ei(t)� C(t)(xi+1 � xi(t))� (vi+1 � vi(t)): (25)

Integrating (21) gives

xi+1(t)� xi(t)

= B(t0)L(t0)ei(t0)

+
t

t

(f(xi+1(�); �)� f(xi(�); �))d�

+
t

t

(wi+1(�)� wi(�))d� +
t

t

B(�)L(�) _ei(�)d�

= B(t)L(t)ei(t)

+
t

t

(f(xi+1(�); �)� f(xi(�); �))d�

+
t

t

(wi+1(�)� wi(�))d� �
t

t

'(�)ei(�)d�: (26)

Substituting (26) into (25) and taking norm yields

kei+1(t)k � �kei(t)k+ bv + bCbwT

+ bCkf

t

t

kxi+1(� )� xi(�)kd�

+ bCb'

t

t

kei(�)kd�: (27)

Taking the�-norm for (27), we have

kei+1(t)k� � �kei(t)k� + bv + bCbwT

+ bCkfkxi+1(t)� xi(t)k�O(��1)

+ bCb'kei(t)k�O(��1): (28)

Taking the�-norm for (26) and assuming that� is large enough to
ensure

� > kf(1� e
��T ) (29)



374 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

Fig. 1. The tracking error boundbe .

Fig. 2. The tracking error boundbe .

the relationship betweenkxi+1(t)�xi(t)k� andkei(t)k� is given by

kxi+1(t)� xi(t)k� �
bwT + (b'O(��1) + bBL)kei(t)k�

1� kfO(��1)
: (30)

By substituting (30) into (28), thenkei+1(t)k� can be expressed
simply as

kei+1(t)k� � ~�kei(t)k� + ~" (31)

where

~� = � +O4(�
�1) (32)

~" = bv + bCbwT +O3(�
�1): (33)

Obviously, a sufficiently large� that satisfies (29) and the condition
~� < 1 simultaneously exist. This completes the current proof by
referring to the proof of Theorem II.1.

IV. SIMULATION ILLUSTRATIONS

The following uncertain time-varying nonlinear system is used for
the simulation studies:

_x1
_x2

=
�1 sin x2 1 + �1 sin x1
�2� 5t �3� 2t

x1
x2

+
u1
2u2

+
w1

w2

y1 (t)
y2 (t)

=
4x1 (t)
x2 (t)

+
v1 (t)
v2 (t)

wherei is the system repetition number and the timet 2 [0; 1]. The
uncertainties and output disturbances are

w1 (t)
w2 (t)

�2
cos(2�f0t)
2 cos(4�f0t)

v1 (t)
v2 (t)

�2
sin(2�f0t)
2 sin(4�f0t)

wheref0 = 1=(20h) Hz. The RK-4 method is used to numerically
integrate the state equation with a fixed time steph = 0:01 s. The
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Fig. 3. The learning processes of initial statesx1 (0); x2 (0).

desired tracking trajectories arey1 (t) = y2 (t) 12t2(1 � t):
Referring to (1)–(3), we knowB = diag[1; 2] andC = diag[4; 1].
So, the best learning matrix isL� = (CB)�1 = diag[0:25; 0:5]:
However, the system dynamics is assumed unknown. It is reasonable
to use the ILC updating law (2) with a modified learning gain matrix
L = �3L

�. And also in the initial state learning scheme (3), the
best learning coefficient matrixBL� = diag[0:25; 1] is replaced
with a modified oneBL = �4BL�. The coefficients�3 and �4

are freely chosen to accommodate the inaccurate knowledge ofB

andC. Without loss of generality, here we assume that at the first
ILC iteration, the initial states arex1 (0) = �5; x2 (0) = ��5. Let
� = [�1; �2; � � � ; �5]. Clearly, when� = [0; 0; 1; 0; 0], the system
reduces to the one considered in [4], [20]. In our simulation studies,
the following three cases with different�’s were examined.

• Case 1:� = [1; 0; 1; 0; 0]: This is an ideal case without any
initialization error, uncertainty, and disturbance.

• Case 2:� = [1; 1; 0:5; 0:5; 0:5]: This implies an initialization
error exists and an initial state learning scheme is applied. Some
uncertainties also exist inB andC.

• Case 3:� = [1; 1; 0:5; 0; 0:5]: The initial state learning scheme
is switched off. The amplitudes of disturbance and uncertainty
are twice of the initialization error, which are the same as in
Case 2.

Let the final tracking error bound bebe supt2[0;T ] j ej (t) j;
j = 1; 2: Then the simulation results are shown in Figs. 1–3. For all
the three cases, the ILC termination conditions are all the same, i.e.,
the simulation will stop ifbe < 0:01; 8j = 1; 2:

From Figs. 1–3, we can observe that the initial state learning
scheme is effective. The initial states finally track the desired ones.
In Case 3, we note that the final tracking error bounds are directly
contributed by initialization errors. This can be explained from
Remark II.1 becausebv = bw = 0:

V. CONCLUSION

In this paper, an initial state learning scheme is proposed to
completely eliminate the effect of the initialization errors on the final
tracking error bounds through ILC with a traditional D-type updating
law. Both linear and nonlinear time-varying uncertain systems have
been studied. It is shown that the final tracking errors are uniformly
bounded and these bounds are only dependent on the system un-

certainties and disturbances, but independent of the initialization
errors. Furthermore, the desired initial states can be identified through
learning iterations.
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Robustness of Supervisors for Discrete-Event Systems

Jose E. R. Cury and Bruce H. Krogh

Abstract—Supervisory control in the context of!!!-languages is consid-
ered. The nominal supervisor design problem is to find a nonblocking
supervisor for a nominal plant such that the closed-loop infinite behavior
equals a specified closed-loop behavior. The robustness of solutions to
the nominal problem is defined with respect to variations in the plant.
It is shown there exists a supervisor solving the nominal problem which
maximizes the set of plants for which the closed-loop languages for all
other plants in the set satisfy lower and upper bounds in the sense
of language containment. Computational issues are discussed, and the
theoretical results are illustrated with an example.

Index Terms—Discrete-event systems, robustness, supervisory control.

I. INTRODUCTION

This paper concerns robustness of supervisors for discrete-event
systems (DES’s) modeled by pairs of languages corresponding to
their finite and infinite (!-language) behaviors, an extension of the
finite-string language framework [4] that allows for the representation
of nonterminating processes and liveliness specifications [2]–[5].
We consider the robustness of nonblocking supervisors designed for
nominal plants to satisfy specifications for the nominal closed-loop
infinite behavior. The objective is to design the supervisor so as to
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maximize (if possible) the set of plants for which: 1) the supervisor
remains nonblocking and 2) the closed-loop behavior (applying the
same supervisor) remains within specified lower and upper bounds.

Lin considered the problem of designing a single supervisor for a
given finite collection of plants such that the closed-loop behaviors
of all of the plants will satisfy the given specifications using the
same supervisor [6]. In our formulation the nominal closed-loop
behavior for a single nominal plant is a constraint on the admissible
supervisors. We show that one can design a supervisor that maximizes
the (infinite) set of plants for which the nominal specifications will
be satisfied.

Due to lack of space, the proofs are not included in this paper but
may be found in [8].

II. PRELIMINARIES

For a given finite set of events,�, letL; S; M denote, respectively,
languages in��; �!; �� [ �!; pre(M) denotes the set of all finite
length prefixes of strings inM . L is said to be prefix closed if
pre(L) = L; lim : 2� ! 2� is defined forL as lim(L) =
pre�1(L)\�!; wherepre�1(L) = f� 2 (�� [�!)jpre(�) � Lg;
clo: 2�! ! 2�! is defined forS asclo(S) = lim(pre(S)). S is said
to be!-closed ifclo(S) = S, and a languageT � �! is said to be!-
closed w.r.t.S if T = clo(T ) \ S. For a stringt 2 �� we denote the
setf� 2 ��[�!jt� 2Mg by M=t ��L(t), the active set ofL after
t 2 L, is defined as�L(t) = �\ (pre(L)=t). Following Thistle [5],
we define a DESG as pair of languages(LG; SG) � ����!, such
thatLG is prefix-closed andpre(SG) � LG � LG andSG describe,
respectively, the finite and infinite logical behavior of the system.��

denotes the set of all DES’s defined over�.
A control structureis defined as a set� � 2� such that: 1)� is

closed under the operation of intersection of sets and 2) if
 2 � and

 � 
0 2 2�, then
0 2 �. This definition corresponds to the control
structure assumed in [4] where� is partitioned into a set�c of
controllable events and a set�u of uncontrollable events and
 2 2�

is an element of� if and only if 
 � �u. A control input
 2 �
represents the set of next events allowed to occur inG. Throughout
the paper we assume a control structure� is given.

A supervisor is defined as a mapf : �� ! � that applies a control
input 
 to a DES as a function of the observed sequence of past
events.f=G denotes the DES resulting fromG under control of
f , whereLf=G is the set of finite strings ofG that subsist under
control law f , andSf=G = lim(Lf=G) \ SG. We say thatf is a
nonblocking supervisorfor G if pre(Sf=G) = Lf=G. We assume
without loss of generality thatf is a total function, which implies
�� = dom(f) � LG, i.e., f is completefor anyG 2 �� [5].

Given a DESG 2 ��, a languageR � �! is *-controllable
with respect toLG if 8 s 2 R; 9
 2 � such that
 \ �L (S) =
�R(S); a languageT � �� is *-controllable with respect toLG
if pre(T ) is *-controllable with respect toLG; T is !-controllable
with respect toG if pre(T ) = preG(T ) wherepreG(T ) = ft 2
pre(T )j9T 0 2 �!; T 0 6= ;; T 0is *-controllable w.r.t. LG=t and
!-closed w.r.t.SG=t.

The following proposition summarizes some basic important results
from [5] regarding supervisors.

Proposition 1 [5]: Given a DESG and a languageK � SG, the
following statements are equivalent: 1) there exists a nonblocking
supervisorf for G such thatSf=G = K; 2) K is *-controllable
with respectLG to and!-closed with respect toSG; and 3)K is
!-controllable with respect toG and!-closed with respect toSG.
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