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REFERENCES is executed in a finite time interval while the same task will be
. ) ) repeatedly operated. In such cases, the idedtevitive learning
(1 éll?‘f/s O,\ﬁ’gzeg?::t?cgﬁ :I\I' Slé\é\gl'lskyslgnals and SystemsEnglewood o) (1LC) is clearly applicable to improve the control performance
[2] B.Seoand C. T. Chen, “The relationship between the Laplace transfoff@M run to run and hence has received increasing attentions from the
and the Fourier transform[EEE Trans. Automat. Contrvol. AC-31, ~ control community; some surveys can be found in [7]-[10]. It should
p. 751, Aug. 1986. be pointed out that theepetitive control(RC), [7] for example, and
ILC are similar in nature [9]. However, the difference is that the ILC
needs an initialization, i.e., the system should be started with the same
initial condition at the beginning of each repetition, while the RC is
supposed to track the periodical reference trajectory, i.e., the initial
condition of current repetition is “automatically set” to the terminal
condition of the previous repetition.
Y. Chen, C. Wen, Z. Gong, and M. Sun Robustness of ILC algorithms is an important issue in the presence
of disturbances, uncertainties, and initialization errors. Arimeto
al. [11] presented a robustness analysis for time-varying mechanical
Abstract—In iterative learning control (ILC), a common assumption ~ Systems with respect to initial state errors and differentiable state
is that the initial states in each repetitive operation should be inside a disturbances by using a small signal analysis method. Based on
gi\(en ball cen_tere_d at‘t_he desired initigl_ states which may be ‘unknown. the nonlinear extension result of Hauser [12], Heinzingéral.
This assumption is critical to the stability gnaly5|s, anq the size of the [13] analyzed robustness of ILC in terms sfability of ILC. The
ball will directly affect the final output trajectory tracking errors. In . ) -
this paper, this assumption is removed by using an initial state learing roPustness of delayed nonlinear systems with a higher order ILC
scheme together with the traditional D-type ILC updating law. Both updating law was considered by Chen al. [14]. Employing the
linear and nonlinear time-varying uncertain systems are investigated. passivity properties of nonlinear system dynamics, Arimoto [15]
Uniform bounds for the final tracking errors are obtained and these gemonstrated the robustness of the P-type ILC algorithm, which
bounds are only dependent on the system uncertainties and disturbances, . . -
yet independent of the initial errors. Furthermore, the desired initial states was generalized in [16] and [17]. All ILC anglyses mgntloned
can be identified through learning iterations. above can guarantee the boundedness of the final tracking errors.
However, these error bounds are not only directly related to the
bounds of uncertainties and disturbances but also directly related
to the initialization error bounds due to the unknown desired initial
states. The concept alosed-loop ILCwas proposed to employ the
I. INTRODUCTION current iteration tracking error (CITE) error in the ILC updating law

Learning can be regarded as a bridge betweewledgeand ex- [17]-[19]. With this, we do have a measure to reduce the effect of
perience In control engineeringsnowledgerepresents the modeling, initialization error on the final tracking error bounds by increasing
environment, and related uncertainties information whitperience (he leéarning gain of CITE. This was achieved at the expense of using
is mainly from the system’s repetitive operations, previous contrl high gain control. Also, one critical question raised is how the
efforts, and some resulting errors. When a system performs a gi\fkfﬁt (initial) point iteratively learns because the ILC is in fact a
task repeatedly, we may find some new properties by emp|0yi93in_t-wisescheme as explained in [9]. Under the assumption that
control system theory. This was first started by Edwards and Oweh§ input transmission term appears in the system’s output equation,
[1] in which the process was called theultipass processased on for example the system model used for ILC convergence analysis
observations and analysis of a long-wall coal cutting process. ThEPl-[22], [17], an impulsive initial input [23] could be used to
main objectives were to propose the system analysis methods Fﬂmpensate the output tracking error so that it could finally approach
[2]. Uchiyama [3] attempted to pursue a better control performané&&'o- But the use of an impulsive initial input is not practical.
from the repetitive movement of the plant to be controlled. Also in Thus, how to totally eliminate the effect of the initialization errors
1984, Arimotoet al. [4], Casalino and Bartolini [5], and Craig [6] ©N the final tracking error bounds is still an open problem. Although
found that the performance of repetitive tasks can be improved Bgme efforts have been made [22], [24], [14], satisfactory results
using the information gathered in the previous cycles. The phred Still unavailable. In this paper, a new method employing an
learning was first introduced in the control of the repetitive systeriitial state learning scheme together with the traditional D-type ILC

or multipass process. In many practical control systems, the td4kdating law is proposed. Both linear and nonlinear time-varying
uncertain systems are considered. Through initial state learning, the

Manuscript received August 24, 1995; revised October 18, 199¢esired initial states can be identified and thus the requirement that
Recommended by Associate Editor, J. Sun. This work was supported the initial state error should be inside a given ball is removed. In turn,
the National Science Foundation of China (NSFC) under Project Numbglis shown that the bounds of the tracking errors are independent of

69404004. - . . .
Y. Chen is with the Department of Electrical Engineering, Nationalihe initial state errors. Simulation results are presented to illustrate

University of Singapore, 119260 Singapore. the effectiveness of the proposed method.
C. Wen is with the School of Electronical and Electrical Engi-

neering, Nanyang Technological University, 639798 Singapore (e-mail: II. LINEAR TIME-VARYING UNCERTAIN SYSTEMS
ecywen@ntu.edu.sg). . . . . . . .
Z. Gong is with the Gintic Institute of Manufacturing Technology, Consider a repetitive linear time-varying system with uncertainty

An lterative Learning Controller
with Initial State Learning

Index Terms—Learning control, reinitialization error, repetitive sys-
tems, tracking control, uncertainty nonlinear systems.

Automation Technology Division, 638075 Singapore. and disturbance as follows:
M. Sun is with the Department of Electrical Engineering, Xi'an Institute S — A\ e R

of Technology, Xi'an 710032, China. {‘“(t) = A)ei(t) + Btui(t) + wilt) (1)
Publisher Item Identifier S 0018-9286(99)01314-8. yi(t) = C(t)i(t) + vilt)

0018-9286/99$10.00 1999 IEEE



372 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

where: denotes theth repetitive operation of the system;(¢) € are used:
R", u;(t) € R™, andy;(t) € R" are the state, control input, and

, A d L 4
output of the system, respectively; (#), v;(t) are uncertainties or S(to.1) = 7 (B(to, ) B()L(1)), by = et llé(to. £l
disturbances to the system;€ [t;,T] C [0,7] is the time and a a 7
to, T are given; andi(t), B(t), andC(t) are uncertain time-varying bo = et lewl. b = et 18 (2. o)l
matrices with appropriate dimensions. A a

. ; . . . e(t) = d(B(t)L(t))/dt, by = o(t
Given the realizable desired output trajecteryt), the tracking #(t) (BL®)/ v tes[llfﬂ el

error e;(t) at ith repetition is thate;(t) £ ya(t) — yi(t). Then a

the problem is formulated as follows. Starting from an arbitrary B tes[:tl?ﬂ 1B LA
continuous initial control inputeo(#) and an arbitrary initial state
xo(to), which may be different from the unknown desired(to),
obtain the next control input; (¢) and initial stater;(¢y), and the
subsequent seriegu;(t), zi(to) | ¢ = 2,3,---} for system (1), in
such a way that wheh— oo, y;(t) — yq(t) andx;(to) — wa(to).
Furthermorey; (t) — y4(t) andz;(t) — x4(¢) are independent of the

Theorem 11.1: For the repetitive linear time-varying uncertain sys-
tem (1) with Assumptions A1)-A3), given the desired trajectprit)
over the fixed time intervajty, 7], by using the ILC updating law
(2) and the initial state learning formula (3), then, th@orm of the
output tracking error is bounded, if

initialization errorz;(to) — wa(to). (|11, = C()B(t)L(¢t)|| < 1, Yt € [to, T]. (5)
To solye the above problem, we shall use the D-type ILC updatlr%r a sufficiently large\
law [4], i.e., :
. by + O1(AT)
i (1) = wi(t) + L)) ) A el < 72720, ELGAT O
where L(t) € R™*" is a continuous learning gain matrix, togethetvhere
with an initial state learning algorithm given by p2 sup ||I — C()B(t)L(#)|| @)
te(tg, 1]
X to) = xi(to) + B(to)L(tg)e;(to). 3
+1(fo) = 2ifo) + Bito) Lito)es (to) ) O1N™) 2 bubebe|B(to. )]|r /A ®)
For the analysis of the ILC process, the following norms are intro- O2(A"Y) 2 bobaby/A. 9)

duced in this r:
bape In the case that the uncertainties and disturbances in the ILC iterations
max [fi] 1G] = max (i |gv’_|> tend to be the same, i.é,, — 0 andb, — 0, we have:; (t) — 0, i.e.,
1<i<n *'V 1<i<m \ &Y yi(t) = wa(t), and alsor;(t) — wq(t), u;(t) — wq(t) asi — oo
= for all t € [to, T).
Proof: Using (4) together with (1)-(3), the tracking error
ei+1(t) can be expressed as

ei.H(t) = yd(t) - yi-‘rl(t)

1711

[R®)lIx = sup e Ma@®],  A>0
t€[tg, 1]

Where f = [f]ﬂ.. . an]T |S a VECtOI’, G — [g”] c Rn))(n
is a matrix, andh(t)(t € [to,T]) is a real function. It should

be noted that the\-norm is equivalent to the infinity-norm be- = Ya(t) = v (1) = C(O)2(t.t0 )i (to)
cause||h()|lx < [[A()lee < IR()]]ae*T, where the infinity-norm — C()®(t,t0) B(to) L(to)ei(to)
17(6) | = sup,ero, 17 1A()])- t
To restrict our discussion, the following assumptions are made. - C(t)q)(t’fo)/t @(to. 7)(B(7)ui(T) + wi(7)) d7
Al) The uncertainty and disturbance termg(t) andv;(t) are "
bounded as followsyt € [to,T] andVi : - C(t)‘b(f,to)/l ®(to, 7)B(T)L(T)éi(T)dT
o

i (8) = wi(Olls < buv e (&) = vi(®)ls < b

— C(t)®(t,to) / D(to, 7)(wit1(7) — wi(7))dr. (10)
A2) Fort € [to,T], matrices B(¢t) and C(t)B(¢) have full fo

column ranks. Integrating the tern;(-) in (10) by parts yields
A3) B(t) and L(t) are differentiable ovefto, T]. Furthermore, -t ; ; )
it is required thatL(to) # 0, B(to) # 0. —C(t)@(t,to)/ O(to, 7)B(T)L(7)éi(T)dr
to

Assumption A_l) _puts the poundedness restrictions on the d?fferences — —C(O)®(t,t0)B(to,t) B(t) L(t)e: (1)
of the uncertainties and disturbances between two successive system )

repetitions. A3) is a reasonable assumption which makes the initial + C(to)®(t: to) ®(to, to) B(to) L(to)ei(to)
state correction possible. In this paper, a common fundamental COB(Et /L d Dt B(HL (M d
knowledge is that for a given bounded desired outpi(t), there +C®e(t0) t (IT( (to, M) B(T)L(7)}|es(r) dr

exists a unique bounded input;(t), t € [to,T] such that when = —C(t)B(t)L(t)es(t) + C(to)D(t. 1) B(to) L(to)ei(to)
u(t) = uq(t), the system has a unique bounded statét) and ot
ya(t) = C(t)xa(t),t € [to, T]. +C(f)<1>(f,fo)/ ¢(to, 7)ei(7) dr. (11)
The general solution of state (1) can be written in the following to
form: By substituting (11) in (10), we get
"t . — _ . — (- AT
x:(t) = B(¢, to){xi(to) +/ D (to, 7)[B(T)ui(1) + w;(7)] dT} e (D) =1 C(t)B(f)L.Ef)]Cl(t) (ita (8) —vil8))
fo % —O(t)cb(t,to)/ B(to, 7)(wisr (1) — w; (7)) dr
to
-t
where &(t, ty) stands for the state transition matrix of system (1). + C(t)(b(t,to)/ &(to, T)ei(T) dr. (12)
For brevity of our discussion, in the sequel, the following notations to
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Taking the norm of (12), we have
"t
lleira (DI < pllei ()] + bo +bwbcbq>/ |®(to. 7)|l d7
1
-t °
+bcb¢b¢/ llex(t)]] dr. (13)
to

Multiplying e~ ** on both sides of (13) and then taking thenorm
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Theorem l11.1: For the repetitive nonlinear time-varying uncertain
system (21) with Assumptions A1)-A4), given the desired trajectory
ya(t) over the fixed time intervdl,, 7], by using the ILC updating
law (2) and the initial state learning scheme (3), if (5) is satisfied, then
the A\-norm of the output tracking error is bounded. For a sufficiently
large A

2b, + 2beb, T 4+ O3(A™1)

gives i fles(®lly < 1—p—0s(2"1) vt € [to. T]
-1 (22)
lleirr (1 < pllei(®)llx + by + bubeba |8 (to, HON™)
+ bobaby|le: (T)]A O™ (14) where
where 1 bebukTONTY)
1A OsA ) =7 krO(A=T) (23)
ON )= ———— < -, vt € [to, T]. (15) L -1 -1
A A A fo. 7] O4s(A™") = beb, O\ + bcykf()(/\l _);b#gfg\)\,l)) o) :
Referring to (8) and (9), we can simply write (14) as i (24)
e; t < plle;(t + e 16
e Dl = p“ Oll 1_5 (16 If the uncertainties and disturbances of successive ILC iterations tend
lles (D[ < 7'|lea®)]Ix + 1 P (17) to be the same, i.eb,, — 0 andb, — 0, we havee;(t) — 0, i.e.,
-r yi(t) — yq(t), and alsox;(t) — x4(t), u;(t) — uwq(t) asi — oo
where for all ¢ € [to, T].
. Proof: The idea is similar to that of the proof of Theorem II.1.
P=p+02(A") (18) ' The formula for the tracking error &t + 1)th repetition is
e=b,+01(A71). (19)
i . . eit1(t) = ei(t) — (yirr — yi(t))
Clearly, 3\ > 0 such thatp < 1, VA > A\*. Thus = ei(t) — C()(wip1 — () — (vigr — vi(t)).  (25)
. . 1> bv + Ol(Ail) . .
Jim eIy < 7 5T T =0 1) (20) Integrating (21) gives

When b, and b, tend to zero, as — oo, ¢;(t) — 0, i.e.,
yi(t) — ya(t). Obviously, we also have;;(t) — xza4(t), and
u; (t) — uq(t) Vt € [to, T] asi — oo. |

Remark II.1: Assumption Al) is less restrictive than the conven-
tionally proposed one such as in [16]. In the case that at every ILC
iteration the uncertainty and disturbance are all the same, i.e., they

are repeatable, the final tracking error bound will be zero.

From (6), it can be seen that the initialization error has no effect
on the final tracking error bound through the initial state learning
scheme given in (3) together with the D-type ILC updating law (2).
This property still holds for nonlinear systems by using the same ILC

updating law (2) and initial state learning scheme (3).

I1l. N ONLINEAR UNCERTAIN SYSTEMS

xip1(t) — xi(t)
= B(to)L(to)e:i(to)

+ / (Frigs (7).7) — Flai(r).r)) dr

+ / (wig1(7) — 'LUi(T))dT-i-/‘ B(7)L(7)éi(r)dr

= B()L()ei(t)
+/ (f(@ita(r),7) = fl2i(7),7))dT
to

+ /f (wig1 (1) — wi (7)) dT — /f p(T)ei(T)dT. (26)

Substituting (26) into (25) and taking norm yields

The repetitive nonlinear time-varying uncertain system is described

by

{;L’i(t) = f(a;(t),t) + B(t)ui(t) + wi(t) 21)

yi(t) = C(t)a: (1) + vi(t).

lleisa (DN < plles(DIl+ by + bebuT

t
+ bckf/ [|#iv1(T) — 2 (7)|| dT
to

ot

Now, with the same assumptions, notations, and definitions as in ‘H’Ob*’/f lle: ()]l dr. @7)
Section Il if not otherwise indicated, we intend to show that with the °
same ILC updating law (2) and initial state learning scheme (3),Taking the \-norm for (27), we have
similar conclusion can be made for the above nonlinear time-varying
uncertain system (21). Before presenting Theorem 1.1, we need one leix1(D|Ix < pllei (D) + bo + bebo T
more assumption. + bokyllzier (t) — 2 (B)[[xOA™")

Ad) f(-,©) + R" x [to,T] — R" is a piecewise continuous + bebyllei ()][x O, (28)

function and satisfies a Lipschitz continuity condition, i.e.,
vt € [to,T] Taking theA-norm for (26) and assuming thatis large enough to

1 (i1 (£):8) = F(zs (8, < kgl (£) — 2i(8)] ensure

wherek; > 0 is the Lipschitz constant. A>kp(l—e ™) (29)
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Fig. 2. The tracking error bounﬂezi.

the relationship betwedhw; 1 (#) —2;(¢)||» and||e; ()] is given by IV. SIMULATION ILLUSTRATIONS

N The following uncertain time-varying nonlinear system is used for
boT + (b, O ) + b )llei(®)llx (30) the simulation studies:

lzivr (8) — zi(B)[]x < e
+1 A 1—kO(X 1) |:;in :| _ |:cu1 sin(;z:zi) 1+ oy sin (:L’L.) :| |::L'17. :|

. i i .7727. -2 — 5f —3 — 2t .7?27.
By substituting (30) into (28), thefje;+1(¢)|]|» can be expressed ur wy.
simply as + 2ug, wa,
3 . yu ()| _ 471, (0) n vy, (t)
lleiti (D)l < plles(t)]ln + € (31) Yo, (t) w2, (t) va, (1)
h wherei is the system repetition number and the titme [0, 1]. The
where uncertainties and output disturbances are
5= p+0iA ) (32) {“’h (’f)} 2 o { cos(2m fot) }
£ = by + bebuT + Os(AY) (33) v 2eosliniot)
N Y o ? ' v, (0) ]| a | sin(27 fot)
. - o ” oo, (1) | T 77 | 2sin(4n fot)
Obviously, a sufficiently large that satisfies (29) and the condition

p < 1 simultaneously exist. This completes the current proof bwhere fo = 1/(20h) Hz. The RK-4 method is used to numerically
referring to the proof of Theorem I1.1. O integrate the state equation with a fixed time steg: 0.01 s. The
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Fig. 3. The learning processes of initial states,(0), a2,(0).

desired tracking trajectories amg,(t) = y2,(t) = 12t>(1 — ).
Referring to (1)—(3), we knowB = diag[1, 2] andC = diag[4, 1].
So, the best learning matrix i&* (CB)™! = diag[0.25,0.5].
However, the system dynamics is assumed unknown. It is reasonable
to use the ILC updating law (2) with a modified learning gain matrix
L = «a3L*. And also in the initial state learning scheme (3), the
best learning coefficient matrisBL* = diag[0.25,1] is replaced
with a modified oneBL = «a4BL*. The coefficientsvs and au
are freely chosen to accommodate the inaccurate knowledgg of
and C. Without loss of generality, here we assume that at the first3]
ILC iteration, the initial states are;, (0) = as, 22,(0) = —as. Let

a = [a1, ag, -+, as]. Clearly, whena = [0,0,1,0,0], the system 4]
reduces to the one considered in [4], [20]. In our simulation studies,
the following three cases with differents were examined.

Case l:a = [1,0,1,0,0]. This is an ideal case without any
initialization error, uncertainty, and disturbance.

Case 2:a = [1,1,0.5,0.5,0.5]. This implies an initialization  [6]
error exists and an initial state learning scheme is applied. Some
uncertainties also exist i8 and C. 7]
Case 3:o = [1,1,0.5,0,0.5]. The initial state learning scheme
is switched off. The amplitudes of disturbance and uncertainty
are twice of the initialization error, which are the same as in
Case 2. 8

Let the final tracking error bound be ;. = SUDepo 1 | € () |
j = 1,2. Then the simulation results are shown in Figs. 1-3. For al[9]
the three cases, the ILC termination conditions are all the same, i.e.,
the simulation will stop ifbejz_ < 0.01,Vj = 1,2. (10]
From Figs. 1-3, we can observe that the initial state learning
scheme is effective. The initial states finally track the desired ongsi]
In Case 3, we note that the final tracking error bounds are directly
contributed by initialization errors. This can be explained from
Remark 1.1 becausé, = b, = 0.

(1]
(2]

(5]

[12]
V. CONCLUSION

In this paper, an initial state learning scheme is proposed (]
completely eliminate the effect of the initialization errors on the final
tracking error bounds through ILC with a traditional D-type updatin 4
law. Both linear and nonlinear time-varying uncertain systems ha e]
been studied. It is shown that the final tracking errors are uniformly
bounded and these bounds are only dependent on the system un-

certainties and disturbances, but independent of the initialization
errors. Furthermore, the desired initial states can be identified through
learning iterations.
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Robustness of Supervisors for Discrete-Event Systems  eqpectively, the finite and infinite logical behavior of the systam.
denotes the set of all DES’s defined over
A control structureis defined as a st C 2* such that: 1) is
closed under the operation of intersection of sets and 2)dfl" and
Abstract—Supervisory control in the context ofw-languages is consid- 7 C 7 € 27, theny’ € T This definition corresponds to the control
ered. The nominal supervisor design problem is to find a nonblocking Structure assumed in [4] wherg is partitioned into a sek. of
supervisor for a nominal plant such that the closed-loop infinite behavior controllable events and a set, of uncontrollable events ang e 2>
equals a specified closed-loop behavior. The robustness of solutions t0jg an element of” if and only if v D £,. A control inputy € T

the nominal problem is defined with respect to variations in the plant. -
It is shown there exists a supervisor solving the nominal problem which represents the set of next events allowed to occuf iThroughout

maximizes the set of plants for which the closed-loop languages for all theé paper we assume a control structlires given.
other plants in the set satisfy lower and upper bounds in the sense A supervisor is defined as a mgpX* — T that applies a control
of language containment. Computational issues are discussed, and thejnput v to a DES as a function of the observed sequence of past
theoretical results are illustrated with an example. events. f/G denotes the DES resulting fro under control of
Index Terms—Discrete-event systems, robustness, supervisory control. f, where L;,; is the set of finite strings o& that subsist under
control law f, and Sy, = lim(L;;5) N S¢. We say thatf is a
nonblocking supervisofor G if pre(Sy;) = L. We assume
without loss of generality thaf is a total function, which implies
This paper concerns robustness of supervisors for discrete-event= dom(f) O L, i.e., f is completefor any G € A [5].
systems (DES’s) modeled by pairs of languages corresponding t@Given a DESG € A¥, a languageR C X* is *-controllable
their finite and infinite ¢-language) behaviors, an extension of thvith respect toL if Vs € R, 3y € T such thaty N X, (S) =
finite-string language framework [4] that allows for the representation,,(S); a languagel’ C ©* is *-controllable with respect td.¢
of nonterminating processes and liveliness specifications [2]-[H].pre(T) is *-controllable with respect td.;; T is w-controllable
We consider the robustness of nonblocking supervisors designedwgth respect toG if pre(T) = pre,(T) wherepre,(T) = {t €
nominal plants to satisfy specifications for the nominal closed-logpe(7)|37" € =¥, T' # 0, T'is *-controllable w.r.t. Ls/t and
infinite behavior. The objective is to design the supervisor so asdoclosed w.r.t.S¢ /*.
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