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Generalized Matrix Measure of Switched Nonlinear
Systems

Z. G. Li, C. Y. Wen, Y. C. Soh, and W. X. Xie

Abstract—A concept of generalized matrix measure for nonlinear sys-
tems is proposed to study the stability of switched nonlinear systems di-
rectly. Based on this concept, some sufficient conditions for robust stability
of switched nonlinear systems are derived by using the methods of cycle
analysis and contraction analysis.

Index Terms—Contraction, generalized matrix measure, robust stability,
switched nonlinear systems.

I. INTRODUCTION

Switched systems are composed of some continuous variable dy-
namic systems (CVDS) along with certain maps for switchings among
them [2]. Recently, the stability of switched systems has been studied
by many researchers. Liberzon and Morse [9] used Lie algebra to
study the stability of switched systems. Branicky [2], Liet al. [8], and
Johansson and Rantzer [5] used multiple Lyapunov functions to study
the stability of switched systems. Since these methods are based on
the Lyapunov stability theory, they need to find some implicit motion
integrals which seems complicated [10]. It is desirable to provide a
simple method to study the stability of switched nonlinear systems
directly.

In this note, we shall provide such a method by introducing a new
concept of generalized matrix measure for nonlinear systems. The gen-
eralized matrix measure is derived from the matrix measure, which is an
effective tool for the stability and robustness analysis of linear systems
[6]. Using the provided generalized matrix measure, the stability and
robustness of nonlinear systems can be studied via a virtual displace-
ment instead of Lyapunov functions. This simplifies the complexity
of analysis. The method based on such a measure can be regarded as
“contraction analysis method,” which was firstly presented by [10] to
consider the stability of a single nonswitched nonlinear systems. We
shall also use this method to study the robust stability of switched non-
linear systems where the dwell time of each subsystem is in some given
interval. However, the contraction analysis method cannot be directly
used to study a switched nonlinear system because a switched nonlinear
system is always composed of some unstable subsystems. To overcome
this difficulty, the methods of contraction analysis and cycle analysis
should be used together to study the stability and robustness of switched
nonlinear systems.

The rest of the note is organized as follows. The problem is formu-
lated in the following section. Generalized matrix measure is proposed
in Section III and the main results are derived in Section IV. Section V
contains a numerical example to illustrate the application of the main
results. Finally, the note is concluded in Section VI.
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II. PROBLEM FORMULATION

This note considers the following switched nonlinear systems which
is composed of finite number of CVDS:

_X(t) = f(X(t); m(t)) + �f(X(t); m(t)) (1)

whereX(t) 2 Rr is the continuous state andm(t) 2 M =
f1; . . . ; ng is the discrete state,m(t) is left continuous with eachi cor-
responding to a vector fieldf(X(t); i). In (1),f; �f : Rr�M ! Rr

are smooth vector fields, and�f(X(t); m(t)) represents the pertur-
bations of the model.

Let tj denote thejth switching instant,t�j andt+j represent respec-
tively the time just before and just aftertj . When the trajectory of
system (1) intersects the hypersurface

S
m(t );m(t )

= f(X(t�j ); t�j )j�(m(t�j ); m(t+j ); X(t�j ); t�j ) = 0g (2)

some “switchings” will occur as follows [1]:

X(t+j ) = h(X(t�j ); m(t�j ); m(t+j ))

+�h(X(t�j ); m(t�j ); m(t+j ))

m(t+j ) =  (t�j ; X(t�j ); m(t�j ))

(3)

where�: M � M � Rr � R+ ! R, h: Rr � M � M ! Rr,
 : R+ � Rr � M ! M , h and �h are smooth functions and
�h(X(t�i ); m(t�j ); m(t+j )) represents the perturbations of the reset
map.

Equations (1) and (3) imply that a switching occurs when the states
of the CVDS are in a corresponding hypersurface and the switching
results in an abrupt change in the vector fieldf and a jump in the tra-
jectory ofX(t). If h(X(t�j ); m(t�j ); m(t+j )) = X(t�j ) (i.e.,h is an
identity reset map) and�h(X(t�j ); m(t�j ); m(t+j )) = 0, then the
trajectory of the switched nonlinear system is continuous. In this case,
there is no impulsive effect.

The system is said to be locally asymptotically stable with respect
to a given trajectory if all trajectories in its neighborhood remain in the
neighborhood and converge to the given trajectory. This given trajec-
tory can be either an invariant set or an equilibrium. When we consider
the robust stability of the switched system, we only consider the case
of an equilibrium.

Let tks; i and tkf; i denote respectively thekth starting time and the
kth ending time of CVDSi. In this note, we suppose that

0 < �1; i = inf
k
ftkf; i� t

k
s; ig � sup

k

ftkf; i� t
k
s; ig = �2; i <1: (4)

Equation (4) implies that the dwell time of CVDSi is in a given interval
[�1; i; �2; i]. This assumption has also been used in [9] and [11], and
it is a quite common assumption.

The Objective: In this note, we shall study the local robust stability
of the switched systems (1) and (3) satisfying (4) by using some simple
and direct method, rather than finding some implicit motion integrals
using Lyapunov theory as in [7] and [11].

III. GENERALIZED MATRIX MEASURE

In this section, we shall first introduce some basic notations. Suppose
that matricesA = [aij ] 2 R

r�r andB = [bij ] 2 R
r�r. As a notation,

A � B if and only if aij � bij for all pairs(i; j) with 1 � i; j � r.
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The modulus matrix ofA is denoted asjAjm and is given byjAjm =
[jaij j] [6].

The system given by (1) and (3) can be regarded as ann-dimen-
sional fluid flow, where _X is then-dimensional “velocity” vector at
then-dimensional positionX. Then equations (1) and (3) without per-
turbations (i.e.,�f � 0; �h � 0) yields the differentiable relations
[10]

d�X(t)

dt
=

@f

@X
(X(t); m(t))�X(t) (5)

and

�X(t+j ) =
@h

@X
(X(t�j ); m(t�j ); m(t+j ))�X(t�j ) (6)

where�X is a virtual displacement which is an infinitesimal displace-
mentat fixed time . Note that a virtual displacement, pervasive
in physics and in the calculus of variation, is also a well defined math-
ematical object.

From (5) and (6), we have

d�XT �X

dt
= �XT @fT

@X
+

@f

@X
�X

and

�XT (t+j )�X(t+j ) = �XT (t�j )
@hT

@X

@h

@X
�X(t�j ): (7)

In this note, we derive some sufficient conditions for the stability
of switched nonlinear systems by considering the characteristics of
�XT �X along each type of cycle. To achieve this, we shall introduce
the concept of the generalized matrix measure for nonlinear systems.

Definition 1: For any continuous differentiable functionf(X), the
generalized matrix measure of the function,~�(f; CS), ~�(jf jm; CS),
in a compact setCS, are of the forms

~�(f; CS) = sup
X2CS

~�
@f

@X
(8)

~�(jf jm; CS) = sup
X2CS

~�
@f

@X
m

(9)

(10)

and the generalized matrix norm,kfkCS , kjf jmkCS , in a compact set
CS, are of the forms

kfkCS = sup
X2CS

@f

@X
;

kjf jmkCS = sup
X2CS

@f

@X
m

: (11)

In order to show the implication of Definition 1, we consider the case
thatf(X) = AX andCS = Rr. From Definition 1, we have

~�(A; Rr) =�(A); ~�(jAjm; R
r) = �(jAjm)

kAkR = kAk; kjAjmkR = kjAjmk:

Therefore, our definition reduces to the standard definition of matrix
measure and matrix norm whenf(x) is a linear function. For more
background about matrix measure and its application in robustness
analysis of linear systems, please see [12] and [4].

We now derive some properties of the generalized matrix measure.
Lemma 1: For any continuously differentiableg(x) andf(x) satis-

fying j@f=@Xjm � A within a compact set CS anda � 0, we have

~�(f + g; CS) � ~�(f; CS) + ~�(g; CS) (12)

~�(f; CS) �kfkCS (13)

~�(af; CS) = a~�(f; CS) (14)

~�(f; CS) � ~�(jf jm; CS) � �(A) (15)

kfkCS �kjf jmkCS � kAk: (16)

Proof: We only prove inequality (12) as the other inequalities can
be proved in a similar way. For any fixedX 2 CS, we have

~�
@f

@X
(X) +

@g

@X
(X) � ~�

@f

@X
(X) + ~�

@g

@X
(X)

� ~�(f; CS) + ~�(g; CS):

It follows that:

~�(f + g; CS) = sup
X2CS

~�
@(f + g)

@X
(X)

= sup
X2CS

~�
@f

@X
(X) +

@g

@X
(X)

� ~�(f; CS) + ~�(g; CS):

It can be known from (5) and (6) and Definition 1 that the virtual dis-
placement can be used to study the stability and robustness of nonlinear
systems with the help of generalized matrix measure and its properties.

IV. M AIN RESULTS

Before presenting the stability result in this note, we introduce the
concept of cycles and give some supporting results.

A logical path in the switched systems (1) and (3) is a sequence
m(t+i ); m(t+i +1); . . . ; m(t+i +k). A finite logical path m(t+i );

m(t+i +1); . . . ; m(t+i +k) is closed ifm(t+i ) = m(t+i +k). A closed
logical pathLC = m(t+i ); m(t+i +1); . . . ; m(t+i +k) in which no
state appears more than once except for the one that is the first and the
last is a cycle. We can find all types of cycles by using graph theory
[3]. In this note, we suppose that the total number of the types of cycles
is �0 and we denote these cycles asLC(1); LC(2); . . . ; LC(�0). We
now state some results about cycles.

Lemma 2 [7] (Cycle Lemma 1):Every closed path is composed of
some cycles.

Lemma 3 [7] (Cycle Lemma 2):Suppose that(l+1) discrete states
m(t+i +s)(0 � s � l) belong to a set which is composed ofl different
discrete statesjk(1 � k � l). Then there exists at least one cycle in
the logical pathm(t+i ); m(t+i +1); . . . ; m(t+i +l).

For CVDSi, letCS(i) denote the set

CS(i) = X
@fT

@X
(X; i) +

@f

@X
(X; i) is negative definite

and define

CS =

n

i=1

CS(i) (17)

CS(i) =
CS(i) CS(i) 6= ;

; Otherwise.
(18)

In this note, we suppose that the following assumption holds.
Assumption 1:There exists a compact setSCS � CS such that

SCS contains the given trajectory and for eachLC(j)(1 � j � �0),
we have

~�(j) =
i2LC(j)

~�(f(X; i); SCS)�3; i

+ ln(kh(X; i; l)kS ) < 0 (19)
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where

�3; i =
�1; i i 2 �2

�2; i i 2 �1
(20)

�1 = fij~�(f(X; i); SCS) � 0g;

�2 = fij~�(f(X; i); SCS) < 0g: (21)

Remark 1: Assumption 1 implies that there exists a compact set
such that�XT �X is nonincreasing along each type of cycle when the
state stays in the set. The compact set is the wholeRr space if each
subsystem is linear. Moreover, whenf(X; i) = A(i)X, i.e., it is a
linear function,i 2 �1 implies that the matrix measure ofA(i) is not
less than 0 andi 2 �2 implies that the matrix measure ofA(i) is less
than 0.

Remark 2: We now give a general method to check Assumption
1. Without loss of generality, we suppose that the given trajectory is
~X(t)(t � t0) and define

�̂j( ~X(t)) =
i2LC(j)

@f

@X
( ~X(t))�3; i +

@h

@X ~X(t)

: (22)

Check if there exists a�0 such that the setfX(t)jkX(t)� ~X(t)k < �0g
is a subset ofCS and if �̂j( ~X(t)) < 0 holds for all j. If so, then
Assumption 1 holds. The reason for this is presented as follows.

Since�̂j( ~X(t)) < 0, then there exists a�j(1 � j � �0) such that
whenkX(t)� ~X(t)k < �j , we have

�̂j(X(t))< 0:

Let � = (1=2)min0�j�� f�jg and

SCS = fX(t)jkX(t)� ~X(t)k � �g: (23)

Then Assumption 1 holds withSCS given in (23).
For a given system, there may be some other better methods to find

a larger compact setSCS to satisfy Assumption 1, for example, an
alternative method presented in the numerical example in Section V.

Proposition 1: Suppose that Assumption 1 holds. Consider a closed
pathCPk with the starting time beingts;CP and the ending time being
tf;CP . If X(t) 2 SCS holds for allt 2 [ts; CP ; tf;CP ], then we
have

k�X(tf;CP )k ��
TNOC

k�X(ts;CP )k (24)

and

k�X(t+j )k �
i2�

e~�(f(X; i); SCS)�

� (max
i; l

fmaxf1; kh(X; i; l)kS gg)n

� k�X(ts;CP )k (25)

wherets;CP � t+j � tf;CP , TNOCt ; t is the total
number of cycles in the closed path fromm(ts;CP ) to m(tf;CP )
and

� = max
1�j��

e~�(j): (26)

Proof: We only consider the case that the closed path is com-
posed of two cycles. The other cases can be shown in a similar way.
Firstly, we shall show that (25) holds.

From Definition 1, we have

k�X(tkf; i)k � e~�(f(X; i); SCS)� k�X(tks; i)k; i 2 �2 (27)

k�X(tkf; i)k � e~�(f(X; i); SCS)� k�X(tks; i)k; i 2 �1 (28)

k�X(t+j )k �kh(X; m(t�j ); m(t+j ))kS

� k�X(t�j )k; 8 tj : (29)

From (27)–(29), we know that

k�X(t+j )k �

i2ST (t ; t )

e~�(f(X; i); SCS)�

�kh(X; i; l)kS k�X(ts;CP )k

wherel is the model next toi and

ST (ts;CP ; t+j ) = fiji is in the path fromm(ts;CP ) tom(t+j )g:

To complete the proof of (25), we consider the following two cases.

a) There is no CVDS appearing twice in the path fromm(ts;CP ) to
m(t+l ) except for the one that is the first and the last. Then there
exist at mostn CVDS in the path. It follows that (25) holds.

b) There is one CVDS appearing twice in the path. Suppose that the
cycle is cycleLC(j0). Using (19), we have

k�X(t+j )k

� e~�(j )

i2ST (t ; t )�ST (t ; t )

� e~�(f(X; i); SCS)� kh(X; i; l)kS k�X(ts;CP )k:

Note that the total number of the CVDS in the set
(ST (ts;CP ; t+l ) � ST (ts;LC(j ); tf;LC(j ))) is less
than or equal ton because there is no cycle in the set
(ST (ts;CP ; t+l )� ST (ts;LC(j ); tf;LC(j ))). It follows that
(25) holds.

We now show that (24) holds.
Note that

k�X(tf;CP )k

�
i2ST (t ; t )

e~�(f(X; i); SCS)�

� kh(X; i; l)kS k�X(ts;CP )k

= exp
i2ST (t ; t )

[~�(f(X; i); SCS)�3; i

+ ln(kh(X; i; l)kS )] k�X(ts;CP )k: (30)

Suppose that the closed path is composed of cyclesLC(j0) and
LC(j1). Then rearrange the right side of (30) such that each cycle is
a unit. Using (19), we have

k�X(tf;CP )k � e~�(j )e~�(j )k�X(ts;CP )k

��2k�X(ts;CP )k:

It follows that (24) holds.
We now consider the stability of a switched nonlinear system of the

form (1) and (3) without perturbations.
Theorem 1: A switched nonlinear system of the form (1) and (3)

without perturbations (i.e.,�f � 0; �h � 0) is locally asymptoti-
cally stable with respect to a given trajectory if Assumption 1 holds.

Proof: Suppose that the radius of the largest ball inSCS isr. Let
(31) hold true, as shown at the bottom of the page. We now show that the
switched nonlinear system is asymptotically stable ifk�X(t0)k � r0.
We divide the proof into three steps.
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Step 1: We prove that for anyt�j , if X(t) 2 SCS holds for all
t0 � t � t�j , then

k�X(t)k

�
i2�

e
2~�(f(X; i); SCS)�

� max
i; l

fmaxf1; kh(X; i; l)kS gg
2n�2

k�X(t0)k (32)

holds for anyt0 � t � t+j .
Since there are infinite switchings in switched systems and the

CVDS is finite, there exists at least two CVDS which appear infinite
times. Suppose thati0 is the first of the two such CVDS. Using
Proposition 1, we know that

k�X(tk+1s; i )k ��
TNOC

k�X(tks; i )k; k � 1 (33)

whereTNOC
t ; t

is the total number of the cycles in the path

from m(tks; i ) to m(tk+1s; i ).
We now show that

k�X(t1s; i )k

� �
TNOC

i2�

e
~�(f(X; i); SCS)�

� max
i; l

fmaxf1; kh(X; i; l)kS gg
n�2

k�X(t0)k: (34)

a) If there is no state appearing twice in the path fromm(t0) to
m(t1s; i ), from Lemma 3, we know that there exist at most(n�
2) different CVDS in the path fromm(t0) to m(t1s; i ). By in-
equalities (27) and (28), we know that (34) holds.

b) If there exist some CVDS appearing twice in the path fromm(t0)
tom(t1s; i ). Similar to the proof of Proposition 1, we know that
(34) holds.

From (33), (34), and Proposition 1, we know that

k�X(t)k

� �
TNOC

i2�

e
2~�(f(X; i); SCS)�

� max
i; l

fmaxf1; kh(X; i; l)kS gg
2n�2

k�X(t0)k: (35)

It follows that (32) holds.
Step 2: We show thatX(t) 2 SCS for any t if k�Xk � r0 by

induction.

A) Consider the case thatt0 � t � t+1 . Suppose that there exists
a t0 such thatX(t0) 62 SCS, i.e.,

k�X(t0)k > r:

Note thatX(t0) 2 SCS. Then, there exists at00 such that

k�X(t00)k = r; k�X(t)k � r; t 2 [t0; t
00] (36)

and

@fT

@X
(X(t); m(t0)) +

@f

@X
(X(t); m(t0))

� 2~�(f(X; m(t0)); SCS)I (37)

holds for allt0 � t � t00.
From (37), we know that

k�X(t00)k � e
~�(f(X;m(t )); SCS)(t �t )k�X(t0)k < r:

Clearly, this contradicts with (36). Thus,X(t) 2 SCS holds
for t0 � t � t�1 . It follows that:

k�X(t�1 )k � e
~�(f(X;m(t )); SCS)(t t )k�X(t0)k

<
r

max
i; l

fmaxf1; kh(X; i; l)kS gg
2n�1

and

k�X(t+1 )k �kh(X; m(t�1 ); m(t+1 )kS k�X(t�1 )k < r:

In other words,X(t+1 ) 2 SCS.
B) Suppose thatX(t) 2 SCS holds for allt0 � t � t+N .

We consider the case thatt+N � t � t+N+1. From As-
sumption 1 and the first step, we know that as shown in the
equations at the bottom of the page and

k�X(t+N)k �kh(X; m(t�N ); m(t+N ))kS k�X(t�l )k

�
r

e
~�(f(X;m(t )); SCS)�

:

Thus,X(t+N ) 2 SCS. Similar to A), we know thatX(t) 2
SCS holds fort+N � t < t+N+1.

By induction, we know thatX(t) 2 SCS for anyt.
Step 3: We shall show that the theorem holds.
Note thatTNOCt ; t !1 ast!1, thus, from (35), we have

lim
t!1

k�X(t)k = 0:

That is, the result holds.

r0 =
r

i2�

e2~�(f(x; i); SCS)� (maxi; lfmaxf1; kh(X; i; l)kS gg)2n�1emax ~�(f(X; i); SCS)�
: (31)

k�X(t�N)k �
i2�

e
2~�(f(X; i); SCS)� max

i; l
fmaxf1; kh(X; i; l)kS gg

2n�2

k�X(t0)k

�
r

max
i; l

fmaxf1; kh(X; i; l)kS gge
~�(f(X;m(t )); SCS)�
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Consider the case thath(X; i; l) = X, that is, there is no impulsive
switchings in the switched nonlinear systems. In this case, Assumption
1) becomes

Assumption 10: There exists a compact setSCS � CS such that
SCS contains the given trajectory and

~�(j) =
i2LC(j)

~�(f(X; i); SCS)�3; i < 0; 1 � j � �0: (38)

From Theorem 1, we can obtain the following corollary.
Corollary 1: A nonimpulsive switched system of the form (1)

without perturbations [i.e.,�f(X; i) � 0(1 � i � n)] is locally
asymptotically stable with respect to a given trajectory if Assumption
10 holds.

We now consider the robust stability of the switched nonlinear sys-
tems (1) and (3). Suppose that the system satisfies the following as-
sumptions.

Assumption 2:�f satisfies the bound

@�f(X(t); m(t))

@X
m

� qB(m(t)); X(t) 2 SCS; 8 t

whereq is a real-positive number andB(m(t)) is a known nonnegative
matrix.

Assumption 3:�h satisfies that

@�h(X(t�i ); m(t�j ); m(t+j ))

@X
m

� qC(m(t�j ); m(t+j ));

X(t�j ) 2 Sm(t );m(t )

whereC(m(t�j ); m(t+j )) is a known nonnegative matrix.
Remark 3: These two assumptions are reasonable because

@�f(X(t); m(t))=@X and @�h(X(t); m(t�j ); m(t+j ))=@X are
continuous functions ofX(t) and SCS and S

m(t );m(t )
are

compact sets. Moreover, they imply that the perturbations are bounded
by some known nonnegative matrices.

Theorem 2: Suppose that a switched nonlinear system given by (1)
and (3) without perturbations [i.e.,�f(X; i) � 0 and�h(x; i; l) �
0 (1 � i; l � n)] satisfies the condition of Theorem 1. Then the
switched system with perturbations is still locally asymptotically stable
if q < minfmin1�j�� fp0(j)g; mini2� fp2(i)gg, wherep0(j)(1�
j � �0) are, respectively, the solutions of the following equations(1 �
j � �0):

i2LC(j)

ln 1 +
kC(i)k

@h(X; i; l)

@X
S

p0(j)

+ p0(j)
i2LC(j)

�3; i�(B(i))

+
i2LC(j)

ln
@h(X; i; l)

@X
S

+ �3; i~�(f(X; i); SCS) = 0 (39)

and

p2(i) = �
~�(f(X; i); SCS)

�(B(i))
:

Proof: We shall first show that~�(f(X; i)+�f(X; i); SCS) <
0 holds for alli 2 �2 whenq < mini2� fp2(i)g. From inequalities
(12) and (15), we know that

~�(f(X; i) + �f(X; i); SCS)

� ~�(f(X; i); SCS) + ~�(�f(X; i); SCS)

� ~�(f(X; i); SCS) + ~�(j�f(X; i)jm; SCS)

� ~�(f(X; i); SCS) + q�(B(i)):

It follows that ~�(f(X; i) + �f(X; i); SCS) < 0 holds whenq <
mini2� fp2(i)g.

Then, we need to show that

i2LC(j)

[ln kh(X; i; l) + �h(X; i; l)kS

+�3; i~�(f(X; i) + �f(X; i); SCS)] < 0

holds for all1 � j � �0.
From inequalities (13), (15), (16), and (14), we have

i2LC(j)

[ln kh(X; i; l)+�h(X; i; l)kS �ln kh(X; i; l)kS

+ ~�(�3; i�f(X; i); SCS)]

�
i2LC(j)

[ln(kh(X; i; l)kS + k�h(X; i; l)kS )

� ln kh(X; i; l)kS +�3; i~�(j�f(X; i)jm; SCS)]

�
i2LC(j)

[ln(kh(X; i; l)kS + kj�h(X; i; l)jmkS )

� ln kh(X; i; l)kS +�3; i~�(j�f(X; i)jm; SCS)]

�
i2LC(j)

[ln(kh(X; i; l)kS + qkC(i; l)k)

� ln kh(X; i; l)kS + q�3; i�(B(i)))]

=
i2LC(j)

ln 1 + q
kC(i; l)k

kh(X; i; l)kS
+ q�3; i�(B(i))) :

It follows that:

i2LC(j)

[ln kh(X; i; l) + �h(X; i; l)kS

+ ~�(�3; i(f(X; i) + �f(X; i); SCS)]

�
i2LC(j)

[ln kh(X; i; l) + �h(X; i; l)kS

�ln kh(X; i; l)kS +�2; i~�(�f(X; i); SCS)]

+
i2LC(j)

[ln kh(X; i; l)kS +�3; i~�(f(X; i); SCS)]

�
i2LC(j)

ln 1 + q
kC(i; l)k

kh(X; i; l)kS
+ q�3; i�(B(i)))

+
i2LC(j)

[ln kh(X; i; l)kS +�3; i~�(f(X; i); SCS)]

=  (q):

Note that

d (q)

dq
=

i2LC(j)

kC(i; l)k

kh(X; i; l)kS

1 +
kC(i; l)k

kh(X; i; l)kS
q

+�3; i�(B(i)) :
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Obviously, d (q)=dq > 0. Therefore, when0 < q <
min1�j�� fp0(j)g, we have

i2LC(j)

[ln kh(X; i; l) + �h(X; i; l)kS

+�3; i~�(f(X; i) + �f(X; i); SCS)] < 0:

From Theorem 1, we know that the perturbed switched system is locally
asymptotically stable.

Remark 4: The Conditions of Theorem 2 imply that�XT �X
is still nonincreasing along each type of cycle in the presence of
uncertainties.

If there is no impulsive switchings in the switched systems, then we
have the following.

Corollary 2: Suppose that the nonimpulsive switched system of the
form (1) without perturbations [i.e.,�f(X; i) � 0 (1 � i � n)] sat-
isfies the condition of Corollary 1. Then the perturbed nonimpulsive
switched system is locally asymptotically stable in the sense of Lya-
punov if q < min1�j�� fp3(j)g, where

p3(i) =

�
i2LC(j)

�3; i~�(f(X; i); SCS)

i2LC(j)

�3; i�(B(i))
; 1 � j � �0: (40)

Remark 5: If Assumptions 1), 2), and 3) hold globally, then the cor-
responding global stability and robustness results can be established.

V. A NUMERICAL EXAMPLE

In this section, we use an example to illustrate the results obtained.
Consider the following nonimpulsive switched nonlinear system com-
posed of two CVDS

f(X; 1) =
�2X1 + 3X2

1

�3X2 +X2
2

; �f(X; 1) =
qX2

1

qX2
2

f(X; 2) =
X1 +X2

1

X2=2 + 2X3
2

; �f(X; 2) =
qX1

qX2
2

:

The dwell time of CVDS 1 and CVDS 2 are 6 and 2.5, respectively.
Note that

CVDS 1:
d�X(t)

dt
=

�2 + 6X1 0

0 �3 + 2X2

�X(t)

+ q
2X1 0

0 2X2
�X(t)

CVDS 2:
d�X(t)

dt
=

1 + 2X1 0

0 1=2 + 6X2
2

�X(t)

+ q
1 0

0 2X2
�X(t):

It follows that:

CS(1) = fXjX1 < 1=3;X2 < 3=2g; CS(2) = ;:

Thus,CS = CS(1). Let �0 = 1=6. Obviously, the setfXjkXk <
1=6g is a subset ofCS. It can also be checked that�̂(0) = �2� 6 +
2:5 � 1 < 0. Similar to Remark 2, Assumption 10 can be checked as
follows.

Note that̂�(X) < 0whenkXk < �1
�
=1=6. Consider the following

compact set:

SCS = fXjkXk � 1=12g:

From Definition 1, we know that

~�(f(�; 1); SCS) = �1:5; ~�(f(�; 2); SCS) = 1=6:

It can be shown that

6~�(f(�; 1); SCS) + 2:5~�(f(�; 2); SCS) < 0:

That is, Assumption 10 holds. From Corollary 1, we know that the
switched nonlinear system without perturbations is locally asymptoti-
cally with respect toXe = 0.

It is also possible to find some other type of compact sets to satisfy
Assumption 10. Actually, consider the following compact set:

SCS = fXj � 1 � X1 � 1=6;�1=2 � X2 � 1=2g: (41)

From Definition 1, we know that

~�(f(�; 1); SCS) = �1; ~�(f(�; 2); SCS) = 2:

It can be shown that

6~�(f(�; 1); SCS) + 2:5~�(f(�; 2); SCS) = �1 < 0:

That is, Assumption 10 holds.
We shall now consider the robust stability withSCS given in (41).

From Assumption 2, we obtain

B(1) =
2 0

0 1
B(2) =

1 0

0 1
:

From Corollary 2, we know that whenq < 1=14:5, the switched non-
linear system is locally asymptotically stable with respect toXe = 0.

VI. CONCLUSION

We have proposed a new concept of generalized matrix measure for
nonlinear systems to study the stability of switched nonlinear systems
directly. Based on this concept, we have derived some robust stability
conditions for switched nonlinear systems by using the cycle analysis
method and contraction analysis method, rather than through finding
some implicit motion integrals in Lyapunov theory.
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