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Generalized Matrix Measure of Switched Nonlinear Il. PROBLEM FORMULATION

Systems This note considers the following switched nonlinear systems which

Z.G.Li, C. Y. Wen, Y. C. Soh, and W, X. Xie is composed of finite number of CVDS:

X(t) = F(X(1), m(t)) + AF(X(t), m(t)) @

Abstract—A concept of generalized matrix measure for nonlinear sys-
tems is proposed to study the stability of switched nonlinear systems di- \yhere X(t) € R" is the continuous state anda(t) € M =
rectly. Based on this concept, some sufficient conditions for robust stability Y . . . . .
of switched nonlinear systems are derived by using the methods of cycle .. ”} isthe dlscre’_[e statm(t)’ls left conFlnuqus \fylthiac‘hcoi
analysis and contraction analysis. responding to a vector field( X (¢), i). In (1), f, Af: R"xM — R
are smooth vector fields, anf (X (¢), m(¢)) represents the pertur-
bations of the model.

Let?; denote thg'th switching instant;” amdtjr represent respec-
tively the time just before and just afteéy. When the trajectory of
I. INTRODUCTION system (1) intersects the hypersurface

Index Terms—Contraction, generalized matrix measure, robust stability,
switched nonlinear systems.

Switched systems are composed of some continuous variable rc?zl\y
namic systems (CVDS) along with certain maps for switchings amofig:(¢; ), m(t})
them [2]. Recently, the stability of switched systems has been studied = {(X(t;), t;)]o(m(t;)), m,(t;r), X(t). t;)=0} (2
by many researchers. Liberzon and Morse [9] used Lie algebra to
study the stability of switched systems. Branicky [2] etial.[8], and  some “switchings” will occur as follows [1]:
Johansson and Rantzer [5] used multiple Lyapunov functions to study
the stability of switched systems. Since these methods are based on X(th) = h(X (7)., m(t;), m(t]))
the Lyapunov stability theory, they need to find some implicit motion +Ah(X(fj_)’ m(fj_ ), m(tj')) @)
integrals which seems complicated [10]. It is desirable to provide a
simple method to study the stability of switched nonlinear systems
directly. whereg: 3 x M x R" x R — R, h: B" x 3 x 3 — R,

In this note, we shall provide such a method by introducing a new R+ x B" x M — M, h and Ah are smooth functions and

con_cept ofge_neralized n_watrix_measure for nonli_near systems. The_g/ r){(}((f). m(t;), m(t1)) represents the perturbations of the reset
eralized matrix measure is derived from the matrix measure, which is v 77 7

effectiv_e tool for thg stability anq robustne_ss analysis of linear _SYStemSEq.uations (1) and (3) imply that a switching occurs when the states
[6]. Using the provided generalized matrix measure, the stability agd e c\/ps are in a corresponding hypersurface and the switching
robustness of nonlinear systems can be studied via a virtual displages,its in an abrupt change in the vector figldnd a jump in the tra-
ment instead of Lyapunov functions. This simplifies the complexi%ctory of X (4). If A(X (+7), m(t7), m(+1)) = X (+7) (i.e.,h is an

of analysis. The method based on such a measure can be regardggdegity reset map) andzh(X(t-j), m(t-j), m(ﬁ))]: 0, then the
“contraction analysis method,” which was firstly presented by [10] t@ajectory of the switched nonlinear system is continuous. In this case,
consider the stability of a single nonswitched nonlinear systems. Wgsyre is no impulsive effect.

shall also use this method to study the robust stability of switched non-The system is said to be locally asymptotically stable with respect
linear systems where the dwell time of each subsystem is in some giyg1 given trajectory if all trajectories in its neighborhood remain in the
interval. However, the contraction analysis method cannot be directigighborhood and converge to the given trajectory. This given trajec-
used to study a switched nonlinear system because a switched nonlinearcan be either an invariant set or an equilibrium. When we consider
system is always composed of some unstable subsystems. To overctitaaobust stability of the switched system, we only consider the case
this difficulty, the methods of contraction analysis and cycle analysi§ an equilibrium.

should be used together to study the stability and robustness of switcheldet ¢* ; andtj},l- denote respectively theth starting time and the

m(th) = v(t;, X(t;), m(t;))

nonlinear systems. kth ending time of CVDS. In this note, we suppose that
The rest of the note is organized as follows. The problem is formu-
lated in the following section. Generalized matrix measure is propose@i< A, ; = il}}f{t?i —t ) <sup{th—th V= As i < ool (4)
. P :

in Section 1l and the main results are derived in Section IV. Section V

contains a numerical example to illustrate the application of the maiy, ,ation (4) implies that the dwell time of CVD$s in a given interval
results. Finally, the note is concluded in Section VI. [A1.;, As ;). This assumption has also been used in [9] and [11], and
it is a quite common assumption.
The Objective: In this note, we shall study the local robust stability
of the switched systems (1) and (3) satisfying (4) by using some simple
Manuscript received March 27, 2000: revised November 13, 2000 and Mai@Rd direct method, rather than finding some implicit motion integrals
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The modulus matrix ofd is denoted agA | and is given byA|,. = alaf, CS)=an(f, CS) (14)
[la:;]] [6]- o o
The system given by (1) and (3) can be regarded as-dimen- i(f, CS) <l flm, CS) < p(A) (15)

sional fluid flow, whereX is then-dimensional “velocity” vector at IFllcs <N lmlles < (1Al (16)
then-dimensional positiodX. Then equations (1) and (3) without per- - -
turbations (i.e.Af = 0, Ah = 0) yields the differentiable relations Proof: We only prove inequality (12) as the other inequalities can
[10] be proved in a similar way. For any fixed € C'S, we have

dsX(t) Of . aof dg of Jg

=—(X(t), m(t))6X (¢ 5 ol = (2 =7 <nl =L " X
= 2L e, mex ) ©® a(fons o)< ()i ()

e oh o _ <iilf. C8)+ g, C5).

X (1) = o= (X(87), m(17), m(t]))8X (£7) (6)

It follows that:

wheres X is a virtual displacement which is an infinitesimal displace- . ‘ _(o(f+9)
mentat fixed time . Note that a virtual displacement, pervasive alf+g,CS) = XbélCES {” < X UQ)}
in physics and in the calculus of variation, is also a well defined math- .
ematical object. ~ { <3f 1+ 99 x )}
From (5) and (6), we have Xeé’s M\ax &) 0X &)
dsXT6X — afF" N A\ sx <n(f. CS)+ (g, CS).
at " ox Toax )" 0

and T It can be known from (5) and (6) and Definition 1 that the virtual dis-

sx7 ()X (1)) = sxT (+7) oh O_h 5X(17). 7) placement_can be used to study t_he stabiIiFy and robustnes_s of nonlir_lear

90X 90X systems with the help of generalized matrix measure and its properties.

In this note, we derive some sufficient conditions for the stability
of switched nonlinear systems by considering the characteristics of IV. MAIN RESULTS

-1 ; ; ;
86X 6.X along each type of cycle. To achieve this, we shall introduce gefore presenting the stability result in this note, we introduce the
the concept of the generalized matrix measure for nonlinear sySte"},%ncept of cycles and give some supporting results.

Definition 1: For any continuous differentiable functigit X ), the A logical path in the switched systems (1) and (3) is a sequence

generalized matrix measure of the functipnf, C'S), (| f|m, CS), m(th), m(t ), ..., m(t5 ). A finite logical path m(t")
. 11/° 71 Vs 2 71 e / 11/°
in a compact sef’S, are of the forms m(f?;_H), cees m(tZHC) is closed ifm(t:t) = rn(tZHC). A closed
o [ of logical pathLC' = m(t}), m(t ), ..., m(t} ) in which no
ji(f, CS) = ;&I}S "\ax (8) state appears more than once except for the one that is the first and the
: last is a cycle. We can find all types of cycles by using graph theory
ii(|flms CS) = sup 4 of ) [3]. In this note, we suppose that the total number of the types of cycles
" Xecs axX|,, is 8o and we denote these cycles&s'(1), LC(2),..., LC(8). We

(10) now state some results about cycles.
Lemma 2 [7] (Cycle Lemma 1)Every closed path is composed of
and the generalized matrix norhif||cs, ||| | |lcs, in @ compact set some cycles.

CS, are of the forms Lemma 3 [7] (Cycle Lemma 2)Suppose that + 1) discrete states
of 7n,(tj§+s)(0 < s <1) belong to a set which is composedidfifferent
cs = su —1 ¢; discrete stateg.(1 < k < I). Then there exists at least one cycle in
! P Y lax] [
Xeas the logical pathn(gk), 7n(t:§+1)~ e 771,(2‘j1+l).
3] For CVDS¢, let C'S(i) denote the set
Wtalles = s {|[ 25 |}- ) “
Xeos m afT af
CSH) =< X | == (X, D)+ == (X,0)i tive definit
In order to show the implication of Definition 1, we consider the case “) { 0X (X, 0+ 0X (X.i) is negative de |n|%
thatf(X) = AX andCS = R". From Definition 1, we have )
and define
(A, B™) = pu(A); A(|Alm, B™) = pn(|A|m o noo_
( ( 4 4}) S =[JCsa) 17)
Allre =114l AL ll7r = [I[A]n . i=1
Therefore, our definition reduces to the standard definition of matrix T56) = CS(i) CS(3i)#0 (18)
measure and matrix norm whefi{z) is a linear function. For more 0 Otherwise.

background about matrix measure and its application in robustness. ) )
analysis of linear systems, please see [12] and [4]. In this note, we suppose that the following assumption holds.

We now derive some properties of the generalized matrix measure, ASSumption 1:There exists a compact s6C'S C C'S such that
Lemma 1: For any continuously differentiablg(z) and () satis- ~C* contains the given trajectory and for eabi'(j)(1 < j < o),

fying |0f/0X|m < A within a compact set CS and> 0, we have ~ We have
i(f +g. CS) <alf, CS) + (g, CS) 1z 0= Z( )ﬁ(f(X, i), SCS)As
eLC(j
i(f, €S) <llflles (13) +In(||A(X, i, Dlls;,,) <0 (19)
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where ||6X(t;r)|| <X, m(t;), m(t}r))Hsm(t;)’m(q)
Ar,; 1€l . _
Agi=d " ’ (20) eX @)l Ve (29)
Ar,;, 1€y
From (27)—(29), we know that
SX (T < JA(F(X,0). SOS)As,
Dy = (ili(f(X. ). SCS) < 0}, e PXCIs 1L«
i€ST(ts, opy t])
Remark 1: Assumption 1 implies that there exists a compact set NR(X i, Dlls, 16X (s, cp)|

such thas X* 6 X is nonincreasing along each type of cycle when the

state stays in the set. The compact set is the whdlespace if each wherel is the model next té and

subsystem is linear. Moreover, whg X, i) = A(:)X, i.e, itis a N o N

linear function; € T, implies that the matrix measure df(i) is not ST (ts,cp, t7) = {ili is in the path fromn (¢, cr, ) tom(t])}.

less than 0 and € I'> implies that the matrix measure df(i) is less . .

than 0 € T2 1mp &) O To complete the proof of (25), we consider the following two cases.
Remark 2: We now give a general method to check Assumption & Thereisno CVDS appearing twice in the path frert., ¢, ) to

1. Without loss of generality, we suppose that the given trajectory is m(.fer) except for the one that is the first and the last. Then there
X(t)(t > to) and define exist at mostz CVDS in the path. It follows that (25) holds.

b) There is one CVDS appearing twice in the path. Suppose that the

o I} - ol lei leLC'(jo). Usi 19), h
EG) = T <0€(X(t))A3J+‘0_; " ) 22) cycle is cycleLC (jo). Using (19), we have
ierncG) \°° —IX® 16X ()|
Checkif there exists& such that the set¥ (+)[|| X (1) - X (#)|| < &} < (A00) 11

is a subset oS and if &; (X (¢)) < 0 holds for allj. If so, then
Assumption 1 holds. The reason for this is presented as follows. ACF(X, 1), SCS)Ag 5 . o

Sincea, (X (t)) < 0, then there exists & (1 < j < o) such that el A i Dsy 6 X (Es, o) -
when|| X (t) — X (1)|| < &;, we have

IEST(ts, opy t)=ST(ts Loty tr, LCG0))

Note that the total number of the CVDS in the set

G,;(X(1) < 0. (ST(ts, o, ) = ST(ts, Loy trrcG))) IS less
than or equal ton because there is no cycle in the set
Let{ = (1/2) Hli110§j§90 {5;} and (ST(t_qﬁ(;Pk, tlJr) - ST(tS,LC(j0)7 tf,LU(]'O)))' It follows that
~ (25) holds.
SCS = {XMIX(1) - X0 < €} @3)  We now show that (24) holds.
Then Assumption 1 holds witHC'S given in (23). Note that

For a given system, there may be some other better methods to find

a larger compact sefC'S to satisfy Assumption 1, for example, an 18X (7 crl o
alternative method presented in the numerical example in Secfion V. < 11 (X, D). ST A,
Proposition 1: Suppose that Assumption 1 holds. Consider a closed i€ST(ts, opy tr, opy)
pathC P, with the starting time being,, ¢ », and the ending time being WX, i Dlss 10X (s, cp)]
ty,op,. If X(t) € SCS holds for allt € [t. cp,, tf,cor,], then we
have Z i ’
rNOC, ' i = exp a(f(X. i), SCS)As ;
16X (tr.cp)ll a7 e P ORISX (t op )l (24) i€ST(ts, cpytr. op,)
and ' i
||6X(t+)|| < H €ﬂ(f(‘\'7 i), SCS)Ag + ln(”h(X’ 3 l)”Szl)] ”é‘X (tS,CPk)”' (30)
] -
i€l

'(ngélx{maX{l., (X, i, Dlls, 1" Suppose that the closed path is composed of cy£l€gj,) and
NEX (s, )| (25) LC(j1). Then rearrange the right side of (30) such that each cycle is
e a unit. Using (19), we have

Wherets, Py, < t;‘r <ty CPyy T‘V()Cts, Py tr CPy is the total &Gia) &(1)
number of cycles in the closed path fram(t,, cp, ) t0 m(tf cp,) 16X (t5,cp)ll <™ e H6X (s, o)l
and < a?|8X (t, el
L , &(y)
@= max ¢ (26) |t follows that (24) holds. 0
O We now consider the stability of a switched nonlinear system of the

. . form (1) and (3) without perturbations.

Proof: We only consider the case that the closed path is com-pa4rem 1: A switched nonlinear system of the form (L) and (3)
p_osed of two cycles. The other cases can be shown in a similar Wallthout perturbations (i.eAf = 0, Ak = 0) is locally asymptoti-
Firstly, we s_hgl_l show that (25) holds. cally stable with respect to a given trajectory if Assumption 1 holds.

From Definition 1, we have Proof: Suppose that the radius of the largest ball{#S is . Let
||6X(f§"- Il < PU(X, i), SCS)Ay ”(SX(,L@ Dll: ieTy  (27) (31) hold true, as shown at the bottom of the page. We now show that the
’ ‘ ’ switched nonlinear system is asymptotically stablgSik (¢0)|| < 70.

l6X (5 || <MD 5CN% 0155k | iely  (28) We divide the proof into three steps.
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Step 1: We prove that for any;, if X(¢) € SCS holds for all A) Consider the case that < ¢ < t. Suppose that there exists

to <t <t , then at’ suchthatX (¢') ¢ SCS,i.e.,
loX (#)]| 16X ()] > .
< H Q2RU(X 1), SCS)A Note thatX (¢,) € SC'S. Then, there exists# such that
X =r: NXOI < telt, '] (36)
(e tmax(1. 1Y 2Dl ) XG0 (32) o
E)f af

holds for anyto <t < ¢F.
Since there are |nf|n|te switchings in switched systems and th%)‘
CVDS is finite, there exists at least two CVDS which appear infinite

(X (1), m(z‘o))—i— ()&(t) m(to))

< 2(f(X, m(to)), SCS)I (37)

times. Suppose that is the first of the two such CVDS. Using holds for allt < t < ¢.
PrOpOSition 1, we know that From (37)7 we know that
TNOC, ;i m L SO8) (1! —
Xl <o St xat g kx1 @y IOl SR e ) <
8,20 = ‘8,10 -
Clearly, this contradicts with (36). ThuX,(¢) € SC'S holds
whereT ] V()Cf,; . itﬁlg is the total number of the cycles in the path forto < ¢ < ;. It follows that:
from m(tb o) 10 m( i‘ . _ X o
We now show that [6X (#7)|] < P mUon SENE0| 15X (1)
.
||6‘Y(t1" 3 )” < 2n—1
8,0/ . .
< TJ\"OCtO +L H ﬂ(f(X.i).SCS)AZ . <II"la;X{IIIdX{].. ||h (X‘ ) [)”571}})
< o s, 70 e ) B2 1,1

i€l'y and

n—2 . + _ +
. <II}2;]?{{111&X{1,/ [|h(X, i, ””57',1}}) [6X ()]l (34) 16X (D <X, m(ty), m(¢] )HSm(t;) t+>||(5Y(7‘1 <.

, _ o In other words X (t77) € SCS.
a) If there is no state appearing twice in the path frort,) to B) Suppose thak () € SCS holds for allty < t < 4.

m(t} ;,), from Lemma 3, we know that there exist at most- We consider the case thé, < ¢ < t%. . From As-

. +1-
2) different CVDS in the path fromn (to) to m(#. ;). By in- sumption 1 and the first step, we know that as shown in the
equalities (27) and (28), we know that (34) holds. equations at the bottom of the page and

b) If there exist some CVDS appearing twice in the path fref, )

tom(t. ;,). Similar to the proof of Proposition 1, we know that  [|6X (t{)|| < [|h(X, m(ty), m(tf Dlls - (MlléX(t,_)ll
(34) holds. '
From (33), (34), and Proposition 1, we know that . \’ .
m/(x,m(L;)),scs)Az et
. smii

16X ()l -
< @ TNOCy, H 2E((X, ), S05)A, Thus, X (t};) € SCS. Similar to A), we know thafX () €
= 4 S5CS holds fortf, <t < tf,,.
e N By induction, we know tha¥ () € SC'S for anyt.
. <nmx{nmx{1, (X, i, D|ls, l}}) l6X (to)]. (35) Step 3: We shall show that the theorem holds.
1 ' Note thatT NOC',,: — oo ast — oo, thus, from (35), we have
It follows that (32) holds. lim [|6X ()] = 0.
Step 2: We show thatX (¢t) € SCS for anyt if ||6X]|| < ro by t—oo
induction. That is, the result holds. |

ro = - o A(f(X,9),SCSHA, ; (31)
H qu(f(x‘l),scs,)Azﬂ-(maxi,l{maX{L })zn—1emaxicry A(f(X,9),SCS)Ag

i€l

2n—2
X ()l < T 200 9“”27(m;x{ max{1, [[h(X. i l||m}}) 18X (to)
e’y
r

<
= BF(X,m(t)), SOS)A,

marc{max{L, [1(X, i, Dlls; ,}}e S
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Consider the case that X, i, ) = X, that s, there is no impulsive Proof: We shall first show thai(f (X, i)+ Af(X, i), SCS) <
switchings in the switched nonlinear systems. In this case, Assumptibholds for alli € T'> wheng < min;er, {p2(i)}. From inequalities

1) becomes (12) and (15), we know that
Assumptiont There exists a compact s&t”S C C'S such that
SCS contains the given trajectory and a(f(X, )+ Af(X, i), SCS)

A(F(X, i), SCS)+ ((AF(X. i), SCS)
A(F(X, ), SCS) + AIAF(X. D). SCS)
Af(X

(X, 7)., SCS) + qu(B(i)).

From Theorem 1, we can obtain the following corollary.

Corollary 1: A nonimpulsive switched system of the form (1)it follows thati(f(X, 1) + Af(X, 1), SCS) < 0 holds whery <
without perturbations [i.eAf(X, i) = 0(1 < i < n)]is locally min;er, {p2(i)}.
asymptotically stable with respect to a given trajectory if Assumption Then, we need to show that
1’ holds. O

We now consider the robust stability of the switched nonlinear sys- (o (|A(X, i, 1) + AR(X. i, D|s, |,
tems (1) and (3). Suppose that the system satisfies the following ¢ v
sumptions.

Assumption 2: A f satisfies the bound

a(j)= Y Af(X,0), SC8)A: <0 1<) <6 (38)
i€LC(j)

IAN AN IA

Xelf))
+Asa(f(X, 1) + AF(X, 4), SCS) <0

holds for alll < j < 6.

IAF(X(t), m(t . , g
‘w <g¢B(m(t));  X(t) € SCS; Vit From inequalities (13), (15), (16), and (14), we have
wherey is a real-positive number arfél(m (t) ) is a known nonnegative > M l(X, i, D+ARX, i, Dlls,  ~n WX, i, D5, ,
matrix. i€LC()
Assumption 3: Al satisfies that + a(AsAf(X, i), SCS))
~ . < [ln(Hh(X, i l)”Si, + ”Ah'(Xv (8 l)”Si, )
OAR(X(t]), m(t;), 771,(1";5)) < (COm(t) 771(t+))- iELZO(j) [ '
oX o S —In||A(X, i, Dls, , + As s f(|AF(X, ) |m, SCS)]
X(tl_) E 5711(1;),7”(1.;) S ) Z » [lll(Hh(X. i’ l)”*qi,l + |||Ah(‘¥‘ i’ l)""HSi,l)
1€ELC(j)
whereC(m(t;), m(t])) is a known nonnegative matrix. —In[|A(X, @, Dlls; , + Az il [AF(X, )|, SCS)]
Remark 3:These two assumptions are reasonable because < Z In(|(X, i, D|s, , + ql|CG, D)
OAF(X(t), m(t))/0X and IA(X(t), m(t}), m(t]))/0X are eToG) ‘
continuous functions ofX (¢) and SC'S and Sm(g)w(,;) are — I [|l(X, i, Dlls; | + ¢As,ip(B(i)))]
compact sets. Moreover, they imply that the perturbations are bounded C(, |
by some known nonnegative matrices. O = > {111 <1 + qm) + qAs, i p(B(i))) |-
Theorem 2: Suppose that a switched nonlinear system given by (1) i€LO() T i

and (3) without perturbations [i.eA f(X, i) = 0 andAh(z, i, 1) =
0 (1 < i,1 < n)] satisfies the condition of Theorem 1. Then thdt follows that:
switched system with perturbations is still locally asymptotically stable

if ¢ < min{min; <;<,{po(j)}, minier, {p2(i)}}, wherepo(j)(1 < D MlA(X, i D)+ AR(X, 4, D, ,
J < 6p) are, respectively, the solutions of the following equatigns i€eLO(5)
j < 8o): + a(As, (X, 0 + AF(X, i), SC9))
< D0 Ml(X, i D+ ARX, 4, Dls,
) 1€LC(y)
S |1+ %pom —In [|B(X, i, Dls, ,+20, i AF(X, i), SCS)]
. . A, 2, . ~ .
iELC() — + > InlJA(X, i Dlls, 4 As i f(X, 0), SCS)]
oX . :
iyl i€LC())
CG, D , .
< > |:1n <1+q4” +qAs,;in(B(i)))
+ po(j) Z A37¢,U(B(i)) ieTC() ”}L(‘X, () l)”Si,z
ELOG) + Y I R(X, 0, Dlls, 4 As il £(X, i), SCS)]
i€LC())
On(X, i, 1) = ¥(q).
+ v Z [111‘78}( .
E€LCh) T Note that
+ Az i(f(X, 1), SCS)| =0 39 :
a,ift(f(X, ) )} (39) lCG, |
and di MX, i, D), ]
A(f(X, i), SCS) W= P+ s (B
poli) = - Y PE0) ero |1+ J

u(B(D) [R(X. 0, Dlls,,



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 1, JANUARY 2002 183

Obviously, dy(q)/dg > 0. Therefore, when0 < ¢ < From Definition 1, we know that
miny<j<o,{po(j)}, we have

> WX, i, D)+ AR(X, i, Dls, ,
iET.C(5)

a(f(- 1), SCS) = =1.5;a(f(-, 2), SCS) = 1/6.
It can be shown that
+As,0(f(X, 0) + Af(X, i), SCS)] <0. 6(f(-, 1), SCS) + 2.5(f(-, 2), SCS) < 0.

From Theorem 1, we know that the perturbed switched system is localflgat is, Assumption ‘1holds. From Corollary 1, we know that the

asymptotically stable. O switched nonlinear system without perturbations is locally asymptoti-
Remark 4: The Conditions of Theorem 2 imply thatXZsX cally with respect taX. = 0.

is still nonincreasing along each type of cycle in the presence ofit is also possible to find some other type of compact sets to satisfy

uncertainties. O  Assumption 1. Actually, consider the following compact set:
If there is no impulsive switchings in the switched systems, then we } i
have the following. SCS={X]-1< X1 <1/6:-1/2 < X < 1/2} (41)

Corollary 2: Suppose that the nonimpulsive switched system of the; 1, pefinition 1, we know that
form (1) without perturbations [i.eAf(X. i) =0 (1 < i < n)] sat-
isfies the condition of Corollary 1. Then the perturbed nonimpulsive a(f(-, 1), SCS) = —1; a(f(-, 2), SCS) = 2.
switched system is locally asymptotically stable in the sense of Lya-
punov ifg < min, <;<g, {ps(j)}, where It can be shown that

= 3 AsLaf(X, i), SCS)

i€LC(~5)

6ii(f(-, 1), SCS) + 2.5(f(-. 2), SCS) = =1 < 0.

p3(i) = : 1<j<6,. (40) Thatis, Assumption‘lholds. o o
Z Az ip(B(7)) We shall now consider the robust stability wist'S given in (41).
{€LC(5) From Assumption 2, we obtain
- B =2 " @@= "7
Remark 5: If Assumptions 1), 2), and 3) hold globally, then the cor- o1 o o1f”

responding global stability and robustness results can be estaU]ISheE.rom Corollary 2, we know that whep< 1/14.5, the switched non-

linear system is locally asymptotically stable with respeckto= 0.
V. A NUMERICAL EXAMPLE
In this section, we use an example to illustrate the results obtained. VI. CONCLUSION
Consider the following nonimpulsive switched nonlinear system com-

posed of two CVDS We have proposed a new concept of generalized matrix measure for

nonlinear systems to study the stability of switched nonlinear systems

i —2X; +3X? i gX? directly. Based on this concept, we have derived some robust stability
X, 1)= A 4 X2 ; Af(X, 1) = 2 conditions for switched nonlinear systems by using the cycle analysis
—SA2+ A 942 method and contraction analysis method, rather than through finding
X+ X2 X1 some implicit motion integrals in Lyapunov theory.
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