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can be taken to be zero and herncdx) = ¢§ (24 — 03)2”®, references therein), and the property has been employed from robust

with e > 1, P = 1, andz = 0. control to nonlinear small-gain theorems [6]-[8]. But it is also of in-
terest to consider such a property for switched nonlinear systems.
ACKNOWLEDGMENT Switched nonlinear systems, a class of hybrid dynamical systems,

] ) ~can arise in many practical processes. An electric arc furnace (EAF)
The author wishes to thank the Referees and Associate Editor f@trol system is such an example [9]. After raw material is melted
valuable comments. The author also wishes to thank the audience of§&n and oxidized in an EAF, it is sent to a ladle furnace or a contin-
workshop on Nonlinear and Stochastic System at Oberwolfach for thgliys caster machine for some other processing. The above processes
helpful comments and MSRI, Berkeley, California for their hospitalityeep repeating. Raw material being melted down and steel being oxi-

during the author’s visit. dized are some continuous variable dynamical systems (CVDSs), each
of which can be represented by a differential equation and the whole
REFERENCES process in the EAF can be modeled by a switched nonlinear system.
[1] G.K.Basakand R.N.Bhattacharya, “Stability in distribution for a class AS W€ know, & switched system might not be stable even if each
of singular diffusions,’Ann. Probah.vol. 20, pp. 312-321, 1992. mode is stable. Itis necessary to impose other proper additional condi-

[2] R. N. Bhattacharya, “Criteria for recurrence and existence of invariatiobns to ensure so. Liberzon, in [10], mentioned that the input-to-state
prcIJbgbiIitySTizaggrSeslgo?eruItidimensional diffusion\fin. Probal.  stapjlizable (ISS) property is preserved under switching if the intervals
3] \é(_’ N éﬁgitacharya and E.'Waymirstochastic Processes with Aplolica_between sw_itching iqstants are Iarg_e enough under the assumption that
tions New York: Wiley, 1990. each mode is ISS with a very special form. However, the general case
[4] R.Z.Has'minskii,Stochastic Stability of Differential Equatiotia Rus- has not been solved yet. The purpose of this note is to derive some suf-
sian). ~ Alphen aan den Rijn, The Netherlands: Sijthoff & Noordhoffficient conditions to input-to-state stabilize the whole switched system
[5] igliger Random Perturbations of Dynamical SystemBoston, MA: Whgn each mo.de _is input-t0-§tate stabilizable in a gener.al form.-To
Birkhauser, 1988. achieve this objective, we design a switched controller which consists
[6] X. Mao, Exponential Stability of Stochastic Differential Equa-Of two parts: local controllers for all the modes and their switching law.
tions New York: Marcel Dekker, 1994. We consider both the case where switchings of the controllers coincide
[7] ——, Stability of Stochastic Differential Equations with Respect teyactly with those of system modes and the case where the switchings

Semimartingalesser. Pitman Research Notes in Maths 251. Whit L .
Plains, NY: Longman, 1991. ©f the controllers do not coincide exactly with those of the system. For

18] L. S. Young, “Stochastic stability of hyperbolic attractor&fgod. Th.  Simplicity, we call the former as a synchronous case and the latter as
Dyna. Syst.vol. 6, pp. 311-319, 1986. an asynchronous case, respectively.

[9] R. N. Bhattacharya, “Correction note: Criteria for recurrence and ex- The synchronous case is simpler and will be considered first. In prac-
|§tenc? of invariant probability measures for multidimensional d'ﬁufice, however, the switchings of the controllers may not coincide ex-
sions,”Ann. Probah.vol. 8, pp. 1194-1195, 1980. . e

actly with those of system modes, because we may not know the initial
mode and also the subsequent modes of the system in advance. Thus,
we do not know which controller should be initially used, and which
controller and when it should be switched into action. For this case, as

pointed out in [11], it is difficult to design a switched controller for a

switched nonlinear system because of possibility of finite escape time.

That is, if a wrong controller is used over a specified amount of time,

Wenxiang Xie, Changyun Wen, and Zhengguo Li the solution to the system might escape to infinity before a correct con-
troller is switched into action. In this note, we discuss a model-based
identification scheme which is used to identify the initial mode and the

Abstract—This note derives some sufficient conditions to ensure that the subsequent modes of the system and then determine the corresponding
whole switched nonlinear system is input-to-state stabilizable (ISS) when controllers to be switched into action, i.e., the switching law of the
each mode is ISS. Both cases that the switchings of system modes coincidgitched controller. The proposed scheme can avoid the problem of
exactly and do not coincide with those of the corresponding controllers are .. . . . .
considered. For the latter, a model-based identification scheme is used to fininte escape time. It is shown that the switched nonlinear systems
identify the system modes. The proposed scheme can overcome the finitecan be input-to-state stabilized by switched controllers for the above
escape time that may happen in this case. two cases.

The rest of this note is organized as follows. In Section Il we intro-
duce some preliminaries. The synchronous case and the asynchronous
case are considered respectively in Section Il and in Section IV. A
Il. INTRODUCTION numerical example is used to illustrate our results in Section V. Con-

Input-to-state stability is an important property of nonlinear systen‘f’g'ding Remarks are given in Section VI.
besides asymptotical stability. So far, the study of such a property was
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Fig. 1. Anillustrative diagram for switching instants in the synchronous case.

In this note, we consider the input-to-state stabilization of switchedLemma 1: Suppose thay; (i = 1, 2, ..., ) are KL functions,
nonlinear systems modeled by pi(i=1,2,...,1)arek functions andi;(i = 1, 2, ..., k) € Ry,
) ) thenS™'_ ¢, is aK.L function,>>'_ p; is ak function, and
X(t) = f(X(t), v(t), m(t)) (1) Lzt L=t
pilar Baz B --- BHayg)
where
X(t) € R" andu(t) € RP continuous state and the control = pi(ar) Bpi(az) B --- Bpi(ar) 5)
input; | B A
m(t) € M={1,....n} index for the discrete states; gi(ar Bas B --- Hax, s)
{ft R"xRP x M — R"} family of sufficiently regular func- = ¢i(ai, s) Boi(az, s) B --- Bo;(ax, s). (6)
tions.

Proof: The results can be obtained from the definition&’cdind
unctions. [ ]

Lemma 2: Suppose that; (i = 1, 2, ..., 1) areK L functions. For
any positive constanisandb < 1, let

Eachi € M stands for a location where the system dynamics }éﬁf
governed by the corresponding vector figldX (¢), v(¢), ¢), called a
mode, withf(0, 0, i) = 0.

A continuous functiony: R+ — Ry is ak function if it is strictly
]

increasing and/(0) = 0; itis aK. function if it is aX’ function and ) B (o h(t )
alsoy(r) — co asr — oc. Afunctiong: Ry x Ry — Ry isakK[l Bls. t) = Z 4P (“‘*’J (“b 8 0)'/ 0) @)
function if for each fixeds the function3(r, s) is aX function with L I=10#)
respect ta-, and for each fixed the function3(r, s) is decreasing with whereh(t, o) is an increasing function of and (¢, to) — oo as
respect tos and3(r, s) — 0 ass — oc. t — oco. Then,3(s, t) is also ak £ function.

Definition 1 [2]: System (1) is said to be ISS if there exisK# Proof: For any fixedt, itis clear that3(s, ¢) is ak’ function.

function 5 and ak function~ such that for anyX (¢,) and for any For any fixeds, note thab < 1 andh(¢, ¢) is an increasing function
locally essentially bounded input-) on [0, o) the solution satisfies Of ¢. Thus, from (7) we know that(s, t) is a decreasing function of
Note also that(t, to) — oo ast — oo. It follows that3(s, t) — 0
|X(®)] < BUX ()], t = to) + v([lv(to, D)]) (2)  ast — . Therefore3(s, t) is aK £ function. N
for all £, and¢ such that > ¢, > 0. In the following section, we will consider both the synchronous case
and the asynchronous case.

Remark 1: In inequality (2), lett = #o andv(t) = 0, then we have
| X (t0)| < B(|X (t0)], 0). Thatis, the following property holds for any
KL function/j’ satisfying (2) and any € R+ IV. SYNCHRONOUSCONTROLLER SWITCHINGS

(s, 0) > s. 3) In the synchronous case, the switching instance is illustrated as in
- Fig. 1. In the figuref, denotes théth switching instant of modes of
0O system (1), whilej, denotes théth switching instant of the controllers.
Definition 2: System (1) is said to be ISS if there existdn this caset, = t}.

an input o(t) = K(X(),u(t), m(t)) with u(t) being the We recall that switched systems might become unstable even if all
reference input such thatX(¢) = f(X(¢), u(t), m(t))= modes are stable. In general, a proper switching law of system modes
FX (), K(X(@), u(t), m(t)), m(t))is ISS. is required to guarantee the stability of the considered switched system.

Many research results on input-to-state stabilization of sing&milarly, we also need such requirements on the switching law of
nonlinear systems are available (e.g., see [3], [2] and the referensgstem modes to input-to-state stabilize system (1) even if Assump-
therein), so it is natural to assume the following. tion 1 holds.

Assumption 1: For each modé(i € M) of system (1), there exists  Let % ;, andt’ ; denote respectively theth starting time and the
aninputv(t) = K (X (t), u(t), i) such that for any locally essentially #th ending time of mode (i € M ). We require the switching law of

bounded input(.), we have system modes to satisfy
IX(1)] < Bi(1X ()], t — to) + v (llulto. D)) >t >0 inf {t,, — 15} = AT: > 0
(4)  and similar to [10], we suppose thaT;(i = 1, ..., n) are large

whereg; is aX L function,~; is a/C function. enough such that for any € R, we have

Remark 2: Condition (4) implies that each mode is ISS. Note that 3:(28;(2s, AT;), AT;) < As < s Vi,jeM (8)
the input-to-state stabilization of switched systems was also consider

. P : ! nt wer%jereo < A< landg; (i € M) satisfies condition (4).
|/n [.10.]' However,; is in a _spemal form th(O)e n [.10]' _When A possible method to verify (8) is to calculate the following limit:
3 is in a general form as in (4), the design and analysis will be much ,
more difficult. U lim 0:(20,(2s, AT;), ATi); Vi, j € M.
The objective of this note is to derive proper conditions to input-to- ~ 47#AT;—o 5
state stabilize system (1). To this end, we need the following two supall the results are less than one, then (8) holds for some large values
porting results. of AT; andAT; based on the definition of limit.
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Remark 3: Under Assumption 1 and the above switching law of Using the inductive method, we can get the following inequalities

system modes, it can be easily shown that (1) is ISS if the numbervafien the number of switchings of system modés even and: > 3

switchings is finite. Thus, we only consider the case where the number

of switchings is infinite. O
Theorem 1: Consider system (1) satisfying Assumption 1. Suppose

X < B X Fem ) e = Hea) + Yy

that the switchings of the controllers coincide exactly with those of < ’\I"Y(m” B By (2/\1_17’"0’ A1)
system modes satisfying (8). Then, the system is ISS and 5 /\171%11 5 ’3’%71(2)\F27m2w ATw, )
X0 < BUX (1o, £ = t0) + F[ulto. D) 126020 BN iy -
©) B Bong QMg s ATy ) B Ay,

where

n

>

i, g=1(i#£7)
F(luto, D) = o + 70

n

>

BIX ()], t = to) = 5:(25;(2\'|X (t0)]. 0). 0)

ﬁi (2ﬂj(2.7/07 0)7 0)-

Yo =
i, j=10#7)
0= 3" wulllulto, DI,
=1
k
=1 <§> (10)

andk denotes the total number of switchings of system modes fsom
tof.

Proof: For ease of presentation, we let. = m(ty), ym, =
Ym (|| (ti, tis1)]). Inthe following proof, we shall use the fact that

L(ri+r2, 5) <T(2r1, s) BT(2r2, s) (11)

for any XL functionT' and any nonnegative constamts r,. From

Lemma 1, Assumption 1, condition (8), and the property expressed in

(3), we have

|X ()] < Bing (1X (t0)

S /37"0 (|~Y(t0)|a Aiz—"rno) + Ymg
S /3m1 (,ﬁmg (|X(f0)|« ATmO ) + 7777,05 ATml) + q/'/ml

< /37"1 (2/37n0(|X(t0)|7 AT’”O)? AT"H )

) t; - t(;) + 77770

| X (£2)]

EE ﬂm,l (ZA)"mO ) ATml ) + Ymy

S )\|X(t0)| EE ,/37711 (277710-/ AIjml) + f\!vnl;
|X(#3)

< Bms (1 X (12)]s 15 — 15) + Yims
< By (A1 X ()]
B By (2Ymg» ATmy) + Ymys ATms) + Yms
< Bma (2A[X (to)], ATrm,)
B Lo (201 (29mgs ATy ), AT,)
B By (27mys ATy ) + Yoo
< By A X (t0)], ATmy) B Ay,
B By (2¥mys ATy ) + Yy -

E 87"1\'71(277nk727 ATm,k71) + ﬂ/'/777.]\,71

wherel = r(k/2).

Thus, for anyt € [t,, t5,,], we have

X ()] < B IX(#) t — 1) + oy (lultic, D)
< Buny N[ X (t0)], £ = 1)
B By (28my s (2N gy AT, )y t — 15)
BB By (2N s £ = £0)
B Buy (28 (2N T ins AT, )y t—17)
B B, 2N 2y, t = t5) BB - -
B By,

(

( T
BB By (

(

(

28my 1 2AYmy_gs ATy ), t = t;)

2AYmy, g, t—th)

k

T,

Mp 1

E ,‘ank 21‘3k—1 (27"”"—27 A )7 t— tlcg)

E ﬁmk 2’7mk_1-/ t— fi) + '}7771\(||u(t£‘ t)”)
From (10), we replace..., i = 0, ..., k, with 7o, and notice that

foranya, b € Ry, a Bb=aif « > banda B < a 4+ b. Thus, we
can further obtain

|X ()] < By A X (10)], 0)
B By (26m, 1 (29, 0), 0) + v
< By (2N X (t0)], 0)
+ Bing (28—, (270, 0), 0) + 70
<BUX (to)], t —to) + 7 + 0

=A(1X (to)]. t — to) + F([lulto, H)]]). (12)

In a similar way, it can be shown that (12) holds in the case where
is odd andt > 3.

Note that! = r(k/2) is an increasing function of and! — oo
ast — oo. From Lemma 23(| X (to)|, t — 1) is a KL function.
Therefore, system (1) is ISS in this case. [ ]

Remark 4: It should be emphasized that we use inequality (11) in

the above proof. Note that the whole derivation cannot be proceeded if
we employ the following fact, which is usually used:

T(ri 4+ 72, 5) < T(2r1, ) + T(2ra, ).

V. ASYNCHRONOUSCONTROLLER SWITCHINGS

In practice, the switchings of the controllers may not generally coin-
cide exactly with those of system modes since we do not know the ini-
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Fig. 2. An illustrative diagram for switching instants in the asynchronous case.
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Fig. 3. Overall system diagram.

tial mode and the subsequent modes of the system in advance. Thussitige state at time poing. To avoid that the states of (1) escape into
necessary to identify them and then switch from the present controliefinity before a proper controller is switched into actioh,is defined
to the corresponding controllers. As expected, the design and analgss
are much more involved than the synchronous case, since we need to
identify the initial mode and the subsequent modes of the system. To tp =sup {t, <t <t +At||X(#)| <a|lX(t)|} (14)
achieve this, we impose some delay on the switchings of subcontrollers, !
thatis, as showninFig. 2; > ¢, (k =0, 1, 2, ...). Intervaldts, t;, . .
’ 9.2 >tk ( Lo ). st ti] . wheretj, = tg,a > 1 andAt = min; <<, ((AT;, — AT})/2). Here,
(k = 0,1,2,...) are used to do the identification. Once the active . ;o == . ’
. ' . . . Wwe can determine andAT; (: = 1, ..., n) by letting
mode is known, the corresponding sub-controller is switched to.
Similar to [12], we use a model-based scheme, as illustrated in Fig. 3,

to do the identification. We assume that there is only one mode model H(p, ti, t;) =pBi(208; (25, t,). t.):
whose state is equal to the state of system (1) for any control input and : ' ' S
any interval if system (1) and all the models of the modes have the same poti,t; €ERy, i, j € M.

initial state and there is no measurement noise or disturbance. Without

loss of generality, we also suppose thatt) # 0 for all ¢ > to. ) ) ] ]
Sincet;, is unknown, we also need to estimate it. Thus, the whof@bViously.H (p, ti, t;) is a continuous function of, ¢; andt;. From

task is composed of two steps: estimate Mie switching instant of (8), we have

system modes and identify thé¢h active system mode. These are given

in details as follows.

Step 1) Estimate thkth switching instant of system modes.
In Fig. 3, ¢tz and X, denote the estimate of theth

switching instant of system modes and the state of t
model of modei € M respectively. Thents = ¢, and
ti(k > 1) are determined by H(a, AT!, AT}) < Xs < s. (15)

H(]., AT;, ATj) < As < s.

It follows that there exist > 1 and\(0 < X < 1), AT} < AT; and
HAT; < AT; such that:

ti = sup {1 > 104 |X(0) = K1) and [X(1)]
Thus, the present active mode can be obtained from the state

< Bingee_ HIX 0], t—thy) of system (1) and all the models of the modes withif, #¢].
) Based on the above discussion, we can also show that (1) under
+'>”m(t§,71)(||u(tkfla t)”)} (13) v(t) = K(X(t), u(t), m(t)) (m(t) = 1,..., n) is ISS in the

asynchronous case, and
Step 2) ldentify the:th system modes.
To identify thekth active system modeX (¢7) is fed back to each

mode model to ensure that system (1) and all mode models have the |X ()] < B(|X (to)], t — to) + 3(||ulto. 1)) (16)
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Fig. 5. Simulation results in the synchronous case.
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Fig. 6. The switching instants of system modes and controllers.
where It can be shown that Assumption 1 holds witft) = /2 + «?(¢),
N - e 31(r, s) = r/V2r?s+ 1 and~i(s) = s for mode 1, and(t) =
BUX (to)], t — o) = 1B (2a8;(2X a|X (1)), 0), 0 oL ; :
Ax L 0) v '—1;;«6 N “ ( a3 (2 al X (to)]. 0) ) —2X(t) +u(t), B2(r, 5) = re”* andyz(s) = s for mode 2. More-
R over, it can be checked that
“A)"(”U(to, t)”) :770 + 7 i /31(2[52(28, ATZ)H ATl)
i A1y ATy oo 5
Yo = aBi(2a3;(27), 0), 0)
& 2
i, j=1(i#5) = lim 5225125, ATh), AT) = 0.
AT ATy—oco s
Thus, (8) holds for some largeT; andAT:. For example, iAT, =
0 = /i to, B)|), — i
% g ai([lu(to, 1)) AT, = 25, then\ = 4¢~2 and (8) holds. Also note that the results in
[10] cannot be used to study this example.
= k Now, we consider the synchronous case, i.e., the case where the
2 switchings of controllers coincide exactly with those of system modes.
andk denotes the total number of switchings of system modes fiom ysing Theorem 1, we know that
tot.
|X ()] < 8N X (to)| + 16||u(to. t)]|; t>t >0
VI. A NUMERICAL EXAMPLE where! is defined in Theorem 1. For simulation studies, take the

Consider a switched nonlinear system consisting of the foIIowmr(rXVItChIng instance of system modes as the values shown in Fig. 4,
ode 1 as the initial mode, and lett) = 3 sin (¢) and X (0) = 3.
two one-dimensional (1-D) modes. . ) . - . .
i B X3 6y (1) The simulation result, illustrated in Fig. 5 with + ~ standing for
Model :  X(t) =X°(t) - ————~ S\ X (to)| + 16||u(to, t)||, indicates that the considered system is
- input-to-state stabilized.
Mode2: X (t)=X(t)+uv(t) We next discuss the asynchronous case, i.e., the case where

whereX (t) € R andv(t) € R. the switchings of controllers do not coincide with those of
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0 ’ [10] D. Liberzon, “ISS and integral-ISS disturbance attenuation with

bounded controls,” ifProc. 38th IEEE Conf. Decision Controlol. 12,
Phoenix, AZ, 1999, pp. 2501-2506.
[11] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systemsJEEE Control Syst. Magvol. 19, pp. 59-70, Oct.
VIl. CONCLUSION 1999,
[12] R. A. Hilhorst, J. V. Amerongen, P. Léhnberg, and H. J. A. F. Tulleken,
This note has investigated the issue on the input-to-state stabiliza- A Supervisor for control of model-switch processeéyitomatica vol.
. . A . - 30, no. 8, pp. 1319-1331, 1994.
tion of switched nonlinear systems. The ideal case that the switchings
of the system modes coincide exactly with those of the corresponding
controllers is first considered. Some sufficient conditions are then de-
rived to input-to-state stabilize the whole switched nonlinear system. In
general, the switchings of the controllers cannot coincide exactly with
those of the corresponding modes, since we do not know the initial
mode and the subsequent modes of the system beforehand. If a wrong
controller is used over a specified amount of time, the solution to the
system might escape to infinity before a correct controller is switched
into action. In this case, a model-based identification scheme is dis-
cussed for the identification of the system modes such that the corre-
sponding controllers can be determined. The whole switched nonlinear
system can also be ISS in this case.
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