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Indirect Robust Totally Decentralized Adaptive Control
of Continuous-Time Interconnected Systems

Changyun Wen

Abstract—This paper presents a global stability result on continuous-
time indirect totally decentralized adaptive control systems. The algo-
rithms employed in the design of local adaptive controllers are earlier
basic conventional adaptive control algorithms subject to parameter
projection operation. For the first time, it is shown that without any
restriction on signals such as persistence of excitation, global boundedness
of the signals in the overall continuous-time feedback system is guaran-
teed. For implementation, no a priori knowledge on the interactions and
unmodeled dynamics is required.

I. INTRODUCTION

Decentralized adaptive control of unknown interconnected systems
has attracted much research effort because this problem is important
both theoretically and practically. The idea employed is that the input
to each local controller is only from the available measurements in
that local system. Perhaps the easiest deign method of local con-
trollers is just simply to ignore the interactions between subsystems.
Therefore each local adaptive controller should be robust not only
to the subsystem modeling error but also the interactions. Thus one
may employ the techniques of designing robust adaptive controllers
for single-loop systems. It is nontrival, however, to analyze the overall
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closed-loop system due to the existence of interactions, and thus the
results achieved so far are still limited.

Most decentralized adaptive controllers published in literature are
designed using direct model reference adaptive control schemes [1],
[2], and the problems solved using these schemes are still limited.
These results are only applicable to local systems of relative degree
one and two. Recently, decentralized adaptive control schemes for
local systems having arbitrary relative degrees appeared in [3] and
[4]. The assumptions made for the local systems, however, are exactly
the same as the earlier ideal assumptions for scalar systems.

In general, indirect adaptive controllers are more flexible with
respect to the choice of controller design methodology and the choice
of identification scheme, but the analysis of indirect adaptive systems
is more difficult and complicated. This is particularly true in the
analysis of totally decentralized indirect adaptive control system. So
far, stability results on truly decentralized indirect adaptive control
can only be found in [5}-[7]. One common feature of these works
is that only discrete-time systems were considered, and the method
of analysis is through induction which cannot be easily applied
to continuous-time systems. Thus the stability problem for indirect
continuous-time decentralized adaptive control has not been solved
to date. In this paper, this problem is considered. It is shown that
the local adaptive controllers designed using the proposed scheme
can counteract the instability caused by ignored system modeling
errors including fast parasitics, bounded disturbances, and weak
interactions. Moreover, a local adaptive controller presented can
preserve results established in earlier global convergence proofs [8]
when the subsystem controlled by that local controller is decoupled
from the rest and the modeling errors in that subsystem disappear.
In the implementation of the local controllers, no prior knowledge
required is needed from the unmodeled interactions and unmodeled
dynamics.

H. SYSTEM MODELS

We consider the following m-input m-output interconnected
continuous-time systems

yi(t) = Hi(D)[1+ e H,(D)u; + di(t)

m

+ Y (E Hou, + € Hiy)) M

j=1
for i.j = 1.---.m, where y.. u;, and d; are the output, input, and
disturbance of the ith subsystem, H;(D) = ﬁ’ég; and is the reduced

order transfer function of subsystem ¢ with

A(D)y=D"" + 11:,1_1D"'7‘ 4o toab
Bi(D) = bl D™ + bl D™ T Do

D denotes the differentiation operator and mi < 7;. &. &;- € ; are

constants, H;(D) = L:Eg; and is the multiplicative uncertainty of

the ith subsystem, H; ; and H; ; denote the subsystem interactions if
i # j and unmodeled dynamics if i = j.

Assumption 2.1:

Al) n; is known and the coefficients of A;(D) and B;(D)

are inside a known compact convex region in which the
Bi(D.H) B;
A;(D.t) of Ai

estimated models
and observable.

are uniformly controllable

0018-9286/95$04.00 © 1995 IEEE
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A2) Hi(D) is stable and satisfies 0z, — 0, > 1 —
where m} is the true degree of B;(D). H;;, H;;
proper and stable, and d;(t) is bounded.

Remark 2.1: Note that there is no constraint on the pole locations
of unmodeled dynamics and interactions except the stability require-
ment. While modeling errors satisfy A2), no a priori knowledge is
required from them for the implementation of the adaptive controllers
given in later sections.

Following a standard procedure as in [9], we introduce a stable
filter 1/ F; to system (1) and obtain, after some manipulation

(ni = m]),
are (strictly)

yi(t) = (Fi = A)yas () + Biwig () + iy
= ¢! (8)0% + nif(t) @
where
yig(t) = F(D)yl(t)a
U1f(t) )ul(t)
Fi(D) = D"' F faaa DT S
¢i(t)T = [D"i_lyif(t)" ) '1ytf(t)aD"i_lu1f(t)a”' 7u'ff(t)]ﬂ
T ) ) ) ) ) }
9:' (t) = [frlzi-l - a:zi—lf"'-,fl; - CLZ),O.' "wosbznis"",b(ll]
and
BB,
nf—elVA‘u,f+ d(t)

- - A = == A F
Z[ i ”F VVqu+fl HH“'FV iYif |- 3)

In (3), V;(D) is an arbitrary Hurwitz polynomial of degree n; — 1.
Clearly, 7:s satisfies

nif(£)] < 2:3 5 65 ()l + do @

where dy is a constant uniformly bounding %‘L d;(t) and exponentially
decaying initial conditions for all ¢ = 1,-- 1, m, €; > 0. Also from
Assumption A2), there exists a known convex compact region C;
such that 6, € C;.

Suppose y; is a given reference set-point for output y;. The control
problem is to design a controller for the ith subsystem described by
(1) under Assumption 2.1 such that the overall closed-loop system
is stable in the sense that all signals in the system are bounded for
arbitrary bounded y; and initial conditions, and the tracking errors are
small in some sense. In addition, when the ith subsystem is decoupled
from the rest and its unmodeled dynamics and disturbances disappear,
the ith local adaptive controller should retain the properties of earlier
unmodified conventional adaptive controllers without any additional
requirement. The feedback signals for the ith local controller are only
local measurements in the ith subsystem.

III. ADAPTIVE CONTROL SCHEME
An indirect adaptive control scheme is proposed to design a local
controller for each subsystem in this section. The local adaptive
controller consists of two modules: an parameter estimator and a
linear controller designed based on certainty equivalence principle.

A. Parameter Estimator

The following estimation algorithm is introduced to the ith local
estimator

6 (t) —P{1+¢f(z)¢i(t)} ¥

1123

where

. ; N .

6 :[fn,'—l Q-1 »f(] a07 » "907bm1 bO]
Aty B, bin Lo ,bé are the estimates of unknown parameters
Unm1s"" ao,b' -, by, and e;(t) is a prediction error defined as

ei(t) = yi(t) — o ()F° (). ©)
P{-} denotes a projection operation as defined in {10]. Such an
operation can ensure the estimated parameter vector i(t) € C; for
all ¢ if §°(0) € C;. Some useful properties of the estimator in (5) and
(6) are summarized as follows.

Lemma 3.1: Suppose My is a positive constant s.t. do /Mo <6
where do is given in (4). The estimator (5) and (6), applied to the
ith subsystem given in (1), has the following properties:

1) If at time t), [|6:(t5)|| = Mo and for all t > 5, supg<, <

ll¢:(r)I| = l|6:(t)|| and supoc, <, [l ;(T)II < ll6:(t) [IV57# 2,

then the normalized prediction error defined as

0= TR
satisfies
a)
[6:(t)| < ko + €+ 6 for t > th )

where k¢ = max;c{1,...
size of region C;

m}{ke;} and ko, denotes the

= le{rlnaxm} Z €ij ®)
b)
/:é?(r)dr <k4ai(t—th)+as(t—th) fort>t5 (9)
t\?vhere
k= %kﬁ, o = (ko +26)e, az= (ks +26)6  (10)
2)
6l < el an

Proof: We only give the proof of 1-b) here. Let 6" =§' — 6.
Then (2) and (6) yield

ei(t) = —¢7 (8" () + 7is (¢)- (12)
Now consider the function v;(t) = %éiT(t)éi(t). The projection
operation, (5), (12), (4) and the assumptions of the lemma give that

[ni s (B)]ei(t)]
14 o7 ()i (t)

. gl +do
St Tr el me)

(r)dr < — /vdT+(a1+a2)/ dr
0

’[)g(t) < —é; (t) +

&(t)

t
52
€

t

< k+ar(t—t) + as(t — ).
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Remark 3.2:

1) In(10), a; can be made small by reducing e, i.e., restricting the
strength of interactions and unmodeled dynamics, o> is made
small by a sufficiently large number My. M; is not a design
parameter. As in [6], it is used for the purpose of analysis only
and its role will be made clear later.

2) When the ith subsystem is decoupled from the rest and its
unmodeled dynamics and disturbance disappear, 1,y = 0.
In this case, the properties given in Lemma 3.1 for the ith
subsystem are exactly the same as those of earlier unmodified
conventional estimators [8].

B. Controller Synthesis

For the module of controller synthesis we use a pole assignment
strategy. The control u,(t) is given by

Li(D)uig(t) = PAD) (gl (t) = yir (1) (13)

where y;(t) is the setpoint and y;, = L., and P, are

polynomials in D of the form
LiD)y=D% 41, D" 4. 4.
P(D)=p;,, D" 4 4

1 *
=y

and determined from the following diophantine equation

AL + But)Bi(t) = A7 (14)

In (14), A} is a monic polynomial in D of degree 2n, and its zeros are
chosen to be the required closed-loop poles. A guideline for choosing
A} can be found in [9]. A;. B; are the estimates of A,. B,. From
Assumption Al), (14) gives a bounded solution for L, P.vt.

Clearly, (13) gives a strictly proper control law and can be
implemented as

ui(t) = (Fi — Liyuiy — Pi(yir — yiy).

IV. STABILITY ANALYSIS

In this section, we will study the adaptive system consists of the
plant in Section II and the adaptive controller in Section III. An
equation describing the ith loop of the closed-loop system can be
obtained by combining (13) with (6)

Do (t) = ALoi(t) + bie (t) + bhri(t) 15)
where
by =[1.0.---.0]". by =1[0.---.0.1.---.0]T
ri(t) = %y:m (16)

and A-i‘c is a matrix having the similar structure as A’ in [6].

From Lemma 3.1, we can show that 3¢ > 0.0 > 0 such that
the transition matrix of the homogeneous part of (15), denoted as
O, (t. 7), satisfies

1B:(t. 7| < ce =) fort > 7 >t (17)

for all ¢ < €. 6 < &* under the assumptions of Lemma 3.1, where
bounds #*. &* are sufficiently small numbers to ensure a; +as < 4.
ay.ap are given in (10), @™ is a sufficiently number.

Now notice that for i = 1,2.---.m and for any bounded initial
conditions ¢;(0), set points y; and disturbances d;(t), there always
exists a number My such that [|¢,(0)]| < Mo, ||ri(#)||« < Mo and
%L < 6 for a sufficiently small 4 given in Lemma 3.1, where r;(f)
is given by (16). In this section, such an intermediate number is
used to aid our analysis. Clearly, the closed-loop system is stable if
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[loi(t)]] < Mo forall i = 1.2.---.m and t > 0. Thus the only
situation which can cause instability is that ||¢:(¢)[| > Mo for some
i and t € RT. In this case, there must exist a time instant ¢} such
that ||¢:(g)|| = Mo. To start the stability analysis in this situation,
we now examine a special case that the trajectory ||¢;(t)| of the ith
subsystem satisfies certain conditions.

Lemma 4.1: Suppose that for all ¢ > t supge,«; ||6:(T)|| =
lo: ()] and supg e, «, [|¢;(T)|| < ||¢i(¢)||Vj # i. Then consider the
adaptive system consisting of interconnected continuous-time systems
modeled by (1) and decentralized adaptive controllers designed in
(5). (6). (13), and (14). Under Assumption 2.1, there exists a constant
€] such that for all € < €] the closed-loop system ensures that

lox(t)|| <M Vk=1.---.mandt >0

where M = \/c1 M2 + ¢2 and ¢1. ¢, are constants.
Proof: By examining the general solution of (15) and following

the procedures as in [6] and [9], the results can be proved after the
use of Schwartz inequality, Grownwall Lemma, and Lemma 3.1. O

It is the estimator properties in Lemma 3.1 that gives the result of
Lemma 4.1. These properties, however, are not sufficient to establish
the global boundedness of signals in a general case. Thus we need to
further explore the local parameter estimators, and this gives Lemma
4.2 as follows.

Lemma 4.2: Suppose My is a positive constant s.t. dg/3y < 6.
The estimator (5) and (6). applied to plants given in (1). has the
following additional properties.

If floi(t)]| > Mo for all t > t5. |lox(m)|| <

18)

i ME + 2V

k'=1.---.m and for 71 € [0.£1]. also for all t > #} if sup,. <,
llo: (Tl = ll6:(#)]] and supg<, <, o, (Tl < llo: (Bl Vj # i. then
D
[6:(t)] < ko + (/o1 + Ve2)+6  fort > ¢
and
2)
t .
/ Hr)dr < k+a(t—t)) +aa(t —ty) fort >ty
th

where

&1 = (ko + 2(y/e1 + Ve2)e)(Ver + ez e

Proof: The proof of property 2) is presented. Note that for all

k=1.--'m
sup Jlow(7)|| < o ME + c..

o<r<td

From the proof of Lemma 3.1 and assumptions of Lemma 4.2, we

can have
t t ]
~2 . —

/F,(T)S—/('iliT+01/

Jty t t

t t

+ o dt + a2 dr
] td

<kt a(t —to) + ot = o).

dr

O
Remark 4.1: Note that the properties in the above lemma are quite
similar to that in Lemma 3.1 except that the constants ¢; and c;
appear here.
We can now state our main result as follows.
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Theorem 4.1: Consider the adaptive system consisting of intercon-
nected continuous-time systems modeled by (1) and decentralized
adaptive controllers designed in (5), (6), (13), and (14). Under As-
sumption 2.1, there exists a constant €* such that for all ¢ < €
the closed-loop system is globally stable in the sense that y;(t) and
ui(t)i = 1,---,m as well as all the states in the system are bounded
for all ¢ > 0 and for all finite initial states, any bounded y; and
arbitrarily bounded external disturbances.

Proof: We first outline some motivation steps to clarify the
development of the proof.

1) Overall, we try to establish a uniform bound M for all the
trajectories ¢r(t), k = 1,2,---,m progressively in time
starting from ¢ = 0. This is in contrast with some other
approaches where a subsystem trajectory is studied over the
whole time period [0,00). The flow of the proof is to use
Lemma 4.1 to derive the bound M for all the subsystem
trajectories in the beginning period and then to apply Lemma
4.2 to propagate the same bound M also for all the trajectories
for the future time in an interval by interval basis. Fig. 1 is
used to aid our analysis.

2) From the compactness of the integer set {1,2,---,m} and the
continuity of ||¢x(¢)||,k = 1,2, -, m, there always exists an
integer I € {1,2,---,m} such that

o)l = max _{lo«(t)l

over a time interval. To establish the bound M for all the
trajectories, we study a function ®(t) defined as

ey (t) = max [x(®)-

19

(20)

Clearly, ®s(t) is continuous in time and also depends on
integer ! at different time intervals. By dividing the time horizon
R4+ into two subsequences

R1:={t € Ry | um(t) > Mo, }
Rz = {t € Ry | Dume(t) < Mo}

and constraining the initial time t = 0 in Rz, ie., {|¢x(0)[|} <
My for all ¥ = 1,2,---,m, we can conclude the result
by showing that ®(t) is bounded for ¢ € R;. Also this
division allows that all the trajectories to be studied at different
time intervals inside ®; have the same “initial” value, i.e.,
llée(to)ll = Mo.
Now the formal proof starts from the initial time zero and suppose
that the first time for ® () to cross the constant line My occurs to
the trajectory ||¢:(¢)|] at time t; where ¢ is an arbitrary member of
the set {1,2,---,m}. From its continuity, ||¢;(¢)|| will satisfy the
assumptions of Lemma 4.1 for some ¢t > t}. Therefore from Lemma
4.1, we have for all € < €]

sup lox(D)| <M Vk=1,2,---,m and t>t}
0<r<t

and thus

sup dp(r) < M fort > th.

0<r<t

If the conditions of Lemma 4.1 are satisfied by ||¢:(t)|| for all the
remaining time in R, then the results are proved. Clearly this is not
always possible and suppose that the assumptions of Lemma 4.1 are
violated by [|¢:(t)|| when t > t. where ¢} is arbitrary but satisfies
ti > ti. For the violation, there are only two possible cases in a time
interval at the right side of ¢. when function ®5(t) is considered.

Case 1)
<M
# ®u(t)

fort <t

sup QM(T){ for ¢t} < t.

0<r<t

1125

This situation implies that for t > ti,||¢:(¢)|| does
not satisfy the condition that supy<. <, [lé:(T)l| =
l6:(t)]| of Lemma 4.1. As for the other condition that

suPo<-<¢ IOk (DI < li@i(®)I,VE # i, whether it is
satisfied will not affect our following analysis.
For t > t} in this case, we can automatically have

sup Dum(r) = Srmr(tnr)
0<r<
<M
where tas < t]. Therefore
sup [lox(T)l| < sup Par(r)
0<r<t 0<r<t
<M
for k = 1,2,---,m.

We note that it is not necessary to study the subsystem
trajectory that gives ®(t) in this case.

Case 2)"
sup ‘I’M(T){E g for t,S t
0<r<t =®p(t) forti <t
and
Bu(t) = |6, fort; <t 1)

It can be noted that when ¢t > ti, the following
assumption of Lemma 4.1 is not satisfied by ||¢:(t)|
in this case

sup [l¢;(T)ll < sup [Ig:(7)]-
0<r<t 0<r<t

Again, the condition that supo< . <, [|6:(7)|| = [|6:(8)]]
will not affect the result in this situation.
Obviously, this case has the following implications

l6; (Ol = sup [Ig; ()l
0<r<t
and

()l = sup llge(n)|l VE #j
0<r<t

t > ti.

Ast! € Ry, then there exists a time instant t; satisfying
lo;(t3, )l = Mo and the interval [téo,ti] C ™
from the continuity of ||¢;(¢)||. Thus, the conditions
in Lemma 4.2 are satisfied by ||¢;(¢)||]. By studying
[l$;(t){| from the time instant ¢} , applying Lemma 4.2
and following the same steps as in the proof of Lemma
4.1, we can show that

sup |lg; ()| < M vt> 8
0<r<t

for € < €*, where €* = T(l—i and therefore

c1++/c2
sup Pu(r) < M,

0<r<t
sup |lox(7)]| < M fort >t} andall k =1,2,---,m.
0<r<t

IThis case is not shown in the right side neighborhood of ti in Fig. 1, but
it is given when t > ¢} .
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Fig. 1. Trajectories of ||o;|| and ||o;]|.

After the examination of the two cases, it has been shown that when
the assumptions of Lemma 4.1 are violated after certain time instant
i, the bound A for all the subsystem trajectories are propagated to
a new time instant 7" where T is such that for ¢+ > T, one of the
following changes happens to ®s(t).

1) ®as(t) = supge, <, Pas(t) right after Case 1).

2) ®ar(t) # supye,<, Pas(t) right after Case 2).

3) ®as(t) still equals sup,., o, ®ars(t), but is generated by a

different subsystem trajectory ||o;(¢)|| right after Case 2).

As we can note for ¢ > T, changes 1) and 3) will get ®:/(¢) to
Case 2 whereas change 2) will make ®/(¢) into Case 1). Thus no
matter how ®1;(t) changes for t > T, it will still fall into one of
the two cases except that ¢] is shifted to the new time point 7". Then
we can repeatedly apply the argument in the two cases to establish
the boundedness of all trajectories by M for ¢ < ¢ in a method of
interval by interval deduction. For further illustration, four more time
intervals are presented in Fig. 1. For the four intervals, the following
can be easily noted.

1) Change 1) occurs to ®as(t) at t = #]. Then for t > ¢]. ®x(¢)
falls into Case 2).

It can be seen that ®ar(t) = ||o;(t)|| for t > #. Thus the
argument in Case 2) can be applied with now 160 replaced by
t.

Change 2) happens to ®x7(¢) at t = t}. Thus when ¢t > tJ,
$as(t) belongs to Case 1). and the argument in Case 1) can
be employed.

When T = t}. ®1,(t) falls into Case 2) again and $rr(t) =
lo;(t)]| for ¢ > T. The argument in Case 2) can be applied
and ||¢;(t)]| is still examined from t], since [t}.#}] C R;.
For t > ti, this is still Case 2) but ®as(t) = ||¢;(t)|]. Thus
the analysis in Case 2) is applied to ||¢;(t)|| with “initial” time
ty, because [|o;(t )|| = Mo and [tg,.],] C Ry.

From the proof above, we can conclude that ||ox(t)]| < M VEk =
1.2.---.m and ¢ < ¢". Now note that M only depends on My
which is a uniform bound for initial values of ¢;(0), bounds of y;
and d;(t).i = 1.---.m. As ¢;(0).y] and d;(t).: = 1.---.m are

2)

3)

4)

bounded, thus M and therefore ¢;(t).i = 1.---.m are bounded.
Once establishing the boundedness of o,(t), we can have u;(t) and
y, (1) bounded. O

Remark 4.2: 1f the ith subsystem is decoupled from the rest
subsystems and it has no modeling errors, we can still obtain the
results that basic adaptive control algorithms can achieve for ideal
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plants [8]. One of them is that perfect tracking can be achieved since
the prediction error tends to zero.

V. CONCLUSION

In this paper, we studied a totally decentralized indirect continuous
time adaptive control system. Each local controller is designed by
ignoring the interactions from other subsystems and consists of
a gradient estimator, subject to parameter projection as the only
modification plus a pole assignment controller. It has been shown that
the above decentralized adaptive controllers can stabilize an intercon-
nected system with weak interactions and modeling errors including
bounded disturbances and small amount unmodeled dynamics. It is
also clear that those results established in earlier global convergence
analysis of ideal situations are preserved for those subsystems which
are decoupled from the interconnected system and also satisfy the
“ideal assumptions” [8].
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