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A Robust Adaptive Controller with Minimal
Modifications for Discrete Time-Varying Systems

Changyun Wen

Abstract—The goal of this paper is to show that an indirect adaptive
controller with parameter projection as the only modification on the basis
of conventional adaptive control algorithms can globally stabilize systems
having fast parasitics, bounded external disturbances, and time-varying
parameters without any restriction on signals in the closed-loop system
such as persistence of excitation. Further, the controller can still retain the
properties of earlier unmodified conventional adaptive controllers when
the controlled plant satisfies so-called “ideal assumptions” or the rates at
which the plant parameters’ change belong to the I3 (or I2) space.

I. INTRODUCTION

Earlier robust adaptive control algorithms involve various modi-
fications such as parameter projection, together with normalization
[1], o-modification with normalization {2], and dead zones [3], [9).
A summary of the progress can be found in [4]-[6]. Those modified
algorithms contain some critical parameters to be chosen to ensure
global stability when unmodeled dynamics appear. Also, assumptions
on unmodeled dynamics are made for implementations. Taking the
use of relative dead zone [3], [6], [9], [11] as an example, we need
to know an upper bound of the gain of the unmodeled dynamics.
The stability condition, on the other hand, requires this bound to be
sufficiently small. Clearly, the choice of such parameters makes it
complicated to implement the algorithm.

To avoid the choice of such parameters related to unknown
modeling errors, we studied the robustness of an indirect conventional
adaptive algorithm which involves a basic parameter estimator subject
to parameter projection as the only modification and a pole assign-
ment control synthesis module [7]. In this paper, we will reexamine
the robustness properties of this adaptive algorithm by applying it to a
plant which is allowed to have a time-varying reduced-order model.
It is shown that the adaptive controller can still globally stabilize
this type of time-varying system in the presence of modeling errors,
including unmodeled dynamics and external disturbances.

The continuous-time version of the above adaptive controller was
studied in [11] for time-varying systems without modeling errors.
A relative dead zone is built in when the system studied has a
modeling error such as unmodeled dynamics and external disturbance.
The robustness of a direct model reference adaptive control scheme
with parameter projection was also studied for systems with a time-
invariant reduced-order model in [12]-[14].

II. SYSTEM MODELS

The class of controlled time-varying plants we consider can be
modeled as in the equation

A(g™h, t)y(t) = B(q™", t)u(t) + m(t) (0

where v and y represent the input and output, respectively, A(¢™ %, t)
and B(q™',t) are time-varying polynomials of degree n in the
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backward shift operator ¢7°, i.e.,

A =14+a®g "+ + an(t)g "

Blg D =b(t)g "4+ ba(t)g "

and m(t) denotes the modeling error consisting of bounded distur-
bances d(t) and unmodeled dynamics 7(t), i.e.,

m(t) = n(t) + d(t). )]
Now, rewrite (1) in a regression form as
y(t) = 6" (¢ = 1)6(t) + m(t) ©

where ¢(t — 1) is a regression vector and 6(¢) denotes a vector
containing unknown time-varying parameters of the nominal system
model (reduced-order model), i.e.,

d)T(t_ l) = [y(t_ 1)7"'7y(t_n)a u(t — 1)7"'~u(t_n)}

OT = [_al(t>’ Tty _a"(t)f b1 (t)v ) bn(t)]'

For the plant in (1), we have the following.
Assumption 2.1: 1) Unmodeled dynamics term 7(t) satisfies

()] < d+ ero(t) @

where d is a constant which bounds the initial value 70, € is a small

nonnegative constant, and ro(¢) is defined as
ro(t) = poro(t — L)+ {lo(t — DI,  70(0)=0 (&)

where (1o is a constant satisfying |po| < 1.
2) For d(t), there exists a constant d’ such that

()] < d'. o ®
Since |po| < 1 in (5), we can have
ro(t) < ¢y max (7] @)

where ¢, is a constant.
Thus, if ¢(7) is bounded according to ||¢(7)|| < M for 7 =
0,---,t — 1, we can have

[n()]| <d+ cpeM ®
and
|m(t)| < cheM +d (&)
where
d=d+d.

Comment 2.1: Assumption 2.1 is also required for nonadaptive
controllers, designed based on a known reduced-order system, to give
a stable closed-loop system. Therefore, Assumption 2.1 is a natural
extension from nonadaptive control to adaptive control for robustness
against fast parasitics and bounded disturbances.

Usually, we have some knowledge on the range of unknown time-
varying parameter vector §(¢) of the nominal system model. This is
given in the following assumption.

Assumption 2.2: 9(t) lies in a known (large) convex compact
region C for all ¢, and C has the property that the polynomials
A(g™), 3(11_1) induced by an arbitrary (nonzero) vector € in C
are uniformly coprime. O
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Comment 2.2: The coprimeness of A(g™"), B(g™!) is only re-
quired when pole assignment control law synthesis is used. When
some other adaptive control strategies [10] are employed, this re-
quirement can be relaxed.

Assumption 2.2 gives

(162 — 82l <ke V61,02 €C (10)

05l < ke  Vbs€C (11)

where kg, k. are constants. kg reflects the size of C and k. the
maximum distance from C to the origin.

Regarding the time variation of plant parameters, we have the
following.

Assumption 2.3:

to+N
3 18(8) — 0t — Il < ke + s N

t=tg+1

Ve >0, N>1 (12)

where k. and €g are nonnegative constants and ¢g can be sufficiently
small. Note that the rates at which the system parameters change
are €g-small in the mean. This implies that the parameters are not
necessarily slowly time varying in a uniform way as in [11].

Suppose y™ is a given reference set point for output y. The control
problem is to design a controller such that the resulting system is
bounded input bounded state (BIBS) stable and the tracking error is
small. Moreover, these properties are to be robust to the modeling
error m(t).

II. ADAPTIVE CONTROL ALGORITHM

In this section, an indirect adaptive control algorithm is presented.
The parameter estimator is a basic one used to establish earlier global
convergence results (see [10]) subject to parameter projection.

A. Parameter Estimation Algorithm
For simplicity of analysis, we use the gradient estimation algorithm

ot — De(t) }
1+6T(t—-1)é(t - 1)

B(t) :’P{é(t— D+ 13)
where 6(t) denotes the estimates of 6(t) at ¢t and P represents
the projection operator necessary to ensure § € C Vt. e(t) is the
prediction error defined as

e(t) = y(t) — o7 (t — V(¢ - 1).

Now, suppose M, is a constant such that d/My < 8, where
0 < & < 1. Also, let M be a constant such that M? = ks MZ + ks
where k; and k» are nonnegative constants with k; > 1 specified in
later sections. Then, some properties of estimator (13), (14) can be
established as below and will be used in our stability analysis.

Lemma 3.1: Consider the estimator (13) and (14), applied to
system (1). Assuming ||¢(to — 1)|| < Mo, ||¢(T)]]| > Mo, 7 =
to,---,t—1land ||p(r)|| < M, 7 =0,---,t—1, where t > to+1,
then we have

14)

)
6] = _.__ﬂ_2_
(1 + 16t — 1)II")*/2
(ke + a1)Mo + a1, t=to
S{kg+a1+6, t>to+1
where
a = (k:/2+k;/2)c,,e+6. (16)
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Z |6()I? < T + aa(t — to) + as(t — to)

r=tp+1

an

where
Ty = k2 + ke(2.5ks + 01 + 6)
az = 2(ke (k272 + k3/?) + 2c, (k1 + k2)€)cne
+2¢ (2.5ko +or+6+ %59) (18)

as = 2(26 + ke)b 19
3)
6(t) — 8¢t — )| < ()] vz (20
Proof: From (3) and (14), we have
e(t) = —¢T (t — 1)t — 1) + m(t) (1)

where

0(t) = 6(t) — 8(t).

1) It follows by similar analysis to that in [7].
_ 2) Let 8np(t) denote the parameter estimate before projection, i.e.,
8(t) = P{bnp(t)}. Thus,

bup =Bt = 1) = T ¢¢;(zt"_11);q§2 5 @2
We consider the function v(t) = 87 (£)d(t).
Then
v(t)—v(t—1)
<[] - o= | 23)

< [67,(t) — 87 (¢ — Vlffap(t) — 6t — 1) +26(¢ — 1)]

_ le(t)I? 207 (t — 1)(t — 1)e(t)

S TH T - 1ot -1 | 1+ T (- 1gt- 1)
- 2[8(t) — 6(t - 1)]"

: B(t — De(t)
) [W -+ 1+ ¢T(t—1)p(t—1)

- J0w o= 1)]
(24)
where (23) follows from the convexity of region C. Now, using (21)
and (10) gives
20T (t — 1)8(t — 1)e(t)

= 2(—e(t) + m(t))e(?)

< =262 () + 2|m(t)| (ks |6 (t — Dl + [m(t)])

< =2¢*(t) + 2ko |8t — Dlllm(t)] + 2Am (D).
From (9), (15), (21), (24), and (25), we get

(25)

v(r) —v(r = 1)
«__ O 2kocne(ks M + k2)'?[l6(r — D)
T 1+lle(r - DI 1+ [l6(r - DII”
4koc2e® (ki MG + k) | 4d + 2ked||p(T — 1)
1+ [je(r — DJ* L+ llg(r = DII”

+2(16(t) — 6(t — 1)|(2.5ko + a1 + 6).
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Thus, we have
2kocpe(ky MG + k2)'/2||b(r — 1)||

E(r)y<e(r—1)— o(r) +

1+ [lé(r — )|
ko€ (ki MG + ko) | 4d° + 2kod||6(r — 1)
1+ flo(r - ? 1+ flo(r = D|?

+2[16(2) ~ 6(t — D[[(2.5ko + a1 + 6) (26)

for 7 =to+1,---,tand f > to + 1. Summing (26) and using (10)
and (12), the resu]t follows.
3)

He —9(t—1“< fop(t) —

i)

< llstt = 1e O < .
L+ Jlo(t - D]

Comments 3.1: 1) The least squares algorithm is more commonly
used in practical algorithms [10]. Similar properties for this estimator
can be derived by defining a different Lyapunov- type function v(t),
but the analysis is more tedious.

2) Note that a1 and a2 are functions of €, ey and can be made
arbitrarily small by reducing € and €g. Also, a3 depends on 6.

3) Comparing the derivation of the estimator properties in Lemma
3.1 with those in [7], the establishment of (17) is much more involved
due to the time-varying nature of the system parameters. But it can be
noted that the properties in both cases are similar in their final forms.

4) Suppose the system modeling errors are removed and the system
is time invariant or the rates of the plant parameters variation belong
to the I, (or lo) space, i.e., €, d in (9) and ¢4 in (12) are identically
zeros. In this case, m(¢) = 0 and the above estimator has those
properties established in earlier global convergence results [10].

B. Adaptive Controller Design

Following the Certainty Equivalence Principle, we will use the
parameter estimates obtained from the estimator (13) and (14) to
adjust the parameters of the controller. Here, the pole assignment
strategy is utilized. This is just one choice of many control schemes
which could be used [10]. The control u(%) is given by the equation

Lt = Du(t) = —P(t — 1)(y(t) — y°(¢)) @7

where y* is the given set point and
Lty =141(t)g ™ 4+ Iu(t)g™" (28)
P(t)=p1(t)g ™ + -+ pa(t)g™" (29)

L and P are obtained by solving the following Diophantine equation:
(30)

where A" is a given monic strictly (discrete-time) Hurwitz constant
polynomial in backward shift operator ¢! of degree 2n. From
Assumption 2.2, we see that the coefficients in L(t) and P( )
obtained from (30) are bounded [10].

ALty + Bt)P(t)= 4

IV. STABILITY OF THE ADAPTIVE CONTROL SYSTEM

In this section, we will study the robustness and stability of the
adaptive control algorithm (13), (14), (27)-(30) applied to system (1).
It will be shown that if the parameters of the reduced-order model
are sufficiently slowly varying, i.e., €y in (12) satisfying 5 € [0, €}]
where €; is a sufficiently small constant, then there exists a class
of unmodeled dynamics, i.e., a €* such that for each ¢ given in (4)
satisfying € € [0, €”], all states in the closed adaptive system are
bounded for any bounded initial conditions, bounded set points, and
extraneous disturbances.

First, we derive an equation to describe the closed-loop system by
combining (14) and (27).

O(t+1) = A(t)o(t) + Bie(t+ 1)+ Bor(t +1)  (31)

where (see (32) at the bottom of the page)
B =[1,0,---,0,  Bj =[0,---,0,1,---.0] (33)
r(t+1) = P(t)y"(t+1). (34)
Since P(¢) is bounded, then ||r(t + Dlles < eplly™(t + 1)||oo where

cp is a constant.

From Lemma 3.1, Assumption 2.2, and (30), we can show that
the transition matrix ®(¢, ) of the homogeneous part in system (31)
satisfies

1Bt )| <ea®™™  fort> 7>t (35)

where |o| € (0, 1) and c is a constant, if ||¢(7)|| < M, r =
0,---,t—1, ”(lﬁ(Tl)” > ;M(), T = t()," t ~ 1, and ao < (1/2
6 < 6 for some sufficiently small @3, & Now we are in a position
to present our stability result.

Theorem 4.1: Consider the adaptive system consisting of plant (1),
estimator (13)-(14), and controller (27)—(30). Under Assumptions
2.1-2.3, 3" and ¢; such that € < e, and €s < € ensure |[p(¢)]|
bounded V¢ for all bounded initial conditions, set points, and external
disturbances.

Proof: The methods of analysis used here are similar to that
in [7], and thus only the major steps are outlined. For more details
including some preliminary motivations, see [7].

Note that for any bounded initial conditions #(0), set points y~,
and disturbances d(t), there always exists a number M, such that
[l6(0)]] < Mo, || < My and d/My < 6 for a sufficiently
small 6, where r(t) is given by (34). We will use an inductive proof
by assuming that ||¢(7)|| < M, 7 = 0,---,¢ — 1 for ¢ > 1, and
prove that [|¢(t)|| < M, where M > M, and is defined in Section
III. To apply Lemma 3.1 and the exponential stability property of
“A(t) in the closed- -loop equation (31), we divide the time interval
Z, into two subsequences

Zii=A{t € Zy|llo)ll > Mo}

Zo:={t € Zy||o(t)]| < Mo).

—ai(t) —as(t) —an(t) b (t) b1 (8)  ba(t) T
0 0 0 0 0
0 1 0 0 0 0
T(t) — A . . 32
W=1_p e Spa(t) =) e —hai(t) —da(t) G2
0 0 1 0 0
L 0 0 0 1 0 |




Clearly, the result is proved if we can show that ||¢(¢)|| < M and
t € Z, since M > Moy. To do this, we choose to so that to > 1,
to—1€E Zz, and to,-",t— 1e¢ Zl.
The general solution of (31) is
t—1

$(t) = B(t, to)d(to) + Y _ B(t, T)[Bie(r + 1) + Bor(r + 1),

T=tg
ie.,

#(t) = ®(t, to)[A(to — 1)é(to — 1) + Bre(to) + Bar(to)]

t—1

+ > ®(t, 7)[Bre(r + 1) + Bor(r + 1)].

r=tg

Using (15), (35), the boundedness of ||A(¢o — 1)||, and inequality
le(m + DI < 1+ llp(n)DIe(r + 1))

gives

le®l < cot~*[(er + a1) Mo + 2 + ]
+3 et TTE(r + Dllle(r)ll + [&(r + 1)| + Mo]  (36)

r=tg

where ¢; and c; are constants depending on kg, o, and 5. Following
similar steps to those in [7] involving the use of the Schwarz
inequality, Lemma 3.1, the Grownwall lemma, and the theorem of
the arithmetic and geometric means, we obtain

N < s + caM§ + csat ME + csal @37

ifas <@3,6 < 5" for some sufficiently small &3, 5. From (16),
leI? < [er+cscke® (ky+k2)IMG 4o+ crocie? (k1 +ks). (38)

Then, constants k; and k2 can be chosen as the solution of the
equations

kl =c7+ cecﬁg(kl + kg)

k2 =co+ 01063,62(’01 + k2),
ie.,

(1, k2)7 = [er, eo) [T = N7 (39)

where N is a matrix given by

_ cscf,ez, c@c‘f,e2

- C100?,€2, 61063,62}.
Clearly, there exists a constant € such that I — N is an M -matrix
[15], and therefore k; and k have positive solutions for all € < €.
Thus, we can have

los@I* < ki Mg + ko = M. (40)

It now remains to clarify the roles of ¢ at (4) and € at (12) in
establishing (40). From the above argument, we can see that k, and
k2 are constants depending only on system parameters kg, o, ¢, and
numbers 5", €. Now, let o} = min {a@3, a3} where @5 and &; were
defined to ensure that (35) and (37) are satisfied. From (18), we see
that there exist an € and an €; such that € < & and € < €; give
that oz < o3. Finally, taking €* = min {¢*, €}, we have proved
the result.
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Comments 4.1:

1) A remark on the use of a relative dead zone in [11] is given
here. We see that if an incorrect upper bound of e at (4) is used
to build a relative dead zone function in the adaptive controller, the
closed-loop system is still BIBS stable for sufficiently small ¢ and €
from our analysis given above.

2) If there is no modeling error appearing in the system and the
system parameters are time invariant, we can still obtain the results
that basic adaptive control algorithms can achieve for ideal plants
[10] (in fact, from the proof of Lemma 3.1, this is also true if
[18(t) — 8(t — 1)|| € 44, ie., e¢ = O in (12)). One of them is that
perfect tracking can be achieved or the prediction error tends to zero.

3) Suppose disturbance d(t) is identically zero or satisfies

S(g7Hd(t)=0

where S(¢™') is a known polynomial of ¢~' with all roots on the

unit circle. Also note that d at (4) can be an exponentially decaying
function. Thus, having established boundedness of all states in the
closed-loop system, from (17) in Lemma 3.1 we can notice that the
prediction error e(t) for a given system with given initial condition
is € and €p small in the mean, i.e., e(t) satisfies

t

Z 32(t) < P14 Bizoe, €9)(t — to)

r=tg+1

where 311, 812 are constants and o(e, €g) satisfies lime—o, ¢g—0 =
0. If the internal model principle [10], [6], [8] is used, we can show
that the tracking error |y — y*| is € and €y small in the mean, or
tends to zero if € = 0 and €9 = 0 by employing the similar methods
of [6] and [8].

V. CONCLUSION

In this paper, we reexamined the basic adaptive control algorithm
studied in [7], which consists of a gradient estimator, subject to
parameter projection as the only modification plus a pole assignment
controller. The only a priori information required for the implemen-
tation of the algorithm is the range that each unknown time-varying
parameter of the reduced-order plant lies in, which is quite reasonable.

It has been shown that the above adaptive controller can also
globally stabilize a slowly time-varying system with modeling error
including bounded disturbances and unmodeled dynamics. Small in
the mean tracking error is possible if appropriate adaptive control
schemes with the internal model principle are used. It is also clear
that those results established in earlier global convergence analysis
of ideal situations are preserved if plants to be controlled satisfy
the “ideal assumptions” (see [10]) or the rates at which the plant
parameters’ change belong to the 1 (or l2) space. In particular, we
can guarantee perfect tracking in this case.
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Robust Stability of Discrete-Time
Systems Under Parametric Perturbations

Mehmet Karan, M. Erol Sezer, and Ogan Ocali

Abstract—Stability robustness analysis of a system under parametric
perturbations is concerned with characterizing a region in the parameter
space in which the system remains stable. In this paper, two methods
are presented to estimate the stability robustness region of a linear,
time-invariant, discrete-time system under multiparameter additive per-
turbations. An inherent difficulty, which originates from the nonlinear
appearance of the perturbation parameters in the inequalities defining
the robustness region, is resolved by transforming the problem to stability
of a higher order continuous-time system. This allows for application of
the available results on stability robustness of continuous-time systems
to discrete-time systems. The results are also applied to stability analysis
of discrete-time interconnected systems, where the interconnections are
treated as perturbations on decoupled stable subsystems.

I. INTRODUCTION

An essential feature of complex dynamic systems is the uncertainty
in the system parameters, which may arise due to modeling errors
or change of operating conditions. The analysis of stability in the
presence of uncertainty is the subject of the robust stability problem.
A common approach to stability robustness analysis is to model the
uncertainty as perturbations on a nominal stable model. A measure of
degree of stability of the nominal system can then be used to obtain
bounds on the perturbations which the system can tolerate without
going unstable.

Lyapunov’s direct method provides a convenient way to estimate
the degree of stability. It also directly yields bounds on tolerable per-
turbations [1]. This feature of the Lyapunov approach has been used
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among many others in [2]-[5] to obtain explicit robustness bounds
for state-space models of continuous-time systems under additive
perturbations. Some of these results have also been reproduced for
discrete-time systems (see, for example [6]-[8]).

The main objective of this paper is to link the stability robustness
problem of discrete-time systems to that of continuous-time systems.
We show, using two different approaches, that stability robustness of
a discrete-time system can be reformulated as that of an auxiliary
continuous-time system. One of these approaches makes use of Lya-
punov theory and yields a sufficient condition. The second approach,
which is based on the properties of Kronecker products, provides a
necessary and sufficient condition at the expense of an increase in the
dimensionality. This is a pleasing development, since it allows for a
direct application of the known results on stability robustness bounds
for continuous-time systems to discrete-time systems. The results are
applied to stability analysis of interconnected systems, where the
interconnections are treated as perturbations on a collection of stable
subsystems. This demonstrates how a knowledge of the structure of
perturbations can be exploited to obtain simple robustness bounds.

II. PROBLEM STATEMENT

Consider a discrete-time system under additive multiparameter
perturbations, which is described as

D:a(k+1)= A(p)x(k) 2.1
where (k) € R" is the state of D at the discrete time instant
E € Zy,p = [p1t po - pm]T € R™ is a vector of real
perturbation parameters, and

Ap) =A+ pEr 2.2)
r=1
with Aand E., r =1, 2, -, m, being constant n X n real matrices.

We assume that the matrix A(0) = A is Schur-stable, that is, has all
the eigenvalues in the open unit disk in the complex plane.

We would like to describe an open neighborhood of the origin in
the parameter space in which D remains stable. More precisely, we
are interested in a region

Q = {p | A(ap)isSchur-stableforalla € [0, 1]} (2.3)
in the parameter space R™. Since, in general, it is difficult to
characterize (2 explicitly in terms of the perturbation parameters, we
aim at obtaining estimates of €2 as regular volumes embedded in §2
which can be characterized explicitly.

III. ESTIMATION OF ROBUSTNESS REGION VIA LYAPUNOV THEORY

Our first approach to estimating €2 is through Lyapunov theory.
Let V(z) = =” P2 be a Lyapunov function for the nominal system
corresponding to p = 0, where P € R"*" is the unique, symmetric,
positive-definite solution of the discrete-time Lyapunov equation

ATPA-P=-Q 3.1
for some symmetric, positive-definite matrix Q € R"*". The
difference of V() along the solutions of the perturbed system D
in (2.1) is computed as

AV (2(k)) |p,= 2" (R)Q2[Q(p) — QY x(k) (3.2)
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