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(5.2) isR2-approximately boundary controllable, i.e., without any con-
straints posed on the controls, iff�1�2 6= 0 [6].

VI. CONCLUSIONS

In this paper, constrained approximate controllability problems for
linear abstract dynamical systems with linear unbounded control oper-
ator and piecewise polynomial controls have been investigated. Using
some very general results taken from the paper [20], necessary and suf-
ficient conditions for constrained approximate controllability in finite
time for linear continuous dynamical systems or equivalently in finite
number of steps for linear discrete dynamical systems have been for-
mulated and proven. Moreover, the relationships between approximate
and exact controllability have been explained and discussed. Finally,
two simple illustrative examples have been studied in detail. These ex-
amples represent linear distributed parameters dynamical system de-
scribed by partial differential equation of the parabolic type with dif-
ferent boundary conditions and boundary piecewise polynomial con-
trols.
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Discrete-Time Robust Backstepping Adaptive Control for
Nonlinear Time-Varying Systems
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Abstract—This paper studies the problem of adaptive control for a class
of nonlinear time-varying discrete-time systems with nonparametric uncer-
tainties. The plant parameters considered here are not necessarily slowly
time-varying in a uniform way. They are allowed to have finite number of
big jumps. By using the backstepping procedures with parameter projec-
tion update laws, a robust adaptive controller can be designed to achieve
adaptive tracking of a reference signal for this class of systems. It is shown
that the proposed controller can guarantee the global boundedness of the
states of the whole adaptive system in the presence of parametric and non-
parametric uncertainties. It can also ensure that the tracking error falls
within a compact set whose size is proportional to the size of the uncertain-
ties and disturbances. In the ideal case when there is no nonparametric un-
certainties and time-varying parameters, perfect tracking will be achieved.

Index Terms—Adaptive control, backstepping, discrete-time system,
nonlinear controller, parameter projection, time-varying system.

I. INTRODUCTION

Adaptive control of nonlinear systems is an increasingly active area
of research. Much progress has been achieved for continuous-time sys-
tems [1]–[7]. In contrast, the effort devoted to the adaptive control of
nonlinear discrete-time systems is less. This is mainly because it is
usually difficult to find a discrete-time Lyapunov function such that
its increment is a linear function with respect to the increments of its
variables. Thus, some developed control techniques such as the back-
stepping design scheme, which are based on Lyapunov theory and have
been shown very effective to control of a large class of continuous-time
systems, cannot be parallelly extended to treat nonlinear discrete-time
systems.

Recently, this problem was considered in [8]. By employing the basic
parameter estimators in [9] as update laws and ultilizing the properties
of these estimators, the global boundedness and convergence can be
achieved without employing Lyapunov functions in the backstepping
procedures. But the results of [8] were obtained only in the ideal case
neglecting uncertainties such as time-varying parameters, unmodeled
dynamics, and external disturbances which usually inevitable in prac-
tical situations. Under the same condtions for the nominal system in
[8], a robust design scheme was proposed in [10]. However, in order
to obtain the stability of the adaptive system subject to the proposed
controller, a constant which depends on the system initial states is used
in the design of the parameter estimation adaptive laws in [10]. There-
fore, only local stability can be guaranteed in [10].

In this paper, a robust backstepping adaptive controller is designed
without using such a constant in the adaptive laws as in [10]. It is
shown, though the procedures are more complex than those in [10],
that the proposed controller can achieve global stability results for a
class of nonlinear discrete-time systems with time-varying parameters
and nonparametric uncertainties. In our design, the plant parameters
are not necessarily slowly time-varying in a conventional uniform way
as in [13]. They are allowed to have a finite number of large jumps.
It is also shown that the proposed adaptive controller can also ensure
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a small-in-the-mean tracking error in the presence of parametric and
nonparametric uncertainties. When the uncertainties disappear, perfect
tracking is ensured.

II. PROBLEM FORMULATION

It has been shown in [8] that under certain geometric conditions a
large class of nonlinear discrete-time systems can be transformed into
a parametric-strict-feedbackform. If some uncertainties are also con-
sidered, the class of nonlinear systems to which the adaptive control
can be applied will be enlarged. This motivates us to consider a class
of uncertain nonlinear time-varying discrete-time systems described by
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the remaining parts of the paper.
Two types of uncertainties are considered in the discrete-time system

described by (1). One is parametric uncertainty denoted by the un-
known time-varying parameter vector�(t). Usually we have somea
priori knowledge about the range of�(t), which is characterized by
the following assumption.

Assumption A.1:�(t) lies in a known convex compact set�, i.e.,

�(t) 2 � = f�(t): k�(t)k � k� ; k�(t)� �
0(t)k � k�;

8 �0(t) 2 �g (2)

wherek� is a positive constant.
In addition, the time variation of the parameters satisfies the fol-

lowing.
Assumption A.2:

t +N

t=t +1

k�(t)� �(t� 1)k � k� + ��N;

8 t0 � 0; N � 1 (3)

wherek� and �� are constants and�� can be reduced to sufficiently
small. As no smallness restriction is imposed onk�, this assumption
not only allows for slowly time-varying parameters in a uniform way
as in [13], but also takes into account time-varying parameters with big
jumps.

Another kind of uncertainty appearing in (1) is the nonparametric
uncertainty denoted by the unknown functions�i(t), which may often
be due to modeling errors and external disturbances. As shown in [12],
they satisfy the following assumption.

Assumption A.3:There exist constants� andd such that

�i(t) � c�� max
0���t�1

[x�1 ; x
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+ d (4)

wherec� is a known constant. It will be shown later that knowledge of
� andd is not required to implement the adaptive controller.

Remark 2.1: From (4), it is noted that the modeling error�i(t) can
have infinite memory as the functionmax0���t�1 k � k is included.

However, this makes the stability analysis more difficult especially
when the knowledge of� andd is not available.

The adaptive control problem is to obtain a control law for plant (1)
such that all the signals in the resulting closed-loop system are bounded
for arbitrary bounded reference set-pointym(t) and initial conditions,
and the tracking errorjy(t)� ym(t)j is small in some sense. To solve
the problem, an additional assumption on the nonlinear functions�i(t)
is required.

Assumption A.4:All the known nonlinear functions�i(t) satisfy
the following two conditions:
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wherek0� andk� are constants. All the norms in this paper are vector
norms.

III. A DAPTIVE CONTROL DESIGNUSING BACKSTEPPINGTECHNIQUE

The desired controller can be obtained by performing the following
backstepping procedures.

Step 1: Let
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The update law for̂�1(t) is obtained by the following projection algo-
rithm:
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and}f�g denotes a projection operator.
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andfi (i = 1; 2; � � � ; n) are the coefficients of a strictly stable poly-
nominalF (q�1), i.e.,F (q�1) = 1 + fnq
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The update law for̂�n(t) is obtained by
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The resulting closed-loop system is expressed by (25)–(27) shown
at the bottom of the page, where
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Some useful properties of the estimator, which will aid our robust
stability analysis, are established in Appendix A.

IV. STABILITY ANALYSIS

In this section we show that there exist small constants�� and���
such that for each� 2 [0; ��] and �� 2 [0; ��� ], all the signals in
the closed-loop system (25) are bounded for any bounded initial con-
ditions, bounded tracking reference signal, and external disturbances.
Similar stability analysis methods as in [11] and [12], where the induc-
tive strategy is adopt, are used to come up with the conclusion.

The stability together with a tracking property of the closed-loop
system are stated in the following theorem.

Theorem 1: Consider the adaptive system consisting of plant
(1), update laws (26), (27), and controller (19). Under Assumptions
A.1–A.4, there exist constants�� and��� such that for each� 2 [0; ��]
and�� 2 [0; ��� ]; kz(t)k is bounded for all bounded initial conditions
and setpoints. In addition the tracking error satisfies
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Using this constant, the time interval is divided into two subsequences
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N2

�
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whereZ+ denotes all positive integers.
Clearly, from Lemma A.1, it is sufficient to show thatkz(t)k is

bounded fort 2 N1 to obtain the boundedness ofz(t) in the whole
time interval[0;1). To this end, we choose time instantt0 such that
t0� 1 2 N2 and[t0; t� 1] 2 N1. The inductive strategy is adopted to
prove the result. Firstly, note thatkx(0)k �M0. Thus it follows from
Lemma A.1 that there exists a constantM such thatkz(0)k � blM0 �
M . Next we assume thatkz(�)k � M for � = 0; 1; � � � ; t � 1, then
we show thatkz(t)k < M .

The solution of system (25) is
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where�(t; �) is the transition function of the systemz(t+1) = Fz(t).
SinceF is strictly stable, there exist contantsC and� < 1 such that
k�(t; �)k � C�t�� .

From the definition of~ei(t+ 1) and Lemma A.1, we have
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where(a2 + b2)1=2 � (jaj + jbj) is used in the second inequality.
Noting thatkz(t0 � 1)k �M0 and using (A-2), (A-8), (A-9), (35),
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Performing similar procedures as in [11], which includes squaring

both sides of (37), applying the Schwarz inequality and the discrete
Grownwall lemma, and using that fact that the arithmetic mean of a
sequence of nonnegative numbers is greater than the geometric mean
of the same sequence, we can show that there exit constants��, ��� , and
�� such that
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theorem.
Since the boundedness of all the states in the closed-loop system

has been established, it follows immediately from the definitions of
~ei(t + 1) that
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ke(t)k � �3 + �40(�; ��)(t� t0) (42)

where�3; �4 are constants.
Using (A-8), we have
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where�5 and�6 are constants. Applying (42) and (43) to (25), (32)
follows.

Remark 4.1: It is noted that if there is no nonparametric uncertianty
and the system parameters are constants, i.e.,� = 0; �� = 0 and� = 0;
k�̂i(t+1)��̂i(t)k ! 0; jei(t+1)j ! 0, andjy(t)�(1=K)ym(t)j !
0, which implies perfect tracking is achieved.

Remark 4.2: It is noted that the adaptive controller in Section III
was obtained by employing an update law in each backstepping step.
This results in overparameterization. This problem can be avoided by
postponing the determination of the update law until in the last step;
see [10] for details.

V. CONCLUSION

In this paper, a scheme of designing adaptive controller for a class
of nonlinear time-varying discrete-time systems is developed by using
the backstepping tool and parameter projection. With this scheme, the
global boundedness of the adaptive closed-loop system is guaranteed
for any bounded initial conditions, set-point signals, and external dis-
turbances, and small-in-the-mean tracking error can be achieved. It
is also clear that those stability and convergence results obtained in
the ideal case are still preserved if there are no modeling errors, ex-
ternal disturbances, and time-varying parameters. Particularly in the
ideal case, perfect tracking of a reference trajactory is achieved. Since
both the parametric and nonparametric uncertainties are considered,
the class of the nonlinear discrete-time systems for which the adaptive
control can be ultilized has been enlarged.

APPENDIX A
PARAMETER ESTIMATOR PROPERTIES

It is shown in the proof of Theorem 1 that the properties of the adap-
tive laws are crucial to fulfill the stability analysis. All these necessary
properties are given in this section. For convenience of illustration, we
denote
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T 2 R(j�i+1):



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000 1753

From the definitions ofztj , it is trivial to show that the relationship
between the new state variablez(t) and the original statex(t) can be
specified by the following lemma.

Lemma A.1: Forz(t) obtained by (7), (8), and (14), we have

blkx(t)k � kz(t)k � bukx(t)k (A-1)

wherebl andbu are constants which depend onk� andk� .
The properties of the estimator given (26) and (27) are summarized

in the following lemma, which is used in the robust stability analysis.
Lemma A.2: Assume that there exist constantsM1; M0; k1; andk2

such that

kx(t0 � 1)k �M0

kx(�)k > M0; � = t0; t0 + 1; � � � ; t� 1

kx(�1)k < M1; �1 = 0; 1; � � � ; t� 1

M
2
1 = k1(k

0
�M0)

2 + k2 > M0:

Then

1)

jei(t0)j � (k�k� + a1)M0 + a1 (A-2)

j~ei(t+ 1)j �
k�

k0�
k� + a

0
1; 8 t � t0 (A-3)

where

~ei(t+ 1)
�
=

ei(t+ 1)

(1 + k�i(t)k2)
1=2

(A-4)

a1 = c�� k
0
�k

1=2
1 + k

1=2
2 + k

0
��

a
0
1 = c�� k

1=2
1 + k

1=2
2 + �: (A-5)

2)

k�̂i(t+ 1)� �̂i(t)k � j~ei(t+ 1)j: (A-6)

3)

t�1

�=t

j~ei(�)j
2 � k

2
� + (a2 + a3)(t� t0) (A-7)

where

a2 = 2 k� k
1=2
1 + k

1=2
2 + 2c��(k1 + k2) c��

+ 2��
3

2
+

k�

k0�
k� + a

0
1 +

1

2
��

a3 = 2� (2� + k�)

k
2
� = k

2
� + 2k�

3

2
+

k�

k0�
k� + a

0
1 :

4)

k�i(t+ 1)k � c1 e[1;i�1](t+ 1)

+ c2 z[1;i](t) ~e[1;i�1](t+ 1) (A-8)

k�i(t0)k � (c3 + c4a1)M0 + c5a1 (A-9)

wherecj ; (j = 1; 2; � � � ; 5) are constants depending onk0�; k�;
andk� .

Proof:

1) From the definitions ofei(t+ 1), we have

ei(t+ 1)
�
= z

t+1
i � z

t
i+1 � �i(t+ 1)

= (� � �̂i(t))
T
�i(t) + �i(t)

= �~�i(t)
T
�i(t) + �i(t): (A-10)

Applying the Assumptions A.1, A.3, and A.4 gives

jei(t+ 1)j � k�k�i(t)k+ c�� max
0<��t�1

kx(�)k+ d (A-11)

� k�k� x
t
1; x

t
2; � � � ; x

t
n

T

+ c��(k1(k
0
�M0)

2 + k2)
1=2 + d (A-12)

whereM2
1 = k1(k

0
�M0)

2 + k2 is used.
Sincekx(t0 � 1)k � M0, it follows immediately that

jei(t0)j � k�k�M0 + c�� k1(k
0
�M0)

2 + k2
1=2

+ d

� k�k�M0 + c�� k
0
�k

1=2
1 + k

1=2
2 (M0 + 1) + d

� k�k�M0 + c�� k
0
�k

1=2
1 + k

1=2
2 M0

+ �k
0
�M0 + c�� k

0
�k

1=2
1 + k

1=2
2 + �k

0
�

� (k�k� + a1)M0 + a1: (A-13)

From (A-4) and (A-12), we have

j~ei(� + 1)j =
je1(� + 1)j

(1 + k�i(�)k2)
1=2

�
k�

k0�
k� +

c�� k1(k
0
�M0)

2 + k2
1=2

+ d

(1 + k�i(�)k2)1=2

�
k�

k0�
k� +

c�� k1(k
0
�M0)

2 + k2
1=2

+ d

(1 + k02�M
2
0 )

1=2

for � � t0

�
k�

k0�
k� + � + c�� k

1=2
1 + k

1=2
2

�
k�

k0�
k� + a

0
1: (A-14)

2) Let �̂ip(�) denote a parameter estimate before applying a pro-
jector}, i.e.,

�̂ip(� + 1)� �̂i(�) =
�i(�)ei(� + 1)

1 + k�i(�)k2
:

Then

k�̂i(� + 1)� �̂i(�)k � k�ip(� + 1)� �̂i(�)k

=
k�i(�)k jei(� + 1)j

(1 + k�i(�)k2)1=2

� j~ei(� + 1)j; 8 �: (A-15)

3) Introducingvi(t+ 1) = ~�Ti (t+ 1)~�i(t+ 1), we get

vi(� + 1)� vi(�)

� ~�ip(� + 1)T ~�ip(� + 1)� ~�i(�)
T ~�i(�)

� [~�ip(� + 1)� ~�i(�)]
T

� [~�ip(� + 1)� ~�i(�) + 2~�i(�)] (A-16)

=
k�i(�)k

2e2i (� + 1)

(1 + k�i(�)k2)
2 +

2�i(�)
T ~�i(�)ei(� + 1)

1 + k�i(�)k2

� 2[�i(�)� �i(� � 1)]T ~�i(� � 1)

+
�i(�)ei(� + 1)

1 + k�i(�)k2
�

1

2
(�i(�)� �i(� � 1))

�
e2i (� + 1)

1 + k�i(�)k2
+

2�i(�)
T ~�i(�)ei(� + 1)

1 + k�i(�)k2

� 2[�i(�)� �i(� � 1)]T ~�i(� � 1)

+
�i(�)ei(� + 1)

1 + k�i(�)k2
�

1

2
(�i(�)� �i(� � 1)) : (A-17)
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From (A-10), we have

2�i(�)
T ~�i(�)ei(� + 1)

= 2(�i(�)� ei(� + 1))ei(� + 1)

� �2e2i (� + 1) + 2k�k�i(�)k j�i(�)j+ 2j�i(�)j
2
: (A-18)

Combining (4), (A-3), (A-4), (A-10), (A-17), and (A-18), we
have

v(� + 1)� v(�)

�
�e2i (� + 1)

1 + k�i(�)k2
+ 2

k�k�i(�)k j�i(�)j

1 + k�i(�)k2
+ 2

j�i(�)j
2

1 + k�i(�)k2

� 2[�i(�)� �i(� � 1)]T ~�i(� � 1)

+
�i(�)ei(� + 1)

1 + k�i(�)k2
�

1

2
(�i(�)� �i(� � 1))

+ 2k�i(�)� �i(� � 1)k
3

2
+

k�

k0�
k� + a

0

1

� �~ei(� + 1)2 + 2k�
c�� k1(k

0

�M0)
2 + k2

1=2

1 + k�i(�)k2
k�i(�)k

+
4c2��

2 k1(k
0

�M0)
2 + k2

1 + k�i(�)k2
+

4d2 + 2dk�k�i(�)k

1 + k�i(�)k2

+ 2k�i(�)� �i(� � 1)k
3

2
+

k�

k0�
k� + a

0

1

� �~ei(� + 1)2 + 2k�c�� k
1=2
1 + k

1=2
2 + 4c2��

2(k1 + k2)

+ 4�2 + 2k�� + 2k�(�)� �(� � 1)k

�
3

2
+

k�

k0�
k� + a

0

1 ; 8 � � t0: (A-19)

Therefore

~ei(� + 1)2 � v(�)� v(� + 1) + 2k�c�� k
1=2
1 + k

1=2
2

+ 4c2��
2(k1 + k2) + 4�2 + 2k��

+ 2k�(�)� �(� � 1)k

�
3

2
+

k�

k0�
k� + a

0

1 : (A-20)

Summing both sides of (A-20) gives
t�1

�=t

j~ei(�)j
2 � k~�i(t0)k

2 � k~�i(t)k
2

+ 2k�
3

2
+

k�

k0�
k� + a

0

1

+ (a2 + a3)(t� t0) (A-21)

which confirms (A-7) by applying Assumption A.2.
4) To show (A-8) and (A-9), the following inequality is required:

j~�i(t+ 1)T�i;k(t+ 1)� ~�i(t)
T
�i;k+1(t)j

� c1;i e[k�i+1;k](t+ 1) + c2;i �[k�i+1;k](t+ 1)

+ c3;i z[k�i+2;k+1](t) ~e[1;i](t+ 1) (A-22)

Here an inductive strategy is adopted to verify (A-22). First, con-
sideri = 1. From the definitions of�1;k(t) andek(t+ 1), (2),
(6), and (A-6), we have

j�̂1(t+ 1)T�1;k(t+ 1)� �̂1(t)
T
�1;k+1(t)j

� j�̂1(t+ 1)T�1;k(t+ 1)� �̂1(t+ 1)T�1;k+1(t)j

+ j�̂1(t+ 1)T�1;k+1(t+ 1)� �̂1(t)
T
�1;k+1(t)j

� k�k� z
t
k � z

t
k+1 + k� z

t
k+1 k�̂1(t+ 1)� �̂1(t)k

� k�k�(jek(t+ 1)j+ j�k(t+ 1)j)

+ k� z
t
k+1 j~e1(t+ 1)j (A-23)

which obviously supports inequality (A-22). Particularly, if
k=1,

�2(t+ 1) � k�k�je1(t+ 1)j+ k�jz
t
2j j~e1(t+ 1)j (A-24)

where�1(t + 1) = 0 is used. This actually verifies (A-8) for
i = 1.

Then consideri = 2, we have

j�̂2(t+ 1)T�2;k(t+ 1)� �̂2(t)
T
�2;k+1(t)j

� j�̂2(t+ 1)T�2;k(t+ 1)� �̂2(t+ 1)T�2;k+1(t)j

+ j�̂2(t+ 1)T�2;k+1(t+ 1)� �̂2(t)
T
�2;k+1(t)j

� k�k�
ztk�1 � ztk

ztk � ztk+1
+ (j�̂1(t+ 1)T�1;k(t+ 1)

� �̂1(t)
T
�1;k+1(t) j)

+ k�
ztk

ztk+1
k�̂2(t+ 1)� �̂2(t)k: (A-25)

Subsituting (A-23) into (A-25) and using the definition ofek(t+
1) gives

j�̂2(t+ 1)T�2;k(t+ 1)� �̂2(t)
T
�2;k+1(t)j

� c1;2
ek�1(t+ 1)

ek(t+ 1)
+ c2;2

�k�1(t+ 1)

�k(t+ 1)

+ c3;2
ztk

ztk+1

~e1(t+ 1)

~e2(t+ 1)
(A-26)

wherec1;2; c2;2, andc3;2 are constants combiningk� andk�.
Thus (A-22) holds fori = 2.

Finally assume (A-22) holds for all1 � p � i� 1, i.e.,

j~�p(t+ 1)T�p;k(t+ 1)� ~�p(t)
T
�p;k+1(t)j

� c1;p e[k�p+1;k](t+ 1)

+ c2;p �[k�p+1;k](t+ 1)

+ c3;p z[k�p+2;k+1](t) ~e[1;p](t+ 1) (A-27)

wherec1;p; c2;p; andc3;p are constants depending uponk� and
k� . Then we show that (A-22) also holds forp = i.

From the definitions of�i;k(t), it follows that

j�̂i(t+ 1)T�i;k(t+ 1)� �̂i(t)
T
�i;k+1(t)j

� j�̂i(t+ 1)T�i;k(t+ 1)� �̂i(t+ 1)T�i;k+1(t)j

+ j�̂i(t+ 1)T�i;k+1(t)� �̂i(t)
T
�i;k+1(t)j

� k� �i z
t+1
k�i+1; z

t+1
k�i+2 � �̂

T
1 �1;k�i+1(t+ 1);

� � � ; zt+1k �

i�1

l=1

�̂l(t+ 1)T�l;k�1(t+ 1)

� �i z
t
k�i+2; z

t
k�i+3 � �̂

T
1 �1;k�i+2(t); � � � ;

z
t
k+1 �

i�1

l=1

�̂l(t+ 1)T�l;k(t+ 1)

+ k�i;k+1(t)kk�̂i(t+ 1)� �̂i(t)k: (A-28)

Using (6), (A-6) and noting that�i;k+1(t) is a function of
ztk+1; z

t
k; � � � ; z

t
k�i+2, we have

j~�i(t+ 1)T�i;k(t+ 1)� ~�i(t)
T
�i;k+1(t)j

� k�k� z[k�i+1;k](t+ 1)� z[k�i+2;k+1](t)

+K
0

i�1

l=1

j�̂l(t+ 1)T�l;k�l(t+ 1)� �̂l(t)
T
�l;k�l+1(t)j

+ k� z[k�i+2;k+1](t) j~ei(t+ 1)j (A-29)
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whereK0 is a constant depending onk� andk�.
Substituting (18) and (A-27) into (A-29) gives

j~�i(t+ 1)T�i;k(t+ 1)� ~�i(t)
T
�i;k+1(t)j

� c1;i e[k�i+1;k](t+ 1) + c2;i �[k�i+1;k](t+ 1)

+ c3;i z[k�i+2;k+1](t) ~e[1;i](t+ 1) (A-30)

where cm;i; (m = 1; 2; 3) are constants combiningcm;p; (m =
1; 2; 3; 1 � p � i � 1); k� andk� . Thuscm;i(m = 1; 2; 3) are
dependent ofk� andk� only. So far we have proved the inequality
(A-22).

Using (A-22), it follows immediately from the definition of�i(t+1)
that

j�i(t+ 1)j � c
0
1;i e[1;i�1](t+ 1) + c

0
2;i �[1;i�1](t+ 1)

+ c
0
3;i z[1;i](t) ~e[1;i�1](t+ 1) (A-31)

wherec0m;i; (m = 1; 2; 3) are constants.
Since�1(t + 1) = 0 and �2(t + 1) � k�k�je1(t + 1)j +

k�jz
t
2j j~e1(t+ 1)j, it can be shown from (A-31) that

j�i(t+ 1)j � c
00
1;i e[1;i�1](t+ 1)

+ c
00
2;i z[1;i](t) ~e[1;i�1](t+ 1) (A-32)

wherec001;i andc002;i are constants combiningk� andk�.
Taking c1 = max1�i�nfc

00
1;ig andc2 = max1�i�nfc

00
2;ig, (A-8)

follows.
Using (A-2) and inequality

kz(t0 � 1)k j~ei(t0)j �
kz(t0 � 1)k jei(t0)j

(1 + k�i(t0 � 1)k2)1=2

�
bukx(t0 � 1)k jei(t0)j

(1 + k0�kx(t0 � 1)k2)1=2

�
bu

k0�
((k�k� + a1)M0 + a1) (A-33)

(A-9) follows.
Remark A.1: Note thatM0 is not a design parameter. For any

boundedx(0) andym(t), such a contantM0 always exists.
Remark A.2: In Lemma A.2, it is noted that the update law has the

same properties as those given in [8] if the nonparametric uncertainties
are removed and all the system parameters are considered to be con-
stants. Moreover, the constantsa1; a01; anda2 are functions of� and�� .
They can be made sufficiently small by specifying sufficiently small�

and�� .
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When Is -Scaling Both Necessary and Sufficient

Gjerrit Meinsma, Tetsuya Iwasaki, and Minyue Fu

Abstract—It is shown that the well-known( )-scaling upper bound
of the structured singular value is a nonconservative test for robust stability
with respect to certain linear time-varying uncertainties.

Index Terms—Duality, IQC, linear matrix inequalities, mixed structured
singular values, robustness, time-varying systems.

I. INTRODUCTION

Is the closed-loop stable in Fig. 1 for all�’s in a given set of stable
operatorsB? That, roughly, is the fundamental robust stability problem.

There is an intriguing result by Megretski and Treil [4] and Shamma
[8] which says, loosely speaking, that ifM is a stable LTI operator and
the set of�’s is the set of contractive linear time-varying operators of
some fixed block diagonal structure

� = diag (�1;�2; . . . ;�m ) (1)

that then the closed loop is robustly stable—that is, stable for all such
�’s—if and only if theH1-norm ofDMD�1 is less than one for
some constant diagonal matrixD that commutes with the�’s. The
problem can be decided in polynomial time, and it is a problem that has
since long been associated with anupper boundof the structured sin-
gular value. The intriguing part is that the result holds for any number
of LTV blocks�i, which is in stark contrast with the case that the�i’s
are assumed time-invariant.

Paganini [6] extended this result by allowing for the more general
block diagonal structure

� = diag �1In ; . . . ; �m In ;�1; . . . ;�m : (2)
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