IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000 1749

(5.2) isR*-approximately boundary controllable, i.e., without any con-Discrete-Time Robust Backstepping Adaptive Control for
straints posed on the controls, iff 32 # 0 [6]. Nonlinear Time-Varying Systems
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In this paper, constrained approximate controllability problems for
linear abstract dynamical systems with linear unbounded control oper-Abstract—This paper studies the problem of adaptive control for a class

ator and piecewise polynomial controls have been investigated. Ushfgonlinear time-varying discrete-time systems with nonparametric uncer-

some ve eneral results taken from the paper [20], necessar andtal ties. The plant parameters considered here are not necessarily slowly
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time for linear continuous dynamical systems or equivalently in finitéon update laws, a robust adaptive controller can be designed to achieve
number of steps for linear discrete dynamical systems have been Rstaptive tracking of a reference signal for this class of systems. It is shown
mulated and proven. Moreover, the relationships between approxim the proposed controller can guarantee the global boundedness of the

d lability h b lained and di d. Ei ates of the whole adaptive system in the presence of parametric and non-
and exact controllability have been explained and discussed. 'naBXrametric uncertainties. It can also ensure that the tracking error falls

two simple illustrative examples have been studied in detail. These @jthin a compact set whose size is proportional to the size of the uncertain-
amples represent linear distributed parameters dynamical systemtigs-and disturbances. In the ideal case when there is no nonparametric un-
scribed by partial differential equation of the parabolic type with difcertainties and time-varying parameters, perfect tracking will be achieved.
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a small-in-the-mean tracking error in the presence of parametric addwever, this makes the stability analysis more difficult especially
nonparametric uncertainties. When the uncertainties disappear, perfeuen the knowledge of andd is not available.

tracking is ensured. The adaptive control problem is to obtain a control law for plant (1)
such that all the signals in the resulting closed-loop system are bounded
for arbitrary bounded reference set-pajpi(¢) and initial conditions,

. . . .. and the tracking errdw (¢) — v..(t)| is small in some sense. To solve
It has been shown in [8] that under certain geometric condition g erray(t) = g (*)]

. ; . e problem, an additional assumption on the nonlinear functipfts
large class of nonlinear discrete-time systems can be transformed 'igt?equired.
a parametric-strict-feedbacform. If some uncertainties are also con- Assumption A.4:All the known nonlinear functions, (¢) satisfy
sidered, the class of nonlinear systems to which the adaptive conH% following two conditions:
can be applied will be enlarged. This motivates us to consider a class

of uncertain nonlinear time-varying discrete-time systems described by i

Il. PROBLEM FORMULATION

[l ]| < o
oy + 07 (Hay (21) + i (1) <
et =t 4 o7 (t) a2 (;L’ﬁ , ;zrg) + n2(t)

t+1
J}1+

llai (£(1)) — ai (€' NI < kallE(t) = € D],
VE(t). €' (t) € R' (6)

I;tll - Zl‘é + 91‘(t)04n_1 (ILlﬂ ILZ* B I’ﬁ?fl) + M-t (t)
417:7+1 = 9T (t)ofn (élfﬁ ’ 5':t2v Tt ii) + 1n (f) + Ll(t)

y(t) = @1 (t) (1)

IIl. A DAPTIVE CONTROL DESIGN USING BACKSTEPPING TECHNIQUE
whereu(t) andy(¢) represent the system input and output respectively,
andé(t) is the unknown time-varying parameter vectofih. For each
1 < i < n, a;(zt, -+, 2! are known nonlinear functions which
are continuous and satisfies(0) = 0. For simplicity of illustration,

wherek!, andk, are constants. All the norms in this paper are vector
norms.

The desired controller can be obtained by performing the following
backstepping procedures.
Step 1: Let

o (2, 2, -+ 2t) are denoted bw;(#) for eachi = 1,2,---,n in R %
the remaining parts of the paper. . L ,
- . : : , d=ab+ 0t ai(t) 8
Two types of uncertainties are considered in the discrete-time system ~2 2 1 R
described by (1). One is parametric uncertainty denoted by the UWhen
known time-varying parameter vecté(t). Usually we have soma
priori knowledge about the range 6ft¢), which is characterized by AT = (0 — () an (8) 4+ (D). ©)

the following assumption.

Assumption A.1:6(#) lies in a known convex compact $8ti.e.,  The update law fof, (¢) is obtained by the following projection algo-

, rithm:
0(t) € © ={0(t): 16| < kos [|6(t) — 0°(D)]| < Ko, cr(Ber(t 4 1)
- h h 'l -1
wherek, is a positive constant. where
In addition, the time variation of the parameters satisfies the fol- ’
lowing. er(t+1) 2 24T — 2 (11)
Assumption A.2:
andg{-} denotes a projection operator.
ot N ) Stepj (2 < j < n—1): To proceed, the following functions are
S8 =6t = )| < ke + e N, needed:
t=tg41
VtO 2 05 N 2 1 (3) 61’1(15) é w1 (Z1t) . ELQ(f) é (5] (Z;) (12)

wherek. andeg are constants angy can be reduced to sufficiently
small. As no smallness restriction is imposedfonthis assumption

— A 2 A T_—
;5 (1’) = <Z;i+1, Z;7i+2 —# (7") 15— i1 (f), BRI
not only allows for slowly time-varying parameters in a uniform way

as in [13], but also takes into account time-varying parameters with big
jumps.

Another kind of uncertainty appearing in (1) is the nonparametric
uncertainty denoted by the unknown functiopét), which may often
be due to modeling errors and external disturbances. As shown in [12],
they satisfy the following assumption.

Assumption A.3:There exist constantsandd such that Let

ni(t) < cpe max  ||[a], 23, a0]" H +d 4)

0<r<t—1

wherec,, is a known constant. It will be shown later that knowledge of
e andd is not required to implement the adaptive controller. Then
Remark 2.1: From (4), it is noted that the modeling erngr(t) can
have infinite memory as the functionaxo<,<.—1 || - || is included.

-1
, AT —
/7;'714; - Z Oe(t) T jmiri—1(t), -+,
k=1

B Zéwt)"m,j-l(t)) (13)

k=1

wherel < i < j—1.

7—1
S =2+ 0,0 () + Z Or(t) @ 5 (1) (14)
k=1

S =+ B = 0,(0) s () + G+ D) (1) (15)
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where
! g—1
Xe(t+D) 23 et D) @ (1) = > () a (1),
k=1 k=1
The update law foé; () is obtained by
. - (e (t+1)
gi(t+1) :39{9- ) + %(14}
A A Ea PO
where
ei(t+1) St — 2l xS+ 1),
Stepn: The control law is taken as
w(t) = ym(t+n) — Zfzzzf - é71<f)T(}'n(t)
i=1
n—1 R
— Zﬁk(f)Tﬁk,n(t).
k=1
where

IS
<

_ A -
Olj (f) = o <Z7in+1e Zrlzfi+2 =01 i1 (t), e,

i1
— Z ék(f)TOf/c,nl(f)>
k=1

andf; (i = 1,2,---,
nominalF(¢™"),i.e, F(¢g" ) =14+ faq' +
Then

. + f1q—77,.

t+1

an =yt ) = Y firl + (0(8) = 6 (1) ova (1)

=1
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The resulting closed-loop system is expressed by (25)—(27) shown
at the bottom of the page, where

(16) [0 1 0 0 Lt
0o 0 1 0 i’
<2
F= z(t) =
0 0 0o - 1 )
17) Zn
—fi —fo —fs - :
[0 1
18 : 0
(18) b= 0 ER", c=|.|ER" (28)
! 0
e(t’ + 1) é [6l(t + 1) 62(t + 1) ) €Vl(t + 1)]1 (29)
T(t+1) 2 [yt + 1)xa(t+ 1)t + D] (30)
(19) (C1H)
with v (f + 1) £ 0.
Some useful properties of the estimator, which will aid our robust
stability analysis, are established in Appendix A.
IV. STABILITY ANALYSIS
(20) In this section we show that there exist small constahtande;

such that for each € [0,€*] andey € [0, ¢p], all the signals in

.n) are the coefficients of a strictly stable p0|y_the closed-loop system (25) are bounded for any bounded initial con-

ditions, bounded tracking reference signal, and external disturbances.
Similar stability analysis methods as in [11] and [12], where the induc-
tive strategy is adopt, are used to come up with the conclusion.

The stability together with a tracking property of the closed-loop
system are stated in the following theorem.

+xn(t+ 1) + 0 (t) (21) Theorem 1: Consider the adaptive system consisting of pllant
(1), update laws (26), (27), and controller (19). Under Assumptions
where A.1-A.4, there exist constantd ande; such that for each € [0, €]
1 andey € [0, €3], ||z(#)|| is bounded for all bounded initial conditions
Yn(t+1) = Z bt + 1) S r(t+ 1) and setpoints. In addition the tracking error satisfies
e 1
B Zék(t)fm L1, 22) > fwir) - ym( ) < B4 Ba0(e,e9)(t —t0)  (32)
=1 ) ’ : T=tg
The update law fof,, (¢) is obtained by where k' = 1+ 37", |fi[, 1 and3; are constants, arfile, ) is a
function such thalim._o,.,—o 0(¢, €g) = 0.
0 t+1) =g {én(t) n an (t)en (t+ 1)} (23) Proof: We introduce an intermediate positive constafatwhich
1+ [Jan ()] satisfies thaf|z(0)|| < Mo, ||ym (t)[|l.e < Mo, andd/ (k' My) < &
where for0 < 6 < 1, wherex(0) denotes the initial conditions of the system.
Using this constant, the time interval is divided into two subsequences
en(t+1 _/,H'l—l— fizh —ym(t+n) — xn(t+1). 24 .
ey Z (=l @ Ny 2 {t € Zy |[le(D]l > Mo} (33)
{ z z : (t) + by (t+n)+T(t+1)+e(t+1) (25)
t+1 t
—zi = xi(t))ai(t) ,
fi(t+1) = ~ . 1<i<n-—1
o “{ RO N 26)
~fz+1 + ZflML y7n t + ’L) - Xn(t)> &n( )
b.(t+1)=p< b, t)+ (27)

L+ lan (07
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No 2 {t € Zy | |la(t)]] < Mo}

whereZ, denotes all positive integers.

Clearly, from Lemma A.1, it is sufficient to show tht(¢)|| is
bounded fort € N, to obtain the boundedness oft) in the whole
time interval[0, o). To this end, we choose time instaptsuch that
to —1 € N2 and[to.t — 1] € N;. The inductive strategy is adopted to,
prove the result. Firstly, note thii:(0)|| < M. Thus it follows from
Lemma A.1 that there exists a constaditsuch thaf| = (0)|] < b; My <
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=" . . =3
(34) wheree” is a constant satisfying'sc; €

Then it follows from (38) that

=N < B (b (KL Mo)? + K ).

<1

(41)

Therefore taking * = max{e*, &} and M?
max{bZ (ki (kL Mo)* + ko), biM3} confirms the first part of
theorem.

Since the boundedness of all the states in the closed-loop system
has been established, it follows immediately from the definitions of

M. Next we assume thait:(7)|| < M for7 = 0,1,---,# —1,then .,
= v 9 ’ > (F that
we show that|z(t)|| < M. tlt+1)
The solution of system (25) is 1 ; ) )
> lle(ll < s + Aa0(e. e9) (t = to) (42)
t—1 T=tg
2(t) = ®(t, t0)2(to) + Z o(t, 7+ 1) whereds, 34 are constants.
T=to Using (A-8), we have
X bym(T+n) +¥(r+1)+e(r+1)] o
=P(tt0)[Fz(to = 1) + bym(to +n = 1) + W(to) + e(to)] STNE + 1) < Bs + Bs0(e,e0) ( — to) (43)
t—1 T=tg
(¢t Dby (T +n U(r+1 1 )
+ _Zt (&7 + Dlbym(r + 1) + W7+ 1) +e(7+1)] whereds and3s are constants. Applying (42) and (43) to (25), (32)
T=to
(35) follows. O
Remark 4.1: Itis noted that if there is no nonparametric uncertianty
whered (¢, ) is the transition function of the systerfi+1) = F=(t). and the system parameters are constantsc ke (), eg = 0 andé = 0,

SinceF is strictly stable, there exist contarfsands < 1 such that

[®(t, )|l < Co'~
From the definition o€, (¢ 4+ 1) and Lemma A.1, we have
n2n1/20 .
lea(t + DI < (L4 Nl (OIF) " les(t + 1)
< (L flai@)D]eit + 1)

< (14 5= o1 )1+ )

6:(t4+1)=8:(H)]] = 0, e:(t4+1)] = 0, andy(t) — (1/ K )y, ()| —
0, which implies perfect tracking is achieved.

Remark 4.2: It is noted that the adaptive controller in Section Il
was obtained by employing an update law in each backstepping step.
This results in overparameterization. This problem can be avoided by
postponing the determination of the update law until in the last step;
see [10] for details.

(36) V. CONCLUSION

In this paper, a scheme of designing adaptive controller for a class

where(a? 4 b*)'/? < (|a| + |b]) is used in the second inequality.
Noting that||
and (36), it follows from the inductive assumptions ar@ N, that

||/‘.’(f)|| S C(Tf_to[(cl + Cg(l,l)[\lo + C;;(ll]

t—1
+ > Co TG ET + D
T=tg
+ C’5||é(T + 1)” + Cs]\[{)], Vt E 17\71 (37)

wheree(t+1) 2
1,2,---

[61(t+1),é2(t+1),---,
,6) are constants.

(to — 1)]| < My and using (A-2), (A-8), (A-9), (35),

e, (t+1))", andC;, (i =

of nonlinear time-varying discrete-time systems is developed by using
the backstepping tool and parameter projection. With this scheme, the
global boundedness of the adaptive closed-loop system is guaranteed
for any bounded initial conditions, set-point signals, and external dis-
turbances, and small-in-the-mean tracking error can be achieved. It
is also clear that those stability and convergence results obtained in
the ideal case are still preserved if there are no modeling errors, ex-
ternal disturbances, and time-varying parameters. Particularly in the
ideal case, perfect tracking of a reference trajactory is achieved. Since
both the parametric and nonparametric uncertainties are considered,
the class of the nonlinear discrete-time systems for which the adaptive
control can be ultilized has been enlarged.

Performing similar procedures as in [11], which includes squaring

both sides of (37), applying the Schwarz inequality and the discrete
Grownwall lemma, and using that fact that the arithmetic mean of a

APPENDIX A
PARAMETER ESTIMATOR PROPERTIES

sequence of nonnegative numbers is greater than the geometric mean

of the same sequence, we can show that there exit constanjfs and

o such that

|| < [Cr + Cseye (ki (ky)® + k2) | Mg + Co,
fore <€, ep < ey, o <" (38)
whereCy is a constant combining,, k/,, andke.
Let
ko = Co /b2 (39)
_ 1 . C7 + Cg(‘;z,?*cg
lvl = W IIldX{l, W} (40)

?t Is shown in the proof of Theorem 1 that the properties of the adap-
tive laws are crucial to fulfill the stability analysis. All these necessary
properties are given in this section. For convenience of illustration, we
denote

|Il>

x(t) [ ~,:cﬁL]VT € R"
eej(t)]T
e

rq '127"

>

2[i,5] (t)
efi ) (1) Elei(t). i (t), -
&1 (8) 2 [Ei (1), Eia (B),- -+,

€ RU—HD
€ RU—+D

and

€ RU—THY,

Xt () 2 () vier (8- x5 (]
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From the definitions of:j-, it is trivial to show that the relationship
between the new state variahlet) and the original state(¢) can be

specified by the following lemma.
Lemma A.1: For z(t) obtained by (7), (8), and (14), we have

bl @[] < = < bullx(D)]] (A-1)

whereb; andb,, are constants which depend bn andk, . O
The properties of the estimator given (26) and (27) are summarized
in the following lemma, which is used in the robust stability analysis.

Lemma A.2: Assume that there exist constanfs, Moy, k1, andks

such that
lla(to — DI < Mo
||.E(T)||>JL.{0, TIto,to-Fl,"'./t—l
||$(T1)”<A‘{17 Tl:oﬂlv"'vt_l
M7 =k (kL Mo)? + ko > M.
Then
1)
|(’,(fo)| S (L?ka —|— a )J[() —|— ay (A'Z)
~ ku
le;(t+ 1) < k—lko —i—a'l, Vit > to (A-3)
where
a1 s ettt 1)2 - (A-4)
(1 + llos(B)11)
ar = cye (kf}kll/z + k;“) + ko6
d) = e (k;/? n k;“) s (A-5)
2)
16:(¢+1) = 6 (t)[| < |ea(t+ D). (A-6)
3)
t—1
> 1ED)F < Fg 4 (a2 + as)(t = to) (A-7)
T=tg
where

as =2 (ko ( B2 + Ll/?) + 2r,,€(k1 + kg)) Cn€

3 ka
(AT

as = 26 (26 + ko)

- 3 ka
k%:k3+2kt<< +—>Ao+a1>

Ixi(t+ DIl < e [Jepimy(t + 1)
+ c2 ||z g (O] [|én .-t + D) (A-8)

4)

Ix:(to)ll < (3 + caa1) Mo + csan (A-9)
wherec;, (j = 1,2,---,5) are constants depending bf, k.,
andkg.

Proof:

1) From the definitions of;(¢ + 1), we have

ei(t+1) 2 2 — 2l — it + 1)

= (6= 0:(1) ai(t) + mi(1)
= —0;() i(t) + ni(2). (A-10)

ei(to)] < kakoMo + cye (i
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Applying the Assumptions A.1, A.3, and A.4 gives
it + DI < kollai(®)][ + ene | max la(7)] +d (A-11)

< koka

ot H

[‘T’l‘/ Lo, vl'n
+ coe(ky (KA Mo)? + ko) /2 +d (A-12)

whereM? = ky (kL Mo)? + k2 is used.

Sincel|z(to — 1)|| < Mo, it follows immediately that
(kL Mo)® + k) * 44
< kako Mo + cye (kﬁ,kl/z + k;/z) (Mo +1)+d
< kakoMo + cye (kukl/) + k;/?) M,

48K My + e (k;kf” + k;/2> Iy

< (kake + a1) Mo + ai. (A-13)
From (A-4) and (A-12), we have

ler(m+1)]
(L4 [Jevs(m))"?
ko cne (k1 (ki Mo)? + k)
T O TP
ko coe (b (Ko Mo)? + ko) 4+ d

— ko +
k., (1+ k12M2)'?

jé(7 4+ 1)| =

1/2

+d

IN

IA

forr > to
ko
kL
ko

< kot aj. (A-14)

< ko + 06+ cqe (k1/2+1\1/2>

2) Let éip(r) denote a parameter estimate before applying a pro-

jector g, i.e.,

fip(T+1) = 6i(r) = %
Then

16:(7 + 1) = 8:()[| < (|63, (7 + 1) = ()|
_ Nai(Dlllei(r + 1]
(L4 flas(m)lI*)'72

<lg(r+1f, VT (A-15)

3) Introducingu;(t + 1) = 87 (t + 1)8;(¢ + 1), we get

'v'(——i— 1) — v'(—)
<Hip(r+ 1) 0, (7 4+ 1) = 6;(7) 6:(7)
< [Hip (r+1) - Hi T)]
X [Bip(T 4+ 1) = 0,(7) + 26,(7)] (A-16)
_ lloi(mlPef(r+1) | 20i(1)"8i(r)ei(r +1)
(1 + [lai(r)]12)? L4 [l ()2

—2[0i(7) — 0, (v = 1)]" {éi(f -1)

eZ(t+1) 2ai('T)Téi(T)ei(T +1)
= 1+ flag(T)|I? L+ [las (7)]|2

—2[8;(r) — 8;(r = 1)]" |:(;i(r - 1)

_|_

n a;(T)ei(t+1)

1
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From (A-10), we have which obviously supports inequality (A-22). Particularly, if
2(li(T)Téi(T)€'(T+l) k=1,
=2(ns(t) —ei(t+ 1))es (74 1) Xa2(? (A-24)
< =267 (7 4 1) 4 2ko|ai (D) |n: ()| + 2|5 (7)]>. (A-18) where x1(t + 1) = 0is used. This actually verifies (A-8) for
- = 1.
Combining (4), (A-3), (A-4), (A-10), (A-17), and (A-18), we Then considet = 2, we have

have

v(t+1) —v(7)
—el(r+1) ko

02t + 1) ok (t+ 1) — B2(t) @apra (1)]

|77'(T)|2 < |92(f + 1)T62,k(t + 1) - (;2 (t + 1)T62J€+1(f)|

ai(7)[[ ni(7)]

¢ 2 o T? n Tf
= Tl 2 i P P T o F 020 ) A1 (1) = 62(8) @ e ()]
g [~ . Zl—1
—2[0:(7) — :(7 = 1)]" {m(T— 1) < koka < LZ ml”‘ +([62(t+ D) @+ 1)
ai(T)e;(t+1) 1 . } - (f) @ (t) |))
4+ SR T (0(r) — Bi(r — 1 1 Lk+1
Tt e~ 2 B0 = =1) t
. _ 3 ko), / + ko {Zk } Go(t+ 1) — a2(1)]. A-25
+2)16i(7) — 6i(r — 1) <<5 + k_) ko —|—a1> J1E 1162( 28l (A-25)
< i1 e (k1 (K. Mo)? + kg)l/z ool 1S)ubisvl"[;gﬂng (A-23) into (A-25) and using the definitioneaf( ¢ +
—ei (T e - o (T
= S B PE I E oves .
40?762 (kl(kéw'wof + kz) 4d?% + 2dkg || (7)]| |62 + 1) @z 1 (t + 1) = 62(1)" Q2,41 (1))
- - o 1) 1 (t4+1)
L+ i (PP T+l (PP <er [ 1(t+ } " [“ : }
| - sazfl e+ )| T v+
2 =0 =0l (5 + 55 ) o+ ad) IRy
+c30 "i-&-l G(t+1) (A-26)
< - 1)? 4 2kocne (k77 + k22) + 423k + & o -
= §T+ )+ 2kocye ( otk >+ ene” (hr + ko) wherec; 2, c2,2, andces » are constants combining and k. .
+ 467 + 2kob + 2||6(7) — 6(7 — 1)|| Thus (A-22) holds foi = 2.
3 ke , Finally assume (A-22) holds forall< p < i — 1, i.e,,
X 3t ko + a7}, Y71 > to. (A-19) R . -
- ¢ 0p(f+ 1) ap r(t+1) = 0p(F) Aprs1(P)]
Therefore <y |leppmprim(t+ 1)
1/2 1/2
G +1)” < o(r) = o(r + 1) + 2hocge (k) + ky/?) + o |Npkprr iy (E4 D))
+4e2e (ki + ko) + 467 + 2kgd + s [2p—przrn O [+ D] (A-27)
+2||6(7) = 6(r = 1)|| wherec; p, ¢z, andes , are constants depending upban and
3 k. ko. Then we show that (A-22) also holds for= .
X << + kL ) ko + ”1) (A-20) From the definitions ofv; » (), it follows that
Summing both sides of (A-20) gives 6t + 1) @ 1 (t 4+ 1) — 6;(0) @i (1)
o Bt + D @t +1) = 6t + 1) T (1)]
Zf lei ()™ < I8i(to)ll” — [16:(®)]] 18t + D) @ () = ()T @ gt (8]
T=1q
+ (a2 + ds)(t - fO) (A-21) AP .
e Z Gi(t+ 1) a1 (t+1
which confirms (A-7) by applying Assumption A.2. k ; (4 1) T (t+1)
4) To show (A-8) and (A-9), the following inequality is required:
.
|(-) (t+ 1) a;k(t+1) — H 7‘) s kg1 (1)] - <51{~i+27512i+3 — 01 o k—ig2(t), -,
<ery He[k—i+1.k] t4+ D + coi || Xpr—ivrig (E+ D) i—1
+ e5,i || Ztmizz e (]| €00t + 1)) (A-22) S — D0t D) @kt + 1))‘
. . . . . =1
Here an inductive strategy is adopted to verify (A-22). First, con- - . ~
sideri = 1. From the definitions oft; ;(¢) andex (¢t + 1), (2), F @k (I 16:(E + 1) = 0i(D)]]- (A-28)
(6), and (A-6), we have Usmg (6) (A- 6) and noting that; .41 (¢) is a function of
100t 4+ D) @ k(b4 1) = 61 (0) @ g (1)] Fhrr o i We héve
<|ht+ D) a st +1) = i (t+ 1) @y, (1) 16t + 1) @i (8 +1) = 6i(8)" @i (1)

‘Z[k7i+1,k] (t +1) - Zlk—i+2,k+1] (t)”
i—1

+ K’ Z |'§1(t + 1)Tal,k7l(t +1)— él(t)Tal,kflJrl(f”

F 100+ D F e (t+ 1) = 61 () @k (1) < hoka
< koka |2k — gt | + ko [zipa | 161 (£ 4 1) = 61(2)]]
< koka(lex(t+ 1)+ xe(t+ 1))

+ ko |Z2+1| [éx(t + 1)] (A-23) + ko |‘Z[k~—i+2‘l~~+1](t)” lé:(t+ 1) (A-29)
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wherek’ is a constant depending éa andk.. [9] G.C. Goodwin and K. S. SirAdaptive Filtering, Prediction, and Con-
Substituting (18) and (A-27) into (A-29) gives trol. Englewood Cliffs, NJ: Prentice-Hall, 1984. )
[10] Y. Zhang, C. Wen, and Y. C. Soh, “Robust adaptive control for uncertain
|(§i (t + 1)’[@_},@ +1)— ﬁi(t)lﬁ,;,k_,_] (t)] discrete-time systemsAutomatica vol. 35, pp. 321-329, 1998.
[11] C. Wen, “A robust adaptive controller with minimal modifications for
< cniflepr—ivrag (4 1)” + 2, || X{k—it1,0 (E + 1)” discrete time-varying systemsAutomaticavol. 39, pp. 987-991, 1994,
+ c3,i ||Zpk—it2, k1] (t)” | &, (t+ 1)” (A-30) [12] C. Wen and D. J. Hill, “Global boundedness of discret-time adaptive
’ ’ ’ ’ control by parameter projectionAutomatica vol. 28, pp. 1143-1157,
wherec,, ;,(m = 1,2,3) are constants combining.. ,,(m = 1992.

1,2,3:1 < p < i —1), ko andkg. Thusc,, i(m = 1.2,3) are [13] R H. Middleton and G. C. Goodwin, “Adaptive control of time-varying
dependent of, and k. only. So far we have proved the inequality linear systems,1EEE Trans. Automat. Confrvol. 33, pp. 150-155,

1988.
(A'ZZ_)- . ) . . [14] Y. Zhang, C. Wen, and Y. C. Soh, “Robust adaptive control for nonlinear
Using (A-22), it follows immediately from the definition af; (t4-1) discrete-time systems without overparameterization,” School of EEE,
that Nanyang Technological University, Tech. Rep., 1997.
it + D] < e |lepimn (E+ 1)” + ¢ Xyt + 1)”
+ e [z O] [En i+ D) (A-31)
wherec/, ;. (m = 1,2,3) are constants.
Sincexi(t + 1) = Oandxz(t + 1) < kokaled(t + 1)] + : .
ku|24] [&1( + 1)], it can be shown from (A-31) that When Is (D, G)-Scaling Both Necessary and Sufficient
it + D] < e [leq,imn(t+ 1) Gjerrit Meinsma, Tetsuya Iwasaki, and Minyue Fu
+ i zna®ff leni—n+ 1| (A-32)
wherec! ; andcy ; are constants combining andk.. Abstract—t is shown that the well-known ( D, G))-scaling upper bound
Takinger = max;<;<,{c!;} andes = max;<;<n{c5;}, (A-8) of the structured singular value is a nonconservative test for robust stability
follows - . - with respect to certain linear time-varying uncertainties.
Using (A-2) and inequality Index Terms—Duality, IQC, linear matrix inequalities, mixed structured
singular values, robustness, time-varying systems.
lx(to — Dl ()] < 1200 = Dllleilio)
O L ot — DR
bull(to — 1)|| |ei (t0)] I. INTRODUCTION
T (ko fla(to — DI?)Y/2 Is the closed-loop stable in Fig. 1 for all's in a given set of stable
< bu ((koka + a1)Mo + a1) (A-33) operator&3? That, roughly, is the fundamental robust stability problem.
A There is an intriguing result by Megretski and Treil [4] and Shamma
(A-9) follows. O  [8]which says, loosely speaking, thatlif is a stable LTI operator and
Remark A.1:Note thatM, is not a design parameter. For anythe set ofA’s is the set of contractive linear time-varying operators of
boundedz(0) andy,.(t), such a contantf, always exists. some fixed block diagonal structure
Remark A.2: In Lemma A.2, it is noted that the update law has the )
same properties as those given in [8] if the nonparametric uncertainties A =diag (A1, Ayeeon An) 1)

are removed and all the system parameters are considered to be
stants. Moreover, the constants «}, anda» are functions of ande, .
They can be made sufficiently small by specifying sufficiently small
ande.

tqr?gt_then the closed loop is robustly stable—that is, stable for all such
A’s—if and only if the Ho.-norm of DA D ™! is less than one for
some constant diagonal matriX that commutes with the\’s. The
problem can be decided in polynomial time, and it is a problem that has
since long been associated with @gpper boundf the structured sin-
gular value. The intriguing part is that the result holds for any number
[1] P. V. Kokotovig, Foundations of Adaptive Control Berlin, Germany: of LTV blocks A;, which is in stark contrast with the case that thgs
Springer-Verlag, 1991. are assumed time-invariant.

[2] I. Kanellakopoulos, P. V. KokotoVicand A. S. Morse, “Systematic de- - . .
sign of adaptive cobtrollers for feedback linearizable systemfisEE Paganini [6] extended this result by allowing for the more general
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