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Global Boundedness of Discrete-time Adaptive
Control Just Using Estimator Projection*

CHANGYUN WEN+ and DAVID J. HILL}

A global boundedness result is found for a simple indirect certainty
equivalence adaptive controller without modifications like data

normalization, deadzones or injection of persistence of excitation.
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Abstract—In this paper, we study a discrete-time indirect
adaptive control algorithm which contains a constrained
gradient parameter estimator and a pole assignment control
law synthesis module. This adaptive control algorithm does
not involve modifications like data normalization, use of
deadzones, or injection of persistently excited signals. Also it
requires no a priori knowledge of system modelling errors. It
is shown that global robustness properties still hold when this
simple algorithm is applied to systems with bounded
disturbances and arbitrarily small fast parasitic dynamics.
The problem of indirect decentralized adaptive control of
interconnected systems is also considered. We use the above
adaptive algorithm to design completely decentralized local
adaptive controllers for each isolated subsystem by ignoring
interactions between subsystems. We show that the local
controllers designed in this way are robust in the sense that
all signals in the closed loop adaptive system are bounded for
bounded initial conditions, reference inputs, disturbances
and an arbitrarily small amount of interaction between
subsystems and unmodelled dynamics of each subsystem.

1. INTRODUCTION
AT THE END OF the 1970s and in the early 1980s,
correct proofs were obtained for stability of
adaptive control systems under ideal conditions
(Egardt, 1979; Goodwin et al., 1980; Narendra et
al., 1980; Morse, 1980). A summary of these
basic adaptive algorithms and their stability
analysis which suits our needs here can be found
in Goodwin and Sin (1984). Simulation results
and some analysis showed that violation of the
ideal conditions can cause adaptive control
algorithms to go unstable (Rohrs et al., 1982;
Toannou and Kokotovic, 1984; Egardt, 1979). To
counteract instability and improve robustness
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with respect to bounded disturbances and
unmodelled dynamics, several groups of re-
searchers came up with modifications to these
basic algorithms. Some overview of the progress
can be found in Astrom (1987), Anderson et al.
(1986), Middleton er al. (1988) and Ortega and
Yu (1987). The major modifications include nor-
malizations with parameter projection (Praly,
1983, 1984), o-modifications (loannou and
Tsakalis, 1986; Ioannou and Kokotovic, 1983),
relative deadzones with parameter projection
(Kreisselmeier and Anderson, 1986) and other
combinations (Ioannou and Sun, 1988). To
implement these algorithms, one requires some a
priori knowledge of modelling errors.

Consider the algorithm modification based on
use of relative deadzones (Kreisselmeier and
Anderson, 1986; Middleton et al., 1988;
Middleton and Goodwin, 1988). We need to
know an upper bound on the system unmodelled
dynamics for the implementation of the para-
meter estimator. This bound should be
sufficiently small to ensure stability of the
adaptive system. Clearly, this is complicated
when insufficient a priori information is avail-
able. This robust adaptive algorithm has been
extended to use on inter-connected systems (Hill
et al., 1988). We need information from other
subsystems and some bounds on interactions to
build relative deadzone functions in local
adaptive controllers. In this way, the local
controllers are actually partially decentralized.
Allowing for the case where the a priori
information is not available, we are led to look
for a robust algorithm which does not involve
the requirement on the knowledge of system
modelling errors and can be used to design
totally decentralized controllers. Another way to
enhance robustness of an adaptive control
algorithm is to inject perturbation signals such
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that the regression vector is persistently exciting
(Astr(')'m, 1987; Anderson et al., 1986). However
this method has only been proved to handle
bounded disturbances effectively, and global
consequences in the presence of unmodelled
dynamics remain unsolved. Again, successful
implementation depends on some a priori
knowledge to achieve ‘dominate richness’.
Further, sometimes signal injection may not be
desirable during the operation of the closed loop
adaptive system. Thus it makes sense to consider
what robustness remains if it is not used.

In a previous paper (Wen and Hill, 1989), an
indirect adaptive control algorithm was studied
which involves a basic parameter estimator
subject to parameter projection as the only
modification and pole assignment control law
synthesis module. It was shown there that some
useful local robustness properties hold. In this
paper, we will re-examine the robustness
properties of this adaptive algorithm. It is shown
that this simple algorithm can actually counteract
the instability caused by system modelling errors
including fast parastics and bounded distur-
bances such that global stability can be ensured.
We can also achieve € small tracking error in the
mean as defined in Ioannou and Tao (1987) and
Middleton and Wang (1988). Unlike some other
robust algorithms (Kreisselmeier and Anderson,
1986; Egardt, 1979), it can preserve results
established in earlier global convergence proofs
(Goodwin and Sin, 1984) when modelling errors
are removed. Robustness of constrained estima-
tion was also considered in Kreisselmeier and
Narendra (1982). There a direct adaptive scheme
was used and an upper bound for the norm of
the desired controller parameter vector is
assumed known such that the search procedure
is confined to a known set. However, only
bounded disturbances were considered as mod-
elling error and unmodelled dynamics which can
no longer be assumed bounded were not
addressed. A recent report (Ydstie, 1989) which
became available during preparation of the
current paper, considers the unmodelled dynam-
ics in a direct scheme and shows global stability
in a quite different analysis to that presented
here.

Decentralized adaptive control of intercon-
nected systems is a subject that many researchers
have worked on. Results relevant to the current
discussion can be found in Hill er al. (1988),
Ioannou and Kokotovic (1985), Ioannou (1986),
Praly and Trulsson (1986), Gavel and Siljak
(1989), Wen and Hill (1990), Yang and
Papavassilopoulos (1985) and Reed and Ioannou
(1988). The o-modification is introduced to
design local adaptive controllers for a restricted

class of systems in loannou and Kokotovic
(1985) and Ioannou (1986). In Praly and Trulsson
(1986) and Wen and Hill (1990), some types of
normalization signals together with parameter
projection are used. In Gavel and Siljak (1989),
only systems satisfying certain structural restric-
tions placed on interactions between subsystems
are considered.

Here we will consider the class of intercon-
nected systems presented in Praly and Trulsson
(1986) and Wen and Hill (1990) and apply the
above mentioned algorithm to design local adap-
tive controllers for isolated subsystems by neglect-
ing interactions. It is shown that all states in the
closed loop of the adaptive system so designed can
be guaranteed to be bounded for bounded initial
conditions, reference inputs, disturbances and a
certain amount of interactions and unmodelled
dynamics for each subsystem. The result con-
siderably improves that in Wen and Hill (1990)
where a special estimator normalization and order
bounds on unmodelled dynamics were required.
Further, by using a uniform bound device for all
loops, the problem of handling loop interactions is
seen to be essentially the same as that of studying
single loop robustness.

The paper is organized as follows. We
examine the robustness of the adaptive control
algorithm applied to single input—single output
systems in the following three sections. The class
of scalar systems are given in Section 2. Section
3 presents the adaptive control algorithm and
establishes some useful properties of the simple
parameter estimator. We analyze stability of the
adaptive system in Section 4. Then the indirect
decentralized adaptive control problem of
interconnected systems is studied in Section 5.
Section 6 concludes the paper.

2. MODELS OF SCALAR SYSTEMS
Let A(g”") and B(q~') be polynomials of
degree n in the inverse shift operator g7/, i.e.

A(@)=1+aq™' + - +aq™",
B(g)=byg '+ ---+b,qg "
The class of plants we consider first are single

input-single output systems and can be mathe-
matically modelled as in the following equation

A(g Yy (1) =B(g Hu) + m(), 1)

where u and y represent the input and output,
respectively. This can be expressed as

y(O) =" (t—1)8. +m(r), @)

where ¢(t—1) is a regression vector and 6,
denotes a vector containing unknown parameters
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of the nominal system model, i.e.

¢T(t_1)=[y(t_ 1),...,y(t—n),
u(t—=1),...,u(t-n),
., bal.
The modelling error m(t) consists of terms
representing bounded extraneous disturbances
o(t) and unmodelled dynamics 7(t)

m(t) = 1(1) + w(0). 3)

Assumptions 2.1.
(1) Unmodelled dynamics term 7(¢) satisfies

In()| =d + ery(t), 4)

where d is a constant which bounds the
initial value n(0), € is a small non-negative
constant and 7,(¢) is defined as

ro(t) = woro(t = 1) + [[¢(t = DI, r0(0) =0,
(5)

T _
0,..—[—a1,...,a,,,b,,..

where y, is a constant less than 1.
(2) For w(t), there exists a constant d’ such that

o)l =d". (6)

Since 0 < p,<1 in (5), we can have

rO(t)SCn ma)fl “(P(T)”, (7)

0,..., t

where c, is a constant. Thus if ¢ is bounded
according to ||¢(7)||=M for 7=0,...,¢-1,
we can have

n(®)<d+c,eM. (8)
and
m(t)|<c,eM +d, 9)
where
d=d+d'.

Comments 2.1.

(1) The system model given above was studied
in detail in Praly (1990). It has been shown
that a broad class of discrete time systems
can be represented by this model. Indeed, it
includes the systems considered in Kreissel-
meier and Anderson (1986), Wen and Hill
(1989) and is equivalent to the one in Praly
(1983). If the true system is purely linear,
then 7(¢) is the output of a strictly proper
system with fast modes and/or nearly
cancellable pole-zeros and u(t) or/and y(t)
as the inputs.

(2) A properly chosen stable filter may be
introduced to system (1) so that the
deterministic disturbance can be eliminated
and also the effect of unmodelled dynamics
be mitigated (Middleton, 1988).

AUTO 28:6-E

(3) Knowledge of €, u, and d is not required to
implement the adaptive control algorithm
studied later. This contrasts with the
approaches given in Middleton er al. (1988),
Ioannou and Kokotovic (1983) Praly (1983)
(also see Astrom (1987)).

Usually, we have some knowledge of the range

of unknown parameter vector 6, of the nominal

system model. This is given in the following
assumption.

Assumption 2.2.

(1) 6, lies in a known convex compact region €.

(2) The polynomials A(g~"), B(¢~") induced by
an arbitrary (nonzero) vector @ in € are
uniformly coprime.

Assumption 2.2 gives that

16,— 6l <ks V6, 0,€9%, (10)
165l =k VOs;€ €, (11)

where kg, k. are constants. k, reflects the size of
% and k., the maximum distance from € to the
origin.

Suppose y* is a given reference set-point for
output y. The control problem is to design a
controller such that the resulting system is
bounded input bounded state (BIBS) stable and
the tracking error is small. Moreover, these
properties are to be robust to the modelling
error m(t).

Comment 2.2.
For the implementation of the adaptive
control algorithm, the only knowledge of the
plant needed is the nominal system order n
and a convex compact region that the nominal
parameters 8, lie in.

3. ADAPTIVE CONTROL ALGORITHM
In this section, an indirect adaptive control
algorithm is presented. The parameter estimator
is a basic one used to establish earlier global
convergence results (Goodwin and Sin, 1984)
subject to parameter projection.

3.1. Parameter estimation algorithm
For simplicity, of analysis, we use the gradient
estimation algorithm

¢t —De(r)
1+¢T(t—-D)o(t— 1)}’ (12)

where 8(¢) denotes the estimate of 6, at ¢ and P
represents the projection operator necessary to
ensure 0(t) € €Vr. e(t) is the prediction error
defined as

e()=y(t) — ¢ (t—1)8(: - 1). (13)

Now suppose M, is a constant such that

o@t) = g’{é(r -1)+
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isé, where 0<d<1. Also let M be a

0
constant such that M2 = k, M3+ k, where k, and

k, are positive constants specified in later
sections.

The properties of estimator (12), (13) given
below will be used in our stability analysis.

Lemma 3.1. Consider the estimator (12), (13),
applied to system (1). Assuming

l¢(to— DIl =M,, |l¢(T)l|> M,,
r=t0,...,t_1,
and ||¢(T)|| =M, 1,=0,...,t—1, where t=
ty+ 1, then we have:
)
le(t)| = (ko +a) )My + ay, (14)
and
_ e()
e(t) := ,
O e - D™
=kg+a,, t=t+1, (15)
where
a, = (ki”+ k3}%)c,e + 6,
(2)
2 E@)P=ki+(ay+as)(t— 1), (16)
T=ty+1
where
ay = 2(ko(k}? + k%) + 2¢, (k, + ky)€)cq,e, (17)
a;=2(28 + k)4, (18)
(3)
16(:) = 6 — D) = |é(r)| Ve. (19)
Proof.
(1) From (2) and (13), we have
e(t)=—¢T(t—1)0T(—- 1)+ m(r), (20)

where
6(r)=6(r) - 6.
Then (20), (10) and (9) give
le(6)] = ko 1l 9(¢ = V|| + cpe(k, M3 + k)2 + d,
(21)

where M?=k,M?%+ k, has been used. For
t =1y, we have

le(to)| = koMo, + a, M, + a,,

using (¢ (to — 1)1l < M.

Under the assumption of the lemma,

C. WEN and
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it follows that in general

ko ll@(t=1)|| + c,e(ky M5+ ;)" +d

O ,
e 1+ 19— DIP)™
kl/2M +k1f2
Sk9+T11—-—}-([)uT)1’22C"6+6 fort_lzto,
=ko+ «,.

(2) Let énp(t) denote the parameter estimate
before projection, i.e. 9(t)=.6/){0,,p(t)}.
Thus

A A _ ¢t — De(s)
e L)

(22)
We consider the function «(f) = 87(¢)8(¢).
Then
o(f) —u(t—1)
< 07,(1)8,,(1) — 87 (t = 1)6(t — 1) =[8,,()
- 67(t-1)][6,, — 8(t— 1) +26(t — 1)]
- eX(t) 207 (t —1)8(¢t — De(r)
C1+]le—D)? 1+l -DI>
(23)

Now using (20) and (10) gives

207t = 1)8(t — De(t) = 2(—e(t) + m(t))e(r)
= —2e*+2|m| (ko || (¢ = 1)|| + |m])
= —2e?+2ky ||@p(t — 1)|| |m| + 2 |m|>.
(24)
From (9), (20), (23) and (24), we get
e
1+(l¢(z—1)|?
2kecnf(k1M(2) + kz)u2 ll¢(z — DI
1+ l¢(z— 1)
4c2e’(k M3+ k)
1+ |l¢(z = 1)
4d® + 2kod || (7 — 1)||
1+l¢(z—-DI>

o(T) —u(t—1)=<

Thus we have

A(t)se(t—1)—o(t) +a+a;, (25

fort=t,+1,...,tand t=¢,+ 1.
Summing in (25) gives

t

> 1E(@)F =07 (6)8() — 67 (1)8(0)

T=1+1

+ (ay + as)(t — tp).

Using (10) again, the results follows.
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3)
16(t) - 8¢t = DIl =18, (1) = 6t = D]
ot =Dl le()|
1+ l¢@ - DIP
=|e(t)]-

Comments 3.1.

(1) The least squares algorithm is more com-
monly used in practical algorithms (Goodwin
and Sin, 1984). Similar properties for this
estimator can be derived by defining a
different Lyapunov type function v(r), but
the analysis is more tedious.

(2) Note that a, and a, are functions of € and
can be made arbitrarily small by reducing e.
Also a3 depends on 9.

(3) Suppose the system modelling errors are
removed, i.e. € and d in (9) are identically
zeros. In this case, m(t) =0 and the above
estimator has those properties established in
earlier global convergence results (Goodwin
and Sin (1984)).

3.2. Adaptive controller design

Following the Certainty Equivalence Prin-
ciple, we will use the parameter estimates
obtained from the estimator (12) and (13) to
compute the parameters of the controller. Here
the pole assignment strategy is utilized. This is
just one choice of many control schemes which
could be used (Goodwin and Sin, 1984). The
control u(t) is given by the equation

L(t = Du(t) = =Pt = 1)(y(1) = y*()), (26)
where y* is the given set-point and
Loy=1+Lg7 +---+L(g ™" @7

P()=pi(g ™"+~ +p,(Ng™",  (28)

L and P are obtained by solving the following
Diophantine equation

AWL(@) + B()P(r) = A*, (29)

where A* is a given monic strictly (discrete-time)
Hurwitz constant polynomial in shift operator
q ' of degree 2n. From Assumption 2.2, we see
that the coefficients in L(¢) and P(¢) obtained
from equation (29) are bounded (Goodwin and
Sin, 1984).

4. ROBUSTNESS ANALYSIS
In this section, we will examine the robustness
of adaptive control algorithm (12), (13),
(26)—(29) applied to system (1). It will be shown
that there exists a class of unmodelled dynamics,
i.e. a €* such that for each € given in (4)
satisfying € €{0, €*], all states in the closed

adaptive system are bounded for any bounded
initial conditions, bounded set-point and ex-
traneous disturbances.

Before going to present the details of our
result and its proof, we first establish and make
some analysis of the closed loop system
equation. By combining (13) and (26), we can
get

o(t+1)=A(O)p(t) + Bie(t + 1) + Bor(t + 1),

(30)
where
—a,(t) —a(1) —d, (1)
1 0 cee 0
0
, 1 0
A(n) =
—pi(t) —Pa()
0 0
0 0
0 0
by(1) o b.(t)
0 0
0 - 0
0 0
) i | O
1 0 0
0
1 0
BT=[1,0,...,0], 32)
BJ=[0,...,0,1,...,0], 33)
r(t+1)=P@)y*(t+1). (34)
Since P(¢t) is bounded, then |r(t+1)|=

¢, |y*(t+1)| where ¢, is a constant. From
Lemma 3.1, we can obtain

Lemma 4.1. The matrix A(¢) defined in (31)
satisfies

(1) A(¢) is bounded Vt.
@ 2 lIA@) -A(x-1)|

T=ty+1
< k(ky+ ax(t —to) + as(t — t5))  (35)
for
t>t, if lo(r)|=M,7=0,...,t—1
and

ll$(Dl > Mo,

whe_re k is a constant.
(3) A(A(t)) = A(A*) V¢

T=ty,...,t—1
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Proof.

(1) This follows from Assumption 2.2 and
0(t) e CV.

(2) From assumption 2.2, we have

]

> AR - A(r - D)

T=Iy+1

=k > [10(r) - 8(r - 1)

T=fo+1

for some constant k

=k > |é(r)f
T=¢f9+1
using (19)
= k(kG+ ax(t — to) + as(t — t,))
using (16).

(3) This is easy to verify from (31).

The following lemma is similar to one given in
Kreisselmeier (1986) and a discrete-time version
to one in Middleton et al. (1988).

Lemma 4.2. Consider a linear time-varying
system of the form

x(t+1)=A()x(). (36)
Suppose
(i) A(¢) is bounded

(i) > [A(®)—-A(T-DI?

T=f+1

=Bo+ Bi(t —t)) fort>t,,

where B, B, are positive constants with 8,
sufficiently small
(ii)) |[A(A(r)|<1 foralltandi=1,...,n.

Then the transition matrix of (36), denoted
Y, (1, T), satisfies

(e, DI =C'u""" fort=r, (37)

where p € (0, 1) and C’ is a constant.
From Lemmas 4.1 and 4.2, we can study the
stability of the linear system

ot +1)=AN)(). (38)

Let ®(t, ) denote the state transition matrix of
system (38). Then we have the property

(¢, )| <Co™* fort=t=1, (39)

if p(=<M, t=0,...,t=1; [|p(®)] > Mo,
T=ty,...,t—1 and a,, a; obey bounds a,=
a5, a;=a3. These bounds are given by aj =
(B, — kas)/k with a;=a3 ensuring B, — ka;>0.
C is a constant and o€ (0, 1). From (18) the
bound a3 is equivalent to a bound &* such that

& = 6* where 6* is just a number. Now we are
in the position to present our stability result.

Theorem 4.1. Consider the adaptive system
consisting of plant (1), estimator (12) to (13) and
controller (26) to (29). Under Assumptions 2.1
and 2.2, there exists €* such that € < €* ensures
l|lo(t)|] bounded V¢ for all bounded initial
conditions and setpoints.

Proof. In order to clarify the development of
the proof, we begin with some preliminary
motivating steps.

(1) From the stability assumption on modelling
error m(t) given in Assumption 2.1, we see
that m(¢) can be bounded by a function of
1)L, I - - -, 1o = DI, ie. past
values of ||¢(?)]|.

(2) Also note that for any bounded initial
conditions ¢(0), set points y* and distur-
bances w(t), there always exists a number
M, such that ||¢(0)|| = M,, ||r(t)il-.=M, and

d
— = ¢ for a sufficiently small é, where r(t)
my

is given by (34). From the observation in
point 1 above and the fact that ||¢(0)| =
M,<M defined as a function of M, given
earlier, we can ensure that ||¢(1)|| =M and
then ||¢(2)|| =M under certain conditions
independent of M,.

(3) The above two points motivate us to use an
inductive proof by assuming that ||¢(7)|| =
M, t=0,...,t—1 for t=1 and proving
()l =M.

(4) Under this inductive assumption, we can
bound the modelling error m(t) by a
function of M, i.e. M,, as in (9). Then using
(9) and the normalizing term 1+ [|¢(t — 1)
in the estimator (12), we can invoke the
estimator properties given in Lemma 3.1.
Also note that a, and a, are independent of
M, and can be made arbitrarily small by
restricting the gain € of unmodelled
dynamics.

(5) In order to apply Lemma 3.1 and the
exponential stability property of A(t) in the
closed loop equation in (30), we divide the
time interval Z, into two subsequences
(Praly and Trulsson, 1986; Wen and Hill,
1989)

Zi:={teZ,|llo@®)l>M,},
Zyi={teZ, |19l = Mo).
Clearly, the result is proved if we can show
that ||¢(¢)|| =M for t € Z, since M > M,. To

do this, we choose ¢, so that ¢ =1,
to—1€Z,and t,,...,t—1€Z,.
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(6) Following somewhat standard steps in
proving stability of adaptive systems given in
the literature (Middleton et al., 1988; Wen
and Hill, 1989), we outline the proof of
[l¢(O)ll =M as follows.

The general solution of (30) is

(1) = D(1, 1) P(t0)
+ 'il ®(, T+ 1)[Bye(t+ 1)+ Bor(r +1)],

i.e.
o(t) = (¢, t)[A(ty— Dt — 1)
+ B,e(ty) + Bar(ty)]

+ ’_Zl ®(t, T+ 1)[Bie(t+ 1) + B,r(t + 1))

Using (14),(39), boundedness of |A(z,— 1)]|
and inequality
le(t+ D=1+ llo(D)ll) le(r +1)I,
gives
o)l = CUI'__:"[(CI +a)M,+a))
+ 2 Co T lé(x+ DI (D]

T=!y

+|e(t + 1) + My), (40)

where C and C, are constants depending on
ke, o and 6*.

Squaring both sides of (40) and applying the
Schwarz inequality, we get

GRS C302(t_’0)[(cl +a,)’M} + al)

o (D) 1é(r + 1)|?

+ |é(t + 1)|* + M3],

t—1

+Cy D,

=ty

where C; and C, are constants. Multiplying by
o' gives
o™ [|9(1)]1? <s5%(r)
+Cq gﬂ o7 lp(DII* [E(z + V)P, (41)
where
s2(t) = C3079[(C, + a;)*M} + a]

t—1

+Cy D

T={y

o (le(t+ D>+ M}). (42)

Then the discrete Grownwall lemma (Desoer
and Vidyasagar, 1975) can be applied to (41) to
yield

I6OIP <)+ 3 T(t )o's(x), (43)

T=1lo

where
[ ) =(oCale(r+DP) [1 o1+ Culé(m)P),
T=t+2
(44)

and the product term is 1 for r=t—1. The
“Theorem of the Arithmetic and Geometric
Means” (Hardy et al., 1952) gives

Ma={;Saf, 4s)

i=1
for a sequence of non-negative numbers.
Applying (45) to (44) gives that

reoi={==[ 3 oarciemn]f

n=t+l
2 t—t
{(:'Cdi + 0(Cqsa, + Ciaz + 1)} ,
(46)

using (16). Choose o <o} <1. Then from (17)
and (18), it is clear that there exists @5, 6* which
are small enough to guarantee o)~ o(1+
Cqa;) >0 for 6 = 8* and

0(Cyar+ Chay + 1)< o7, (47)

for a,=<aj. (This will be set by choice of €.)
From (46)
_ UC4k9
Ft,tsoj"{l-k }
T 1= (02 1+ 520

C.k}
= (@) e |77},

using the inequality (1 + %)X se.
Thus there exists K > 1 such that
IT(t, )l = K(02)™" (48)
Now consider the term o%?(t) appearing in (43).

0's%(1) < C30"[(C, + a,)*M} + a3]

T—1

+Cy 2, 0" (le(T, + D) + M))
1=t
= C30"7"[(C, + a;)’M} + a?]
+ Cs+ Cea?+ C, M3, (49)

using (15) where Cs, Cs, C, are constants

depending on k%, 0 and &*. Substituting (48)

and (49) into (43), we get

lp(OII> = C30'[(C, + a,)’M5 + af] + Cs + Ceai
t—1

+C,M3+ Y, K(o})~ "

X {C30"[(Cy + a,)* M2 + a?]
+ Cs+ Ceat + C;M})}
= Cy+ CoM§+ CoaiMG+ Cryai,  (50)
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using 0 < 0} <1, where Cg, Cy, Cy and C, are
constants depending on kg, 0, 0 and 6*.
Choose a number af such that a, <ay for all €
satisfying € < €}.

From (15), we have

o> =<[Ci3+ Crach€(ky + k) IMG+ C 3,

(51)

where C, is a constant combining the previous

Cg, C,, terms. Let k, = C,, and &€* be a constant
satisfying

Ciac3(E*)Y’=1. (52)

By taking k, as
C3+ Cyuc?(€*)?
k, = max {1, 131_& (,‘114407%((6*))2(?12}’ (53)
we can have
lpII* < kMG + ks,

i.e.

le@)|I>=M>. (54)

It remains to clarify the role of € at (4) in
establishing (54). From the above argument, we
can see that k, and k, are constants depending
only on system parameters kq, 0,c, and
numbers o, 8* and &*. Now let a}=
min {@3, a5} where @5 and a; were defined to
ensure (39) and (47) are satisfied. From (17), we
see that there exists an €* such that € < &* gives
a,=<a;. Finally, taking €*=min {&*, €*, &{}
where €* was defined in (52), we have proved
the results.

Comments 4.1.

(1) For a given system, there always exists a M,
such that |j¢(0)||=M,, |Ir(®)|l.=M, and
d/M, = 8* for any bounded initial condition,
set point and disturbances w(t), where
&8* =min {6*, 6*}, 6* and o* are
sufficiently small numbers to ensure (39) and
(47) satisfied. Note that 6* and 6* were
defined in such a way that they are
independent of M, in establishing (39) and
(47). Since the stability condition does not
depend on M,, we do not need to know it’s
value in proving our result.

(2) Once a system is given and A* is chosen,
then k,, ¢, and o are fixed. There exist 8* to
satisfy 8, — ka3 >0 in establishing (39), &*
to satisfy (52) and we can choose a number
0! <1. Thus constants k, and k, are set in
(53). Then a €* can be found and we can
ensure that ||¢(¢)|| is bounded for all ¢ and
e=¢e*

(3) In Wen and Hill (1989), a weaker local

4)

©)

(6)

C. WEN and D. J. HiLL

stability result was obtained. The improve-
ment here comes from more careful use of
the normalizing term 1+ |{¢(t—1)|| in
allowing for the modelling errors in the
estimator properties. The effect of unmod-
elled dynamics is bounded by a function of
past inputs and outputs of the system—see
(4). Through induction, this effect is
bounded by the constant M which depends
on initial states of the system. The devices
used here enable the dependence of the
stability condition on initial conditions to be
cancelled out to obtain a (global) bounded-
input—bounded-state type stability state-
ment.

An interesting observation on the use of a
relative deadzone (Middleton et al., 1988;
Kreisselmeier and Anderson, 1986) is given
here. We see that if an incorrect upper
bound of € at (4) is used to build a relative
deadzone function in the adaptive controller,
the closed loop system is still stable for
sufficiently small € from our analysis given
above.

If there is no modelling error appearing in
the system, we obtain the results that basic
adaptive control algorithms achieve for ideal
plants (Goodwin and Sin, 1984). One of
them is that perfect tracking can be achieved
since the prediction error tends to zero.
Suppose disturbance w(¢) is identically zero
or satisfies

S(g () =0,

where S(g~") is a known polynomial of g~
with all roots on the unit circle. Also note
that the term d in (4) can be an
exponentially decaying function. Since the
prediction error e(t) is a continuous function
of € given at (4) (which reflects the effect of
unmodelled dynamics of the plant), we can
expect that e(¢) should be small if € is. Thus
having established boundedness of all states
in the closed loop system, it can be shown
that the prediction error e(t) for a given
system with given initial condition is € small
in the mean, i.e. e(t) satisfies

1

> ) e*(t) = Biy + B120(e)(t — 1),
where f,;, f,1 are constants and 0(e)
satisfies lim._,0(e)=0. Clearly, if €=0,
then e(r) e ,. If control synthesis strategies
including use of the internal model principle
(Goodwin and Sin, 1984; Middleton et al.,
1988; Middleton and Wang, 1988) are used,
we can prove that the tracking error |y — y*|
is € small in the mean, by using the similar
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methods of analysis in Goodwin and Sin
(1984), Ioannou and Tao (1987) and
Middleton and Wang (1988).

Example 4.1. The system to be controlled in a
z-domain description is
(1+

The nominal model used for adaptive controller
design is a first order model given by

Y(z) 04
U(z) z+1.06

o)
z+c/

Y@)_ b
U(z) z+a’

Clearly, there is a multiplicative plant perturba-
tion and the plant has a unstable mode.
In the design of an adaptive controller, we

400
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choose A* to be z2— 1.4z + 0.5368, which gives
a damping of 0.707 and a natural frequency of
0.88radsec™' when the sampling period is
A=05sec (Astrom and Wittenmark, 1984).
This choice also satisfies the constraint imposed
by the unstable mode according to a design rule
given in Middleton and Goodwin (1989).

Suppose that we know —15=a=15 and
0.1=b =1.2. Thus we choose d(0)=—0.8 and
6(0) = 1.0. The command signal y* is a square
wave with period 40 sec. The tracking problem is
not considered in this design example.

When ¢ =0.4 and d = 0.2 the system is stable
and the responses are shown in Figs 1-4. When ¢
is increased to 0.82 or d to 0.6, the system
becomes unstable. Figures 5 and 6 show the
responses of the system when ¢=0.82 and
d = 0.4. Figures 7 and 8 give the responses when
¢=0.4 and d =0.6.

300
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100 120 140 160 180
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If the allowable region for a and b is enlarged,
then the performance of the system responses
during the early stage is degraded. Figures 9-12
present the responses when initial values of 4(0)
and 5(0) are chosen to be —10 and 12,
respectively.

5. DECENTRALIZED INDIRECT ADAPTIVE
CONTROL

Having shown the robustness of adaptive
control algorithm (12), (13), (26)—(29) against
modelling errors in scalar systems, we now turn
to study the problem of decentralized adaptive
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control of multi-input—multi-output systems.
The class of systems we consider consists of /
single-input—single-output subsystems and the
ith subsystem can be modelled as follows

A(qyi(t) = B'(g ui(t) + m(1),  (55)
wherei=1,..., [/ and

A(@g )=1+aiqg7'+---+alqg™,

B'(g")=big”'+---+b,q7",
m;(t) denotes the modelling uncertainty includ-
ing interactions from other subsystems, unmod-
elled dynamics of the ith subsystem and bounded

disturbances.
Equation (55) can be equivalently rewritten as

yi(t) = ¢/ (t — )6 + my(¢), (56)
wherei=1,...,[and
¢1T(t - 1) = [.YI(t - l)r A ] yl(t - ni):
w(t—=1), ..., u(t—n)l,
bl b

For the above system, the following assumptions
similar to that of Section 2 are made.

0y =[-a,, ..., —a,,

Assumption 5.1.
The modelling uncertainty m,(¢) satisfies

{

Im(t)] =d; + € > ri(e), (57)
j=1
where d; and €, are nonnegative constants, and
ro(t) is defined as

ro(t) = poro(t — 1) + gt = DI, ro(0) =0,

(58)
where uj) is a positive constant less than 1.
As in Section 2, we can obtain

rn=cy max gDl (59)

0,..., t

where c}, is a constant. Thus for each subsystem
Li=1,..., Lif||l¢(0)|=Mfort=0,...,t—
1, we can have

|m(¢)] = c,eM +d, (60)
where ¢, is a constant and

€ =max {¢},
..., {

d=max {d,}.
{

Assumption 5.2.

(1) 6% lies in a known convex compact region
€.

(2) The polynomials A‘(g™"), B'(g™") induced
by an arbitrary (nonzero) vector 8’ in €, are
uniformly coprime.

Note that the class of systems given above is
exactly equivalent to that in Praly and Trulsson
(1986) for decentralized systems where a
bounded sequence and an operator with a finite
(2, u)-exponential gain are used to characterize
the modelling uncertainty m;(¢).

For each subsystem described in (55) or (56),
we use the adaptive algorithm given earlier, for
scalar systems to design a local adaptive
controller, which is composed of a parameter
estimator and a control law synthesis module,
obtained by ignoring term m,(¢).

5.1. Parameter estimator

o ¢i(t — De,(t)
9(1)_9’{80 1)+1+¢ir(t_1)¢i(z—l)}’

(61)

where 6'(t) represents the estimate of @', at ¢
and P represents the projection operator
necessary to ensure 8'(t)e € V. e;(t) is the
prediction error defined as

e(t) =y ()~ ¢t~ DO~ 1).  (62)

From above, we see that estimator (61) and (62)
only requires the input and output data of the ith
subsystem only. This contrasts with some
existing partially decentralized indirect adaptive
schemes (Hill et al., 1988; Yang and Papavas-
silopoulos, 1985; Reed and Ioannou, 1988).
Now suppose M, is a constant such that
5—56, where 0<&<1 and will be further
0
restricted. Also let M be a constant such that
M?=k M3+ k, where k, and k, are constants
like k; and k, given in an earlier section.

Lemma 5.1. The estimator (61), (62) applied to
system (55), has the following properties. For
each i, (i=1,...,[), assuming ||¢;(to,—1)|| =

M, lp(D)l > M,, T=t,...,t—1 and
lg(t)Il=M, ©,=0,...,¢t~1, where t=1¢, +
1, then we have

(1)

le:(to)| = (ko, + a;)M, + ay, (63)
and
eit)
(L+ ll¢s(e — DIIH*’
t=t +1, (64)

where kg, is a constant reflecting the size of
%; and

()| =

Sk9i+aly

a;= (kY + kY?)c,e + 8,

)

]

> le(n)P=ki+ (a,+a)(t— 1), (65)

‘t=l(|‘+l
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where

ay =2(ko(ki? + k3?) + 2c, (k, + k;)€)c, €,
(66)

ay=2(26 + kg)$, (67)

A3)
16(t) — 't — DIl < ee)| Ve.  (68)

Proof. The results follow by using similar
arguments as in the proof of Lemma 3.1.

5.2. Adaptive controller design

The estimates from estimator (61) and (62) are
used for the tuning of local controller para-
meters. The control u,(f) of the ith subsystem is
generated from the equation

Lt = Dt = — Bt = 1)(y(0) =y (), (69)

fori=1,...,1, where y; is the given set-point
and

Ly=1+8@0qg ' +---+T (g™, (70)
P@y=pig™ +---+pn(t)g™", (71)

L; and P, are obtained by solving the following
Diophantine equation

AL(e) + B(E(r) = A}, (72)

where A} is a given monic strictly (discrete-time)
Hurwitz constant polynomial in shift operator
q~" of degree 2n,. From Assumption 5.2, we see
that the coefficients in L;(t) and P,(¢t) obtained
from equation (72) are bounded (Goodwin and
Sin, 1984).

Now we examine the robustness of adaptive
control algorithm (61), (62), (69)—(72) applied to
system (55). The question we need to answer is
as follows. Does there exist a class of modelling
uncertainty, i.e. a €* (or €;) such that for each €
given in (60) (or ¢, in (57)) satisfying € € [0, €]
(or €,€[0, €] for i=1,...,1), such that all
states in the closed adaptive system are bounded
for any bounded initial conditions, bounded
set-points and extraneous disturbances. The
answer to this question is given in Theorem 5.1.

We study the ith loop of the adaptive system
and take modelling uncertainty m;(t) into
account in the system stability analysis. From
(62) and (69), we can get

¢:(t +1) = A'(t1)p,(t) + Brei(t + 1) + Bori(t + 1),
(73)

where
—ai(t) —a, --- —a,

1 0 e 0

0

1 0

E(t) = Y] Al

—pi —pnlt)

0 0

0 0

0 0

bi(t) bi(t)

0 0 0

0 0 0
; AN P

=l —1a(t)

1 0 0

0

1 0
BT=[1,0,...,0], (75)
BT=[0,...,0,1,...,0], (76)
r(t+1)y=B(t)y}(t +1). (77)

By analyzing the above system, we can establish

Theorem 5.1. There exists (or exist) a constant
€* (or constants €;') such that for all 0= e <¢€*
(or O=¢=¢€l,i=1,...,0), decentralized
adaptive controllers given in (61), (62), (69)-
(72), implemented in plant (55) or (56) under
Assumptions 5.1-5.2, give a globally bounded
input bounded state stable feedback system, i.e.
[|¢:(¢)|| V¢ for all i, and arbitrarily bounded
initial conditions, bounded set points and
disturbances.

Proof. As in the proof of Theorem 4.1, we
divide the time interval Z, into two sub-
sequences for each controller

Zi={te Z.| {190l > Mo}, (78)
Zi={teZ. [ll¢:(0)ll = My). (79)

An induction proof is used. Clearly, for any
given bounded initial conditions ¢,(0) and
reference r,(¢t) defined in (77), there exists a
constant M, such that ||¢,(0)|| =M,, |Ir()|l-=
M, and d/My=¢d for all i=1,...,] and
sufficiently small 6. As M?*=k M3+ k,> M3,
then ||¢,(0)|]| =M for all i. Now we can assume
that ||¢p(7))|=M for t=0,...,t—1,¢t=1 and
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all i=1,..., L Thus the result is proved if we
can show that ||¢;(¢)|| =M for each i. Actually,
from the definition of Z; and Z5, is it only
necessary to prove that ||¢;(t,)|| =M for 1, € Z
for each i. So we can confine ourselves in Z{ and
choose f, such that ¢,...,t—1€Z} and
to, — 1 €Zb.

The proof now proceeds very closely to that of
Theorem 4.1. The assumptions of Lemma 5.1
are satisfied. We establish the same properties
for A'(t) in (7.3) as A(¢) in (30) had.

Comments 5.1.

(1) Having established (60) which is the same as
(9), it is clear that the stability proof for each
loop basically mimics the earlier single loop
case. Interactions are easily handled in (59)
and (60) by assuming | ¢;(t)]|=M for
t=0,1,...,t—1

(2) For each individual loop, ¢, may be different
even though we assume | ¢,(1)||=M for
t=0,1,...,¢—1 and all / loops.

(3) Theorem 5.1 constitutes the first global
stability result for a decentralized indirect
adaptive control system. Surprisingly, no
complicated estimator modifications are
needed. Of course, such modifications may
lead to improved performance.

(4) Praly and Trulsson (1986) used an inductive
proof in their studies on indirect decentral-
ized adaptive control. However, the stability
condition derived depends on the initial state
values since the normalizing term in their
estimator was not fully exploited when
bounding the modelling errors. Referring to
Comment 4.1.3, the devices used here
enable the stability bound to be made
independent of the initial state.

6. CONCLUSIONS

In this paper, we studied a basic adaptive
control algorithm consisting of a gradient
estimator, subject to parameter projection as the
only modification, plus a pole assignment
controller. The only a priori information
required for the implementation of this algo-
rithm is a range that each unknown parameter of
the reduced order plant lies in. This is quite
reasonable.

We first examined the robustness of this
adaptive control algorithm applied to scalar
systems with modelling error including unmod-
elled dynamics and bounded disturbances. It is
shown that if the unmodelled dynamics are
sufficiently small, then the closed loop adaptive
system is bounded input bounded state stable in
the sense that all the states in the closed loop are

bounded for any bounded initial conditions, set
points and external disturbances. We then
turned to consider the problem of indirect
decentralized adaptive control by applying the
algorithm to design local adaptive controllers for
isolated reduced order subsystems. It is shown
that stable feedback systems can be ensured for
those plants that have sufficiently weak interac-
tions between subsystems and small unmodelled
dynamics of subsystems. Further, by using the
uniform bound device for all the loops in the
inductive proof, the problem of handling loop
interactions was shown to be essentially the same
as that of studying single loop robustness. For
both single loop and multiloop systems subject
to some constraint on external disturbances
and/or set points, we can also obtain small, in the
mean, tracking error if appropriate adaptive
control schemes (Goodwin and Sin, 1984;
Ioannou and Tao, 1987; Middleton and Wang,
1988) are used. It is also clear that those results
established in earlier global convergence analysis
of ideal situations are preserved if plants to be
controlled are completely decoupled and satisfy
the “ideal assumptions” (Goodwin and Sin,
1984). In particular, we can achieve perfect
tracking in this case.

Our analysis in the paper implies that a priori
knowledge on system modelling errors are not
necessarily required to ensure global stability in
the implementation of robust adaptive algo-
rithms involving other modifications (Middleton
et al., 1988; Praly, 1983, 1984; loannou and
Tsakalis, 1986; Ioannou and Kokotovic, 1983;
Kreisselmeier and Anderson, 1986). However,
such modifications (when the required a priori
knowledge is available) may and should lead to
superior performance.

Our results can be easily extended to include
those plants in which the reduced order systems
are slowly time varying as in Middleton and
Goodwin (1988), Wen and Hill (1990) and
Kreisselmeier (1986). But a counterpart version
in continuous time systems is not available due
to the method of proof via induction used here
for discrete-time systems.
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