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Abstract-In this paper, the integrator backstepping ap- 
proach together with an adaptive law using parameter pro- 
jection is employed to design robust decentralized adaptive 
controllers. The techniques used allow us to relax the rel- 
ative degree limitations on subsystems and the structural 
conditions on interactions between subsystems required in 
some earlier results. Further, no a priori knowledge of the 
unmodeled dynamics is required. Global stability is estab- 
lished for the closed-loop system and small in the mean 
tracking error is ensured. @ 1997 Elsevier Science Ltd. 

1. Introduction 
Decentralized adaptive control has received a lot of 
attention in recent years. As the modeling error due to 
ignored interactions makes the stability analysis quite 
difficult, only a limited number of results have been 
obtained. Wiih the traditional certainty equivalence princi- 
ple, global stability of decentralized adaptive systems have 
been established but with various limitations, see for ex- 
ample, Ioannou and Kokotovic (1985), Ioannou (1986), 
Gavel and Siliak (1989). Wen and Hill (1992) and Wen 
(1995). For tGe d&ect Lode1 reference aaaptivk approach 
of Ioannou and Kokotovic (1985), Ioannou (1986) and 
Gavel and Siljak (1989), relative degrees of all the nomi- 
nal subsystem models should be less than or equal to two. 
Recently, the concept of high-order tuners proposed by 
Morse (1991) was employed to relax the relative degree 
requirement by Ortega and Herrera (1993) and Ortega 
(1996). The integrator backstepping technique proposed 
by Krstic et al. (1994) was also applied to design decen- 
trilized adaptive regulators without restrictions 0; subsys- 
tem relative degrees in Wen (1994) and Jain and Khorrami 
(1995). However, due to the nature of the technique used, 
the interactions should satisfy certain structural conditions 
as commented in Ortega (1996). Also. adaotive tracking 
and the effect of extema d&turb&ces were nbt considered: 

Recently, Zhang and Ioannou (1995) proposed to sepa- 
rate the backstepping control law design from an adaptive 
law and established the robustness of the resulting adap- 
tive controller. A normalizing signal is introduced in their 
adaptive law so that the effect of the unmodeled dynam- 
ics normalized by the signal is uniformly bounded. When 
interactions are considered as some sources of modeling 
errors in the design of decentralized adaptive controllers, 
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their effects may not be bounded by a local normaliz- 
ing signal using local information in a subsystem. In this 
case, a normalizing signal requiring information exchange 
between subsystems may be expected as in Datta and 
Ioannou ( 1991. 1992) and therefore onlv oartial decen- 
tralization‘ is achieve& In Wen and So6 (1995), a dif- 
ferent normalization signal is employed and a different 
system-theoretic analysis is presented. There, the bound- 
edness of the unmodeled dynamics by the normalization 
signal is not required. In this paper, we apply the tech- 
niques in Wen and Soh (1995) to the design of decentral- 
ized adaptive controllers. In the design, no structural con- 
ditions on the interactions are imposed. Also, the robust- 
ness with respect to external disturbance is studied. With 
a lot of elaborations on the effects of interactions and sub- 
system modeling errors, global stability of the closed-loop 
system and small in the mean-tracking error property are 
established. 

2. System models 
In this paper, we consider the following class of inter- 

connected systems. 

y,(t) = H,(D)[l + $H,(D)lu,(t) + dl(t) 

+g E,flz,(D)u,(t) + ~,k,,(D)y,(t)l. (1) 
,=I 

for i, j = 1,. . . ,m, where yl, u, and d, are respectively, 
the output, input and disturbance of the ith subsystem, 
and H,(D) = B,(D)/A,(D) is the reduced-order transfer 
function of subsystem i with 

A,(D) =D”’ -+ a:,-lD”‘-’ + + a!, 

B,(D) = b:D”” + b:-ID”‘-’ + + by, 

where D denotes the differentiation operator, and m, < n,, 
E;, E;I,E, are constants, f?,(D) is the multiplicative uncer- 

tainty of the ith subsystem, l?,(D) and k,,(D) denote the 
subsystem interactions if i # j and unmodelled dynamics 
if i = j. 

Suppose that y: is a given reference set-point for output 
yI. The control problem is to design a controller for plant 
(1) such that the closed loop system is stable in the sense 
that all signals in the system are bounded for arbitrary 
bounded y: and initial conditions, and the tracking error 
is small in some sense. To solve the control problem, the 
following assumptions are made for the plant given in (1). 

Assumption 2.1 

(Al) 

(A21 

B,(D - CT:) 1s Hurwitz where 0: is a known pos- 
itive constant. 
An upper bound for n,, the nominal relative de- 
gree n: = n, - m, of subsystem i and the sign 
of the high-frequency gain sgn(bF ) are known. 
Furthermore, the coefficients of A,(D) and Bi(D) 
are inside a known compact convex region V,. 
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(A3) A,(D), Z?,(D) and kJD> are stable, and H,(D) 

#@), fi,(D) and k,,(D) are strictly proper. 
(A4) d,(t) is bounded. 
(A5) v: and its first n: derivatives are bounded piece- 

wise continuous signals. 

Remark 2.1. (i) While modeling errors satisfy (A3) and 
(A4), no a priori knowledge is required from them for the 
implementation of the adaptive controllers given in later 
sections. 

(ii) From Assumption A2, there exists a constant ki > 
0 such that 

He,’ - ($11 I k& 

for any O,‘,%f E %,. 

(2) 

Assumption A2 also implies a known lower bound for 
lb?. 

As in the single-loop case, for subsystem i, let us in- 
troduce a stable polynomial 

F,(D) = D”‘+f,‘D”‘-‘+...+f:‘-‘0-t f:, 

where the real parts of all its zeros are located on the left 
of -a:. 

Define the following filtered variables 

A; = 

i 

I(n,-IEqn,-I) 
-f, , fl = (fi....,fy?', 

o...o 

e,,-k is the (n, - k)th coordinate column vector in iw”’ 
space. 

To develop the decentralized adaptive controllers, the 
ith subsystem of the plant (1) can be reparameterized 
in the following form as shown in Zhang and Ioamrou 
(1995): 

where 

@=[-a:‘-‘. . . . . -&by ,..., by], 

w;=[g-‘~‘)..., <fQI:,.‘,..., up’] (5) 

D 1 D”’ 
- Y,, - vr, -K, 
F,(D)- F,(D)- F,(D) 

and C$ k, $ k are the kth element of the vectors t:, 4, re- 
spectively. 

A first-order stable filter is introduced as follows: 

where P, = D + a, with a, < a!. 
Now the bounds on t;f, vf in (3), Ok in (6), and r~, in 

(7) are given by the following lemma: 

Lemma 2.1. For all members of the class of systems sat- 
isfying Assumption 2.1, there exist constants cc, co, cm > 
0, do 2 0 and a,, > 0 such that for all t 

Il5~(~N I wt(t), 

fork = 0,1,2 ,..., n,, i= 1.2 ,..., m, (9) 

I ldO>l I F c”Pi(th 

fork=0,1,2 ,..., m,, i=l,2 ,.... m, (10) 

IloA(t)ll I c&(t) for i = 1.2,. . .,m, (11) 

Iv40 I ,&, sup p,(r) + do for i = 1,2 ,..., m. (12) 
,=I O<Tsr 

If su~~s~@7) = ~0) and su~,,,~,p,(r) I su~~<,<~ 
p,(r) for all j # i and t > tp, then (12) becomes 

I&(t)1 < w,(t) + do for all t > t:, (13) 

where E is a positive constant depending on a,,. 

Proof. We can rewrite (7) as 

A m +$ FJ = F, 

‘,=I 

E,,I%,,u, + ~,IH,,F_v, 
J J 1 (14) 

Then the stability of F(s) and Assumptions A3 and A4 
yield that 

where p,(t) = Iu,/E,I and j?,(t) = Iy,/F,l with p,(O) = 

d,(O) = 0. AS P,(t) < p,(t) and 6,(t) 5 p,(t), we have 
(12), and (13) 1s easily verified. From the choices of a1 
and a:, (9)-(11) can be established as in Ioannou and 
Tsakalis (1986). 0 

Remark 2.2. (i) In the proof of Lemma 2.1, the effects of 
some exponentially decaying terms due to nonzero initial 
conditions have been absorbed by do. 

(ii) The constant E,, indicates the strength of the inter- 
actions between subsistems i and j when i # j, and the 
umnodelled dynamics of the ith subsystem to the nominal 
model when i = j. 

(iii) In terms of the bounding signals, the bound for the 
modeling error in (12) allows the effects of the unmod- 
eled dynamics and interactions to have infinite memory 
and thus is looser than those given in some existing liter- 
ature such as Ioannou and Kokotovic (1985) and Ioannou 
(1986). The class of modeling errors considered can be 
enlarged to include any nonlinear unmodeled dynamics 
satisfying (12) and (8). 

3. Robust decentralized adaptive control scheme 
In this section, a robust adaptive control scheme is pro- 

posed to design decentralized adaptive controllers based 
on (4). Each local adaptive controller consists of two mod- 
ules: a parameter estimator and a control law developed 
from the integrator backstepping. 

3.1. Parameter estimator. The following estimation al- 
gorithm with projection is used to estimate the unknown 
parameters of the nominal plant model: 

(16) 
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where i,(t) is the estimate of 0,, the normalization signal 
mS, is defined as 

m,, = (1 + Pf )I’*, 
the prediction error e,(t) is given as 

(17) 

e,(t) = y,(t) - <; ’ - w:(t)&(t) (18) 

and Y{ .} denotes a projection operation proposed in Pomet 
and Praly (1992). Such an operation can ensure that the 

estimated parameter vector &(t) E V for all t if e,(O) E %. 
Now, define 

e4t) C*(t) = y. 

Suppose MO is a positive constant s.t. do/MO 2 6. Then 
some useful properties of the estimator in (16)-(18) can 
be stated as in the following lemma. 

Lemma 3.1. The estimator (16)(18), applied to the plant 
given in (1) has the following properties: 

(i) If PI(t) > MO, sup,<,+(r) = pi(t) and su~~<,<~ -- 
p,(7) 5 s~p,,,~~p~(t) Vj # i for all t > tp, then 

I&(t)l 5 (hc,, + E + 6) for t > tP, (19) 

I I dw%(t) < k c 
m,(t) - 

1 Io for t 2 0, (20) 

where kl is a constant depending on ko defined as ks = 
max{k~,k~....,k~} and 

dr 5 2kz + ksyl(t - t;) + k4yz(t - t;) 

for t 2 tp, (22) 

where 

k2 = lk2 
2 0. ))I = (kl + ~E)E. y2 = (kl + 26)6, (23) 

and k3, k4 are generic positive constants, 
(ii) 

Proof From (4) and (18), we get 

where 

e,(t) = -C(t)w,(t) + ad, (25) 

e, = e, - 8,. 

Then applying (11) and (13) gives 

iel( < k~c,u]]~,(t)lI + ~~47) + do. (26) 

Once (26) is obtained, the results of the lemma can be 
readily established by using (1 1 ), (13) and following some 
standard steps as in Wen and Hill (1992). 0 

Remark 3.1. 71 can be made arbitrary small by reducing 
E, and y2 by making MO a sufficiently large number. MO 
is used here for the purpose of analysis only. It is not a 
design parameter. 

3.2. Control law synthesis. The local control law de- 
veloped is the same as that in Zhang and Ioannou (1995) 
where the backstepping technique was employed. For the 
completeness of this paper, we now present the control 
law. 

Let 

C$ = [<;-‘.‘,..., <;‘,o,u~-‘~‘,..., $‘I 

and define 

(27) 

(29) 

where e,,. is the tracking error 

cl, ,,, = -)(I - y*. 

Then crf,z: are iteratively generated through the following 
equations: 

Zf = 11, - a, , m,.k k-l 
(30) 

(32) 

where k = 1,2 ,..., n:, ,rp = 0 and 

“I “2 

IlAlle = ~~I4 
,=],=I 

where a,, is the (i.,j) element of A E DB”l’“2. 

The local control signal u, is set to be z:*, i.e., 

* 
u, = fX: . (34) 

Remark 3.2. From (16), (18) and (34), we note that each 
local adaptive controller only employs the local measure- 
ments in the subsystem it controls. This is in contrast 
with some decentralized adaptive control schemes which 
require the information exchange among subsystems, see, 
for example, Hill et al. (1988) and Datta and Ioannou 
(1991, 1992). 

4. Stability analysu 
The decentralized adaptive control system designed is 

now analyzed in this section. From (29). we have 

yI = s:,l + y: + t/l + wTd,. (35) 

Also, following the derivation in Zhang and Ioannou 
(1995) gives 

I 

+:,&,V,] + E;G:;fi,u, + G;d, + fi:=, (36) 
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where ff,j = I,2 ,..., n:,fi:; are some bounded functions 
and G; is defined as 

squaring both sides of (41), we get, 

p?(t) I c~Mo2 + c~~e-““+“{[(li: )2 + (&, J2]pf(7) 

10 
n,+m,--I 

G/ = c P! 
Dk 

k=O F,(D)&(D) 
(37) 

for some bounded functions pf. 
In the following analyses, all cI, i = 1,2,. . . denote 

generic positive constants without further clarification. 
Define 

Then the following result can be obtained. 

Lemma 4.1. Under the conditions of Lemma 3.1.1, we 
have 

for constants k,,: 1 > 0, & I > 0, and 

llY:ll= 2 
+y2(t -CO,, +Ly,2 - 

( ) m,(t) ’ 
(39) 

where k,_,2 and &,,.,z are positive constants 

Proof: The results can be established by following similar 
analysis to Wen and Soh (1995). cl 

From Lemma 4.1, the stability of the system can be 
established under a special case. This is presented in the 
following lemma. 

c3kuy,z(?j; + y;, < 09 (46) 

with y;, y; depending on E; and 6*. Clearly, cl and c2 
are independent of E if E is replaced by its bound ET, a 
generic constant satisfying (46). q 

To establish the stability result for the general case, we ex- 
plore the parameter estimator further and this gives Lemma 
4.3 as follows. 

Lemma 4.2. Suppose that p!(tp) = MO and for all t > tp 
,ol(t) > MO, su~~<,<~~~(r) = pi(t) and su~,,,,,~,(r) I 
pi(t) for all j # i. Then consider the decentralized adap- 
tive system consisting of local estimators (16HlS) and 
controllers (34). Under Assumptions 2.1, there exists a 
constant a; such that for all E < E; the closed-loop sys- 
tem ensures that 

Lemma 4.3. If p,(tp) = MO, p,(t) > MO for all t 2 tp, and 

sup,,,,,p,(t) 5 dm for all t E [O,tr] and j = 

L2,. ..,m, and SUP,,,,,P~~) = ,dth sup,,,,,p,(~) I 

supO<r<,P,(r),Vj # i for all t 2 tr, then 

sup p[(z) 5 M Vi = 1,2,. ,m, (40) 
O<T<l 

where A4 = dn. 

(47) 

Proof. From the definition of p,(t), we have 

pi(t) = e -““‘-‘~‘,l(r~) + je-“I”-“(]u,(r)] + ]yl(r)])dr 
10 

j@:(r))’ + (&,y,W%z 5 ku,2(k2 + I,(t - t;, 
to 

2 

5 MO + ~e-o”‘-r’ {[lt;f I + kL IlPdT) + I4 I + I&i I 
to 

+Y2(t - tP))+ L2 "y"'m 

( > 
-&-qq for t > to - I’ (48) 

St , 

where 

+ly:l + lG:dt + G:y: + fi:: I}dr. (41) 

Suppose that the intermediate number MO is also such that 

Ilv:IIDi+llGPd~+GP.I):+~::l/ociMo 
foralli= 1,2 ,..., m. 

y, = [kl + 2E(fi + &l&(&Y + VW. (49) 

Proof: By noting the condition of the lemma and using 
(13), we have 

bwl 0 
m,,(t)lE(&f&)f6 v’tE[t,,tll. (50) 

Clearly, sufh an MO always exists for any bounded y:, 

d, and #Fj:’ . 
Then the results can be established by following similar 

Now applying the Schwarz inequality and analyses as in Lemmas 3.1 and 4.1. q 

+[lu^l' I + I&n II* + &}dr (42) 

where o = min{crr, 02,. , cr,}.Multiplying both sides of 
(42) by euf gives 

e”‘pf(t) I s;(t) + cs je”‘pf(r)[(fi; )2 + (&, )21dr, (43) 
10 

where 

sf(t) = e”‘csM~ + cs~e”‘[(]z?I + I&I.y, l)2 + Ml]dr. (44) 
10 

Then applying the Bellman-Grownwall lemma to (43) and 
;t~~s Lemma 4.2 with the fact that I]y: IIM/ms,(tf) 5 1 

for E 5 ET and 6 < 6’ where ET and 6’ are sufficiently 
small constants satisfying 
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Remark 4.1. (i) Note that the properties in the above 
lemma is quite similar to Lemma 4.1 except that the con- 
stants cl and cz appear here. 

(ii) All the generic constants in Lemmas 3.1, 4.1 and 
4.3 are uniform for i = 1,2,. , m. 

From Lemma 4.3, we get our main stability result as 
stated in the followmg theorem. 

Theorem 4.1. Consider the decentralized adaptive system 
consisting of plant (1 ), local adaptive controllers (16), 
(18) and (34). Under Assumntion 2.1. there exists a con- 
&ant a* such’that for all E S-E*, 

(i) The closed loop system is globally stable in the 
sense that all signals remain bounded Vt for all finite ini- 
tial states, any bounded y!* and arbitrarily bounded exter- 
nal disturbances; 

(ii) The tracking error e,,!,(t) satisfies 

jez,!(z)dr < 81 +Bz(E+~o)(~ - t:) for all tp > 0,(51) 
10 

where /i’r. /I? are constants. 

Proof. (i) To show the boundedness of all the trajectories 
pl.i = 1.2 ,.... m, we consider a function p(t) defined as 

p(t) = max{pi(tXp2(r),...,pmo). (52) 

Clearly, the result is proved if p(t) is bounded. It can be 
noted that p(t) is continuous and thus, starting with zo = 0 
and li = 1.2,. , we can divide the time axis [0, co) into 
the following two subsequences: 

where 

rW, = {tip(t) < MO} and R: = {tip(t) > MO}, (53) 

i.e., 

10, K ) = (UE, RF) u (u:, Rl’) . (54) 

p(t) can be ensured to be bounded if it is bounded in 
[W:,Vk 2 1. This can be shown through induction. Thus 
we consider t E iw: first. From the continuity of p(t), 
3t1 E W; and an i E { 1,2.. . . , m} such that SU~~<,<~~(T) = 

p(t) and p(t) = p,(t) for all t 5 tl and t E R:. Thus 
supo<,<,p~(7) = p,(t) and sup 0<,9P,(7) I suPo<,<rP,(r) 
Vj # i for all t 5 ti and t E R:. Therefore, the con- 
ditions of Lemmas 3.1, 4.1 and 4.2 are satisfied for all 
t < tl and t E I@. Then using Lemma 4.2 and noting 
that pl(sl) = p(si ) = MO, we can show that for t < tl 
and all .s 2 ~7, 

(55) 

i.e., 

sup pi(t) 5 M ‘di = 1,2,.. ..m. (56) 
o<r<r 

If the conditions of Lemma 3.1 are violated for t 2 ti and 
t E R:, the following two possibilities may occur to p(t). 

Case 1: s~P~~~~,P(~) = p(t) but p(t) = p,(t), j E 

{1,2 ,..., m} \i for all t > tl. 
In this case, the condition that ~up~<,<~~,(r) 5 supO<,<, 

p,(r), t?j # i cannot be satisfied. Thus Lemma 4.2 can- 
not be applied for t > tl. However, we now consider 
p,(t). Clearly, there exists a t: such that p,(tj) = MO and 

p,(t) > MO for all t E [t,!.ti] c iw:. Also in this case, we 
have 

sup ~~(7) = p,(t) and sup P,(7) 5 sup p,(r) 
OS& OST<C O<T<i 

Vi/j and t>ti. (57) 

Thus from (56) and (57), Lemma 4.3 can be applied to 
p,(t) for t 2 t,!. Then following the same steps as in the 
proof of Lemma 4.2 and applying Lemma 4.3 with ‘initial 
condition’ p,(tj) = MO, we shall obtain (55) or (56) for 
t 2 tl and all E < a*, where 

E--fi:&. (58) 

Case 2: SU~~~,~~P(T) # p(t) for t E [tl,tz] c rW7 and 

supo<,4(7) = p(t) for t > h. 

In this case, the condition that sup,,,,,p,(7) = p,(r) 

cannot be satisfied for t > tl. However, (55) or (56) 
automatically holds for t E [TV, t2]. If t2 is infinite, the 
result is proved. For a finite t2 and when t > t2, (55) 
or (56) can be shown under the condition (58) by us- 
ing Lemma 4.3 and following the same argument as m 
Case 1. 

In this way, the boundedness of p is established over 
rw:. 

Now assuming (55) or (56) holds Vt E Rl, it can be 
shown that, by following the proof of Lemma 4.2 and 
the above argument, (55) is also true Vt E IQ:+, from 

Lemma 4.3 with the ‘initial condition’ Iipl(t,Pi’)II = hfo 
with p E { 1,2,. . , } and ty’l E rW:+, 

After establishing the boundedness of p,( t),Vi = 1,2,. , 
m, we can have w!(t), S,(tLr,(t), rll(tXe,(t),.vl(t) and u,(t) 
bounded. 

(ii) Now note that 

e,, )i =: b *yz,’ + 4, + f$B,. (59) 

Once the boundedness of all the signals is established, 

then for all tp > 0, Lemma 3.1 hold, and z,‘, q, and c.$& 

have the same properties as w~&/m,, Thus (5 1) can be 
obtained. q 

Remark 4.2. (i) Two of the key points which enable us 
to prove the stability result are the use of the intermediate 
number MO and the division of the time interval into R- 

and R+. This ensures that the ‘initial condition’ p,(f+’ ) = 
MO for all p = 1,2 ,... and i = 1,2 ,..., m. 

(ii) If the subsystem i is decoupled from the others and 
it has no modeling error, then e,,,., E L2. From (59), J’J, 
is shown to be bounded as Ft* is bounded. It follows that 
e,,; + 0 as t ---t co. 

(iii) In Wen (1994), the strength of the unmodeled in- 
teractions can be allowed arbitrarily large. However, the 
interactions should satisfy certain structural condition. In 
this paper, such a structural condition has been relaxed. 
But the interactions should satisfy a more conservative 
condition (58), which implies the interactions should be 
sufficiently weak. 

5. Conclusions 
In this paper, a scheme for designing decentralized 

adaptive controllers using the techniques of integrator back- 
stepping is presented. With the local normalization sig- 
nals introduced in this paper, the structural conditions on 
subsystem interactions of earlier schemes using similar 
techniques can be removed. The tracking problem and the 
effects of bounded external disturbances are also consid- 
ered. It has been shown that global stability of the over- 
all adaptive feedback system can be ensured provided the 
strength of the interactions and subsystem unmodeled dy- 
namics is sufficiently weak. For each subsystem, the effect 
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of the modeling error, including interactions from other 
subsystems, can be allowed to have infinite memory. De- 
spite the modeling error, we have shown that small in the 
mean tracking er?or can be achieved. If a subsystem is 
decoupled fiorn the rest and has no local unmodeled dy- 
namics and disturbances, perfect tracking of a reference 
trajectory in that subsystem is ensured. 
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