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a b s t r a c t

So far there is still no result available for backstepping based decentralized adaptive stabilization
of unknown systems with interactions directly depending on subsystem inputs, even though such
interactions commonly exist in practice. In this paper, we provide a solution to this problem by
considering both input and output dynamic interactions. To clearly illustrate our approaches, we will
start with linear systems and then extend the results to nonlinear systems. Each local controller, designed
simply based on the model of each subsystem by using the standard adaptive backstepping technique
without any modification, only employs local information to generate control signals. It is shown
that the designed decentralized adaptive backstepping controllers can globally stabilize the overall
interconnected system asymptotically. The L2 and L∞ norms of the system outputs are also established
as functions of design parameters. This implies that the transient system performance can be adjusted by
choosing suitable design parameters.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the control of uncertain complex interconnected systems,
decentralized adaptive control technique is an efficient and
practical strategy to be employed for many reasons such as ease
of design, familiarity and so on. However, simplicity of the design
makes the analysis of the overall designed system quite difficult.
Thus the obtained results with rigorous analysis are still limited.
Based on conventional adaptive approach, several results on global
stability and steady state tracking were reported, see for examples
Datta and Ioannou (1992), Ioannou (1986), Ortega and Herrera
(1993), Wen (1995), Wen and Hill (1992), and Wen and Soh
(1999). However, transient performance is not ensured and non-
adjustable by changing design parameters due to the methods
used.
Since backstepping technique was proposed, it has been widely

used to design adaptive controllers for uncertain systems (Krstic,
Kanellakopoulos, & Kokotovic, 1995). This technique has a number
of advantages over the conventional approaches such as providing
a promising way to improve the transient performance of adaptive

I This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Gang Tao under
the direction of Editor Miroslav Krstic.
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systems by tuning design parameters. Because of such advantages,
research on decentralized adaptive control using backstepping
technique has also received great attention. InWen (1994), the first
result on decentralized adaptive control using such a technique
was reported without restriction on subsystem relative degrees.
More general class of systemswith the consideration of unmodeled
dynamics was studied in Wen and Soh (1997) and Zhang, Wen,
and Soh (2000). In Jiang (2000) and Jain and Khorrami (1997),
nonlinear interconnected systems were addressed. In Jiang and
Repperger (2001) and Liu and Li (2002), decentralized adaptive
stabilization for nonlinear systems with dynamic interactions
depending on subsystem outputs or unmodeled dynamics is
studied. In Wen and Zhou (2007), systems with non-smooth
hysteresis nonlinearities and higher order nonlinear interactions
were considered and in Liu, Zhang, and Jiang (2007) results for
stochastic nonlinear systems were established. More recently, a
result on backstepping adaptive tracking was established in Zhou
and Wen (2008). However, except for Jiang and Repperger (2001),
Wen and Soh (1997) and Zhang et al. (2000), all the results are
only applicable to systems with interaction effects bounded by
static functions of subsystem outputs. This is restrictive as it is
a kind of matching condition in the sense that the effects of all
the unmodeled interactions to a local subsystem must be in the
range space of the output of this subsystem. Note that in Wen
and Soh (1997) only the local control laws are obtained using the
backstepping technique, while local parameter estimators are still
designed using the conventional gradient type of approaches. Thus
transient performance of the adaptive systems is not established.
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y(t) =


G1(p)+ ν11H11(p) . . . ν1NH1N(p)

ν21H21(p) . . . ν2NH2N(p)
...

. . .
...

νN1HN1(p) . . . GN(p)+ νNNHNN(p)

 u(t)+

µ11∆11(p) . . . µ1N∆1N(p)
µ21∆21(p) . . . µ2N∆2N(p)

...
. . .

...
µN1∆N1(p) . . . µNN∆NN(p)

 y(t)
Box I.

In Jiang and Repperger (2001) and Zhang et al. (2000), the
interactions are not directly depending on subsystem inputs.
In practice, an interconnected system unavoidably has dynamic

interactions involving both subsystem inputs and outputs. Es-
pecially, dynamic interactions directly depending on subsystem
inputs commonly exist. For example, the non-zero off-diagonal el-
ements of a transfer function matrix represent such interactions.
So far there is still no result reported to control systems with in-
teractions directly depending on subsystem inputs even for the
case of static input interactions by using the backstepping tech-
nique. This is due to the challenge of handling the input vari-
ables and their derivatives of all subsystems during the recursive
design steps. In this paper, we will use the backstepping design
approach in Krstic et al. (1995) to design decentralized adaptive
controllers for both linear and nonlinear systems having such in-
teractions. It is shown that the designed controllers can globally
stabilize the overall interconnected system asymptotically. This
reveals that the standard backstepping controller offers an addi-
tional advantage to conventional adaptive controllers in term of
its robustness against unmodeled dynamics and interactions. For
conventional adaptive controllers without any modification, they
are non-robust as shown by counter examples in Rohrs, Valavani,
Athans, and Stein (1982). Besides global stability, the L2 and L∞
norms of the systemoutputs are also shown to be boundedby func-
tions of design parameters. Thus the transient system performance
is tunable by adjusting design parameters. To achieve these results,
two key techniques are used in our analysis. Firstly, we transform
the dynamic interactions from subsystem inputs to dynamic in-
teractions from subsystem states. Secondly, we introduce two dy-
namic systems associated with interaction dynamics. In this way,
the effects of unmodeled interactions are bounded by static func-
tions of the state variables of subsystems. To clearly illustrate our
approach, we will start with linear systems involving block dia-
gram manipulation. Then the obtained results are generalized to
nonlinear systems.

2. Modeling of linear interconnected systems

To show our ideas, we first consider linear systems consisting
of N interconnected subsystems described in Box I, where u ∈ RN
and y ∈ RN are inputs and outputs respectively, p denotes the
differential operator ddt , Gi(p), Hij(p) and ∆ij(p), i, j = 1, . . . ,N ,
are rational functions of p, νij and µij are positive scalars. With
p replaced by s, the corresponding Gi(s),Hij(s) and ∆ij(s) are
the transfer functions of each local subsystem and interactions,
respectively.
A block diagram including the ith and jth subsystems is shown

in Fig. 1.

Remark 1. νijHij(p)uj(t) and µij∆ij(p)yj(t) denote the dynamic
interactions from the input and output of the jth subsystem to
the ith subsystem for j 6= i, or unmodeled dynamics of the ith
subsystem for j = i with νij and µij indicating the strength of the
interactions or unmodeled dynamics. Such interactions are rather
general. However there is no result on decentralized backstepping
adaptive control applicable to interactions directly from the inputs
when using the backstepping technique.

Fig. 1. Block diagram including the ith and jth subsystems.

For the system, we have the following assumptions.

Assumption 2.1. For each subsystem,

Gi(s) =
Bi(s)
Ai(s)

=
bi,mis

mi + · · · + bi,1s+ bi,0
sni + ai,(ni−1)sni−1 + · · · + ai,1s+ ai,0

(1)

where ai,j, j = 0, . . . , ni − 1 and bi,k, k = 0, . . . ,mi are unknown
constants, Bi(s) is a Hurwitz polynomial. The order ni, the sign of
bi,mi and the relative degree ρi (=ni −mi) are known;

Assumption 2.2. For all i, j = 1, . . . ,N , ∆ij(s) is stable, strictly
proper and has a unity high frequency gain, andHij(s) is stablewith
a unity high frequency gain and its relative degree is larger than ρj.

The block diagram in Fig. 1 can be transformed to Fig. 2. Clearly, the
ith subsystem has the following state space realization:

ẋi = Aixi − aixi,1 +
[
0
bi

]
ui (2)

yi = xi,1 +
N∑
j=1

νij
Hij(p)
Gj(p)

xj,1 +
N∑
j=1

µij∆ij(p)yj, (3)

where

Ai =
[
0ni−1 Ini−1
0 0Tni−1

]
ai = [ai,(ni−1), . . . , ai,0]

T, bi = [bi,mi , . . . , bi,0]
T (4)

where 0ni−1 ∈ R
(ni−1). In the design of a local controller for the ith

subsystem, we only consider transfer function Gi(s), i.e,

ẋi = Aixi − aixi,1 +
[
0
bi

]
ui (5)

yi = xi,1, for i = 1, . . . ,N. (6)
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Fig. 2. Transformed block diagram of Fig. 1.

But in analysis, we will also take into account the effects of the
unmodeled interactions and subsystem unmodeled dynamics, i.e.

N∑
j=1

νij
Hij(p)
Gj(p)

xj,1 +
N∑
j=1

µij∆ij(p)yj. (7)

Remark 2. It is clear that the effect of the dynamic interactions or
unmodeled dynamics given in (7) cannot be bounded by functions
of the outputs yj, j = 1, 2, . . . ,N , as assumed in the previouswork.
Instead, based on the given assumptions, it satisfies,∣∣∣∣∣ N∑
j=1

νij
Hij(p)
Gj(p)

xj,1 +
N∑
j=1

µij∆ij(p)yj

∣∣∣∣∣
≤ c0,i +

N∑
j=1

c1,ij sup
0≤τ≤t

|xj,1(τ )| +
N∑
j=1

c2,ij sup
0≤τ≤t

|yj(τ )|

for i = 1, . . . ,N (8)

for some constants c0,i, c1,ij, and c2,ij. The above bound involves
infinite memory of state xj,1 depending on inputs uj and outputs yj,
which makes the analysis of decentralized backstepping adaptive
control systems difficult. This is the main reason why there
is still no result available for such a class of systems, due to
the requirement of changing coordinates and handling the input
variables and their derivatives during the recursive design steps.

Note that in our analysis given in Section 3, bound (8) will not
be used. Instead, we will consider signals generated from two
dynamic systems related to interactions or unmodeled dynamics
to bound the effect.
Our problem is formulated to design decentralized controllers

only using local signals to ensure the stability of the overall
interconnected system and regulate all the subsystem outputs to
zeros. The system transient performance should also be adjustable
by changing design parameters in certain sense.

3. Decentralized adaptive control of linear systems

3.1. Decentralized state estimation filters

We only present the decentralized adaptive controllers de-
signed using the standard backstepping technique in Krstic et al.
(1995), without giving the details. Firstly, a local filter using only

local input and output is designed to estimate the states of each
unknown local system as follows:

λ̇i = Ai,0λi + eni,niui (9)

η̇i = Ai,0ηi + eni,niyi (10)

vi,k = (Ai,0)kλi, k = 0, . . . ,mi (11)

ξi,ni = −(Ai,0)
niηi (12)

where Ai,0 = Ai − ki(eni,1)
T, the vector ki = [ki,1, . . . , ki,ni ]

T is
chosen so that the matrix Ai,0 is Hurwitz, and ei,k denotes the kth
coordinate vector in Ri. Hence there exists a Pi such that PiAi,0 +
Ai,0PTi = −Ini , Pi = P

T
i > 0. With these designed filters our state

estimate is given by

x̂i = ξi,ni +Ω
T
i θi (13)

where

θTi = [b
T
i , a

T
i ] (14)

ΩTi = [vi,mi , . . . , vi,1, vi,0,Ξi] (15)

Ξi = −[(Ai,0)ni−1ηi, . . . , Ai,0ηi, ηi]. (16)

Note that

ξ̇i,ni = −(Ai,0)
ni
(
Ai,0ηi + eni,niyi

)
= Ai,0ξi,ni + kiyi (17)

Ξ̇i = −[(Ai,0)ni−1η̇i, . . . , Ai,0η̇i, η̇i]
= −[(Ai,0)ni−1, . . . , Ai,0, Ini ](Ai,0ηi + eni,niyi)
= Ai,0Ξi − Iniyi (18)

v̇i,k = Ai,0vi,k + eni,ni−kui, k = 0, . . . ,mi. (19)

Then from (13), the derivative of x̂i is given as

˙̂xi = ξ̇i,ni + Ω̇
T
i θi

= Ai,0ξi,ni + kiyi + Ai,0[vi,mi , . . . , vi,1, vi,0,Ξi]θi
− Iniyiai + [0, b

T
i ]
Tui

= Ai,0x̂i − (ai − ki)yi + [0, bTi ]
Tui. (20)

From (2) and (20) the state estimation error εi = xi − x̂i satisfies

ε̇i = Ai,0εi + (ai − ki)

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)yj

)
. (21)

Now we replace (2) with a new system, whose states depend on
those of filters (9)–(12) and thus are available for control design,
as follows:

ẏi = bi,mivi,(mi,2) + ξi,(ni,2) + δ̄
T
i θi + εi,2

+ (s+ ai,(ni−1))

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)yj

)
(22)

v̇i,(mi,q) = vi,(mi,q+1) − ki,qvi,(mi,1) q = 2, . . . , ρi − 1 (23)

v̇i,(mi,ρi) = vi,(mi,ρi+1) − ki,ρivi,(mi,1) + ui (24)

where

δTi = [vi,(mi,2), vi,(mi−1,2), . . . , vi,(0,2),Ξi,2 − yi(eni,1)
T
] (25)

δ̄Ti = [0, vi,(mi−1,2), . . . , vi,(0,2),Ξi,2 − yi(eni,1)
T
] (26)

and vi,(mi,2), εi,2, ξi,(ni,2),Ξi,2 denote the second entries of vi,mi , εi,
ξi,ni ,Ξi respectively.
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Fig. 3. Control block diagram.

Remark 3. The output signals λi, ηi, vi,k, ξi,ni of filters (9)–(12) are
available for feedback. They are also used to generate an estimate
x̂i of system states xi in (13), with an estimation error given by
(21). The error will converge to zero in the absence of interactions
and unmodeled dynamics. However, the estimate x̂i is not used
in the controller design because it involves unknown parameter
vector θi which is unavailable. But the state estimation error in
(21) will be considered in system analysis, as it may not converge
to zero unconditionally due to its dependence on interactions and
unmodeled dynamics in our case. A block diagram is given in Fig. 3
to show the signal flow of the filters to the controller of the ith
subsystem.

3.2. Design of decentralized adaptive controllers

As usual in backstepping approach (Krstic et al., 1995), the
following change of coordinates is made.

zi,1 = yi (27)

zi,q = vi,(mi,q) − αi,(q−1), q = 2, 3, . . . , ρi. (28)

To illustrate the controller design procedures, we now give a brief
description on the first step.
Step 1: From (22), (27) and (28), we have

żi,1 = bi,mi(zi,2 + αi,1)+ ξi,(ni,2) + δ̄
T
i θi + εi,2

+ (s+ ai,(ni−1))

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)yj

)
. (29)

The virtual control law αi,1 is designed as

αi,1 = p̂iᾱi,1 (30)

ᾱi,1 = −ci1zi,1 − li1zi,1 − ξi,(ni,2) − δ̄
T
i θ̂i (31)

where ci1, li1 are positive constants, p̂i is an estimate of pi = 1/bi,mi
and θ̂i is an estimate of θi. Note that

bi,miαi,1 = bi,mi p̂iᾱi,1 = ᾱi,1 − bi,mi p̃iᾱi,1 (32)

δ̄Ti θ̃i + bi,mizi,2 = δ̄Ti θ̃i + b̃i,mizi,2 + b̂i,mizi,2
= (δTi − p̂iᾱi,1e(ni+mi+1),1)

Tθ̃i + b̂i,mizi,2 (33)

where b̂i,mi is an estimate of bi,mi , b̃i,mi = bi,mi − b̂i,mi , p̃i = pi − p̂i
and θ̃i = θi − θ̂i. Then we have

żi,1 = −ci1zi,1 − li1zi,1 − bi,mi p̃iᾱi,1 + b̂i,mizi,2 + εi,2
+ (δi − p̂iᾱi,1e(ni+mi+1),1)

Tθ̃i + (s+ ai,(ni−1))

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)yj

)
. (34)

We now define a function Vi1 as

Vi1 =
1
2
(zi,1)2 +

1
li1
εi
TPiεi +

1
2
θ̃Ti Γ

−1
i θ̃i +

|bi,mi |
2γ ′i

p̃2i (35)

where Γi is a positive definite design matrix and γ ′i is a positive
design parameter. Then

V̇i1 = −ci,1(zi,1)2 −
li1
2
(zi,1)2 + b̂i,mizi,1zi,2

− |bi,mi |p̃i
1
γ ′i
[γ ′i sgn(bi,mi)ᾱi,1zi,1 +

˙̂pi]

+ θ̃Ti Γ
−1
i [Γi(δi − p̂iᾱi,1e(ni+mi+1),1)zi,1 −

˙̂
θ i] −

li1
2
(zi,1)2

+ εi,2zi,1 −
1
li1
‖εi‖

2
+ zi,1(s+ ai,(ni−1))

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)
−
2
li1
(ai − ki)TPiεi

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)
. (36)

To handle the unknown indefinite p̃i, θ̃i-terms in (36), we choose
the update law of p̂ and a tuning function τi,1 as

˙̂pi = −γ
′

i sgn(bi,mi)ᾱi,1zi,1 (37)

τi,1 = (δi − p̂iᾱi,1e(ni+mi+1),1)zi,1. (38)
It follows that

V̇i1 ≤ −ci,1(zi,1)2 −
li1
2
(zi,1)2 −

1
2li1
‖εi‖

2
+ b̂i,mizi,1zi,2

+ θ̃Ti Γ
−1
i [Γiτi,1 −

˙̂
θ i] + zi,1(s+ ai,(ni−1))

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)
−
2
li1
(ai − ki)TPiεi

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)
. (39)

After going through design steps q for q = 2, . . . , ρi as in Krstic
et al. (1995), we have the ith local controller
ui = αi,ρi − vi,(mi,ρi+1) (40)
where αi,1 is designed in (30) and

αi,2 = −b̂i,mizi,1 −

[
ci2 + li2

(
∂αi,1

∂yi

)2]
zi,2 + B̄i,2

+
∂αi,1

∂ p̂i
˙̂pi +

∂αi,1

∂θ̂i
Γiτi,2 (41)

αi,q = −zi,(q−1) −

[
ciq + liq

(
∂αi,(q−1)

∂yi

)2]
zi,q + B̄i,q

+
∂αi,(q−1)

∂ p̂i
˙̂pi +

∂αi,(q−1)

∂θ̂i
Γiτi,q

−

(
q−1∑
k=2

zi,k
∂αi,(k−1)

∂θ̂i

)
Γi
∂αi,(q−1)

∂yi
δi

q = 3, . . . , ρi (42)
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B̄i,q =
∂αi,(q−1)

∂yi
(ξi,(ni,2) + δ

T
i θ̂i)

+
∂αi,(q−1)

∂ηi
(Ai,0ηi + eni,niyi)+ ki,qvi,(mi,1)

+

mi+q−1∑
j=1

∂αi,(q−1)

∂λi,j
(−ki,jλi,1 + λi,(j+1))

q = 2, . . . , ρi, i = 1, . . . ,N (43)

where Γi is a positive definite matrix and ciq, liq, γ ′i are positive
constants. With τi,1 in (38), other tuning functions τi,q for q =
2, . . . , ρi are given as

τi,q = τi,(q−1) −
∂αi,(q−1)

∂yi
δizi,q. (44)

Then parameter update law θ̂i is designed to be

˙̂
θ i = Γiτi,ρi . (45)

The designed controller for the ith subsystem only uses the local
signals, as shown in its block diagram Fig. 3.

3.3. Stability analysis

We define zi(t) = [zi,1, zi,2, . . . , zi,ρi ]
T. The ith subsystem (2)

and (3) subject to local controller (40) is characterized by

żi = Azizi +Wεiεi,2 +W Tθ iθ̃i − bi,mi ᾱi,1p̃ieρi,1

+Wεi

[
(s+ ai,(ni−1))

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1

+

N∑
j=1

µij∆ij(s)yj
Hij(s)
Gj(s)

)]
(46)

where Azi is a matrix having the similar structure to the scalar
systems given in Krstic et al. (1995) (see box II),

Wεi =

[
1,−

∂αi,1

∂yi
, . . . ,−

∂αi,(ρi−1)

∂yi

]
, (47)

W Tθ i = Wεiδ
T
i − p̂iᾱi,1eρi,1eρi,1

T, (48)

where the termsσi,(k,q) are due to the terms
∂αi,(k−1)

∂θ̂i
Γi(τi,q−τi,(q−1))

in the zi,q equation.
With respect to (46), we consider a function Vρi defined as:

Vρi =
ρi∑
q=1

(
1
2
(zi,q)2 +

1
liq
εi
TPiεi

)
+
1
2
θ̃Ti Γ

−1
i θ̃i +

|bi,mi |
2γ ′i

p̃2i . (49)

From (21) and (22) and the designed controllers (40)–(45), it can
be shown that the derivative of Vρi satisfies

V̇ρi =
ρi∑
q=1

zi,qżi,q − θ̃Ti Γ
−1 ˙̂θ i −

|bi,mi |
γ ′i
p̃i ˙̂pi

−

ρi∑
q=1

1
liq
‖εi‖

2
− 2

ρi∑
q=1

1
liq
(ai − ki)TPiεi

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)yj

)

≤ −

ρi∑
q=1

ciq(zi,q)2 −
ρi∑
q=2

liq
2

(
∂αi,(q−1)

∂yi

)2
(zi,q)2

−

ρi∑
q=1

1
2liq
‖εi‖

2
−

ρi∑
q=2

zi,q
∂αi,(q−1)

∂yi
εi,2

−
li1
2
(zi,1)2 + zi,1(s+ ai,(ni−1))

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1

+

N∑
j=1

µij∆ij(s)zj,1

)
−

ρi∑
q=2

[
liq
2

(
∂αi,(q−1)

∂yi

)2
(zi,q)2

+ zi,q
∂αi,(q−1)

∂yi
(s+ ai,(ni−1))

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1

+

N∑
j=1

µij∆ij(s)zj,1

)]
−

ρi∑
q=1

[
1
2liq
‖εi‖

2

+ ΦTi εi

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)]

≤ −

ρi∑
q=1

ciq(zi,q)2 +
ρi∑
q=1

1
liq
(s+ ai,(ni−1))

2Li

−

ρi∑
q=1

1
4liq
‖εi‖

2
+

ρi∑
q=1

2‖Φi‖2liqLi (50)

where

ΦTi =
2
liq
(ai − ki)TPi (51)

Łi =

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1

)2
+

(
N∑
j=1

µij∆ij(s)zj,1

)2
. (52)

To deal with the dynamic interaction or unmodeled dynamics,
we show that their effects can be bounded by static functions of
system states, as given in Lemma 1 later. Let hi,j and gi,j be the state
vectors of systems with transfer functions Hij(s)G−1j (s) and ∆ij(s),
respectively. They are given by

ḣi,j = Bhi,jhi,j + bhi,jxj,1

Hij(s)G−1j (s)xj,1 = (1, 0, . . . , 0)hi,j (53)

ġi,j = Agi,jgi,j + bgi,jyj
∆ij(s)yj = (1, 0, . . . , 0)gi,j (54)

where Agi,j and Bhi,j are Hurwitz because ∆ij(s), Hij(s) and B−1j (s)
are stable from Assumptions 2.1 and 2.2. It is obvious that∥∥∆ij(s)yj∥∥2 ≤ ‖χ‖2 (55)∥∥∥∥∥ N∑
j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2

≤ ki0‖χ‖2 (56)

where χ = [χT1 , . . . , χ
T
N ]
T and χi = [zTi , ε

T
i , η̃

T
i , ζ

T
i , hi,1

T, . . . ,

hi,N T, gi,1T, . . . , gi,N T]T.
We also have∥∥∥∥∥(s+ ai,(ni−1)) N∑

j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2

=

∥∥∥∥∥ N∑
j=1

(1, 0, . . . , 0)ḣi,j

+ ai,(ni−1)
N∑
j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2

=

∥∥∥∥∥
(
N∑
j=1

(1, 0, . . . , 0)[Bhi,jhi,j + bhi,jxj,1]

+ ai,(ni−1)

)
N∑
j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2
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≤ ki1
N∑
j=1

‖xj,1‖2 + ki2‖χ‖2
∥∥∥∥∥(s+ ai,(ni−1)) N∑

j=1

∆ij(s)yj

∥∥∥∥∥
2

(57)

=

∥∥∥∥∥ N∑
j=1

(1, 0, . . . , 0)[Agi,jgi,j + bgi,jyj]

+ ai,(ni−1)
N∑
j=1

∆ij(s)yj

∥∥∥∥∥
2

≤ ki3‖χ‖2 (58)

where ki0, ki1, ki2 and ki3 are constants. It is clear from (3) and (27)
that

xi,1 = zi,1 −
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 −
N∑
j=1

µij∆ij(s)yj. (59)

Thus∥∥∥∥∥(s+ ai,(ni−1)) N∑
j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2

≤

[
ki4 + 2

(
max
1≤,i,j≤N

{ν2ij } + max
1≤,i,j≤N

{µ2ij}

)
ki4

]
‖χ‖2 (60)

where ki4 = max{ki2 + 2ki1, 2ki1, 2ki1ki0} are constants and
independent of µij and νij.
Then we can get the following lemma.

Lemma 1. The effects of the interactions and unmodeled dynamics
are bounded as follows∥∥∥∥∥ N∑
j=1

∆ij(s)zj,1

∥∥∥∥∥
2

≤ ‖χ‖2 (61)

∥∥∥∥∥ N∑
j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2

≤ ki0‖χ‖2 (62)

∥∥∥∥∥(s+ ai,(ni−1)) N∑
j=1

∆ij(s)zj,1

∥∥∥∥∥
2

≤ ki3‖χ‖2 (63)

∥∥∥∥∥(s+ ai,(ni−1)) N∑
j=1

Hij(s)G−1j (s)xj,1

∥∥∥∥∥
2

≤

[
ki4 + 2

(
max
1≤,i,j≤N

{ν2ij } + max
1≤,i,j≤N

{µ2ij}

)
ki4

]
‖χ‖2. (64)

With these preliminaries established, we can obtain our first main
result stated in the following theorem.

Theorem 1. Consider the closed-loop adaptive system consisting of
the plant in Box I under Assumptions 2.1 and 2.2, the controller
(40), the estimators (37), (45), and the filters (9)–(12). There exists
a constant µ∗ such that for all νij < µ∗ and µij < µ∗, i, j =
1, 2, . . . ,N, all the signals in the system are globally uniformly
bounded and limt→∞ yi(t) = 0.

Proof. To show the stability of the overall system, the state
variables of the filters in (10) and state vector ζi associated with
the zero dynamics of ith subsystems should be considered. Under
a similar transformation as in Wen (1994), these variables can be
shown to satisfy

ζ̇i = Ai,biζi + b̄ixi,1 (65)

˙̃ηi = Ai,0η̃i + eni,nizi,1 (66)

η̇ri = Ai,0η
r
i , η̃i = ηi − η

r
i (67)

where the eigenvalues of the mi × mi matrix Ai,bi are the zeros of
the Hurwitz polynomial Ni(s), b̄i ∈ Rmi .
A Lyapunov function for the ith local system is defined as

Vi = Vρi +
1
lηi
η̃Ti Piη̃i +

1
lζ i
ζ Ti Pi,biζi

+

N∑
j=1

lhijhi,jTPhi,jhi,j +
N∑
j=1

lgijgi,jTPgi,jgi,j (68)

where lηi, lζ i, lhij, lgij are positive constants, and Pi,bi , Phi,j and Pgi,j
satisfy

Pi,biAi,bi + A
T
i,biPi,bi = −Imi (69)

Phi,jBhi,j + BThi,jPhi,j = −Ihij (70)

Pgi,jAgi,j + ATgi,jPgi,j = −Igij . (71)

From Eqs. (3), (50)–(54), (65)–(67) and (69)–(71), we get

V̇i = V̇ρi −
1
lηi
‖η̃i‖

2
+
2
lηi
Piη̃Ti eni,nizi,1 −

1
lζ i
‖ζi‖

2

+
2
lζ i
ζ Ti Pi,bi b̄ixi,1 −

N∑
j=1

lhij‖hi,j‖2 + 2
N∑
j=1

lhijhi,jTPhi,jbhi,jxj,1

−

N∑
j=1

lgij‖gi,j‖2 + 2
N∑
j=1

lgijgi,jTPgi,jbgi,jzj,1

≤ −
1
2
ci1(zi,1)2 −

ρi∑
q=2

ciq(zi,q)2 −
ρi∑
q=1

1
4liq
‖εi‖

2

−
1
2lηi
‖η̃i‖

2
−
1
2lζ i
‖ζi‖

2
−

N∑
j=1

1
2
lhij‖hi,j‖2

−

N∑
j=1

1
2
lgij‖gi,j‖2 +

ρi∑
q=1

1
liq
(s+ ai,(ni−1))

2Li

+

ρi∑
q=1

2‖Φi‖2
1
liq
Li −

1
4lζ i
‖ζi‖

2
−
2
lζ i
ζ Ti Pi,bi b̄i

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)

−

N∑
j=1

[
lhij
4
‖hi,j‖2 + 2lhijhi,jTPhi,jbhi,j

×

(
N∑
j=1

νij
Hij(s)
Gj(s)

xj,1 +
N∑
j=1

µij∆ij(s)zj,1

)]

−
1
8
ci1(zi,1)2 −

N∑
j=1

1
2
lgij‖gi,j‖2 + 2

N∑
j=1

lgijgi,jTPgi,jbgi,jzj,1

−
1
8
ci1(zi,1)2 −

N∑
j=1

lhij
4
‖hi,j‖2 + 2

N∑
j=1

lhijhi,jTPhi,jbhi,jzj,1

−
1
8
ci1(zi,1)2 −

1
2lηi
‖η̃i‖

2
+
2
lηi
Piη̃Ti eni,nizi,1

−
1
8
ci1(zi,1)2 −

1
4lζ i
‖ζi‖

2
+
2
lζ i
ζ Ti Pi,bi b̄izi,1. (72)

Taking

lηi ≥
16‖Pieni,ni‖

2

ci1
, lζ i ≥

32‖Pi,bi b̄i‖
2

ci1
(73)
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lhij ≤
cj1

32N‖Phi,jbhi,j‖2
(74)

lgij ≤
cj1

16N‖Pgi,jbgi,j‖2
(75)

we then obtain

V̇i ≤ −βi‖χi‖2 +

[
ρi∑
q=1

2‖Φi‖2liq +
8
lζ i
‖Pi,bi b̄i‖

2

+ 8
N∑
j=1

lhij‖Phi,jbhi,j‖2
]
Li +

N∑
j=1

1
4N
cj1(zj,1)2

+

ρi∑
q=1

1
liq
(s+ ai,(ni−1))

2Li −
1
2
ci1(zi,1)2

≤ −βi‖χi‖
2
−
1
4
ci1(zi,1)2 + µ2

[
ki6

∥∥∥∥∥ N∑
j=1

Hij(s)
Gj(s)

xj,1

∥∥∥∥∥
2

+

∥∥∥∥∥ N∑
j=1

∆ij(s)zj,1

∥∥∥∥∥
2
+ ki5

∥∥∥∥∥(s+ ai,(ni−1)) N∑
j=1

Hij(s)
Gj(s)

xj,1

∥∥∥∥∥
2

+

∥∥∥∥∥(s+ ai,(ni−1)) N∑
j=1

∆ij(s)zj,1

∥∥∥∥∥
2


−

(
1
4
ci1(zi,1)2 −

N∑
j=1

1
4N
cj1(zj,1)2

)
(76)

where

βi = min

{
ci1
4
, ci2, . . . , ciρi ,

ρi∑
q=1

1
4liq

,
1
2lηi

,
1
2lζ i

,

min
1≤j≤N

{
1
2
lhij,
1
2
lgij

}}
(77)

ki5 =
ρi∑
q=1

1
liq

(78)

ki6 =
ρi∑
q=2

2‖Φi‖2liq +
8
lζ i
‖Pi,bi b̄i‖

2
+ 8

N∑
j=1

lhij‖Phi,jbhi,j‖2 (79)

µ = max
1≤i,j≤N

{µij, νij}. (80)

Now we define a Lyapunov function for the overall decentralized
adaptive control system as

V =
N∑
i=1

Vi. (81)

Using Lemma 1 and (76), we have

V̇ ≤ −
N∑
i=1

[
β − ((1+ ki0)ki6 + (ki3 + ki4)ki5) µ2

− ki4ki5µ4
]
‖χ‖2 −

1
4

N∑
i=1

ci1(zi,1)2 (82)

where

β =

min
1≤i≤N

βi

N
. (83)

By taking µ∗ in Box III, we have V̇ ≤ −
1
4

∑N
i=1 ci1(zi,1)

2.
This concludes the proof of Theorem 1 that all the signals in
the system are globally uniformly bounded. By applying the
LaSalle–Yoshizawa theorem, it further follows that limt→∞ yi(t) =
0 for arbitrary initial xi(0). M

We now derive bounds for system output yi(t) on both L2 and
L∞ norms. Firstly, the following definitions are made.

d0i =
ρi∑
q=1

1
2liq

. (84)

As shown in (82), the derivative of V is given by

V̇ ≤ −
N∑
i=1

1
4
ci1(zi,1)2. (85)

Since V is non-increasing, we have

‖yi(t)‖22 =
∫
∞

0
‖zi,1(t)‖2dt

≤
4
ci1
(V (0)− V (∞)) ≤

4
ci1
(V (0)) (86)

‖yi(t)‖∞ ≤
√
2V (0). (87)

From (67), we can set η̃i(0) = 0 by selecting ηri (0) = ηi(0).
Consider the zero initial values

η̃i(0) = 0, ζi(0) = 0, hi,j(0) = 0, gi,j(0) = 0. (88)

Note that the initial values zi,q(0) depend on ci1, γ ′i , Γi. We can set
zi,q(0), q = 2, . . . , ρi to zero by suitably initializing our designed
filters (9)–(12) as follows:

vi,(mi,q)(0) = αi,(q−1)
(
yi(0), θ̂i(0), p̂i(0), ηi(0),

λi(0), vi,(mi,q−1)(0)
)
, q = 1, . . . , ρi. (89)

By setting η̃i(0) = 0, ζi(0) = 0, hi,j(0) = 0, gi,j(0) = 0 and
zi,q(0) = 0, q = 2, . . . , ρi, we have

V (0) =
N∑
i=1

1
2
(yi(0))2 + d0i ‖εi(0)‖

2
Pi

+‖θ̃i(0)‖2
Γ
−1
i
+
|bi,mi |
γ ′i
|p̃i(0)|2 (90)

where ‖εi‖2Pi = εi
T(0)Piεi(0), ‖θ̃i(0)‖2

Γ
−1
i
= θ̃Ti (0)Γ

−1
i θ̃i(0). Thus

the bounds for yi(t) is established and formally stated in the
following theorem.

Theorem 2. Consider the initial values zi,q(0) = 0, q = 2, . . . , ρi,
η̃i(0) = 0, ζi(0) = 0, hi,j(0) = 0 and gi,j(0) = 0, the L2 and L∞
norms of output yi(t) are given by

‖yi(t)‖2 ≤
2
√
ci1

[
N∑
i=1

1
2
(yi(0))2 + d0i ‖εi(0)‖

2
Pi

+ ‖θ̃i(0)‖2
Γ
−1
i
+
|bi,mi |
γ ′i
|p̃i(0)|2

]1/2
(91)

‖yi(t)‖∞ ≤
√
2

[
N∑
i=1

1
2
(yi(0))2 + d0i ‖εi(0)‖

2
Pi

+ ‖θ̃i(0)‖2
Γ
−1
i
+
|bi,mi |
γ ′i
|p̃i(0)|2

]1/2
. (92)
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Remark 4. Regarding the above bound, the following conclusions
can be drawn by noting that θ̃i(0), p̃i(0), εi(0) and yi(0) are
independent of ci1,Γi, γ ′i .

• The L2 norm of output yi(t) given in (91) depends on the initial
estimation errors θ̃i(0), p̃i(0) and εi(0). The closer the initial
estimates to the true values, the better the transient tracking
error performance. This bound can also be systematically
reduced down to a lower bound by increasing Γi, γ ′i and ci1.
• The L∞ norm of output yi(t) given in (92) depends on the initial
estimation errors θ̃i(0), p̃i(0) and εi(0) and design parameters
Γi, γ

′

i .

4. Decentralized adaptive control of nonlinear systems

In this section, we extend our approach to control a class of
nonlinear interconnected systems.

4.1. Modeling of nonlinear interconnected systems

On the basis of state space realization (2)–(3) for the ith
linear subsystem and the modeling of interaction and unmodeled
dynamics in (53) and (54), the class of nonlinear systems is
described as

ẋi = Aixi + Φi(yi)ai +
[
0
bi

]
σi(yi)ui (93)

yi = xi,1 +
N∑
j=1

νijeT1hi,j(xj,1)+
N∑
j=1

µijeT1gi,j(yj)

for i = 1, . . . ,N (94)

where Ai, ai and bi are defined in (4), xi ∈ Rni , ui ∈ R and yi ∈ R are
states, inputs and outputs respectively,Φi(yi) ∈ Rni×ri arematrices
of nonlinear functions, σi(yi) ∈ R is a nonlinear function, νij
and µij are positive scalars specifying the magnitudes of dynamic
interactions and unmodeled dynamics, hi,j and gi,j are dynamic
interactions or unmodeled dynamics, which are generated by

ḣi,j = fhi,j(hi,j, xj,1) (95)

ġi,j = fgi,j(gi,j, yj). (96)

For such a class of systems, we need the following assumptions.

Assumption 4.1. For each subsystem, ai,j, j = 0, . . . , ni − 1 and
bi,k, k = 0, . . . ,mi are unknown constants. The polynomial Bi(s) =
bi,mis

mi+· · ·+bi,1s+bi,0 is Hurwitz. The sign of bi,mi and the relative
degree ρi(= ni −mi) are known and σi(yi) 6= 0, ∀yi ∈ R;

Assumption 4.2. Functions fhi,j(hi,j, xj,1) and fgi,j(gi,j, yj) are con-
tinuously differentiable nonlinear functions and globally Lipschitz
in xj,1 and yj respectively. Also the following inequalities hold:

‖fhi,j(hi,j, xj,1)‖2 ≤ %hij‖hi,j‖2 + %̄hij‖xj,1‖2 (97)

‖fgi,j(gi,j, yj)‖2 ≤ %gij‖gi,j‖2 + %̄gij‖yj‖2 (98)

where %hij, %̄hij, %gij and %̄gij are unknown positive constants;

Assumption 4.3. There exist two smooth positive definite radially
unbounded functions Vhi,j and Vgi,j such that the following
inequations are satisfied:

∂Vhi,j
∂hi,j

fhi,j(hi,j, 0) ≤ −dhij,1‖hi,j‖2 (99)∥∥∥∥∂Vhi,j∂hi,j

∥∥∥∥ ≤ dhij,2‖hi,j‖ (100)

∂Vgi,j
∂gi,j

fgi,j(gi,j, 0) ≤ −dgij,1‖gi,j‖2 (101)∥∥∥∥∂Vgi,j∂gi,j

∥∥∥∥ ≤ dgij,2‖gi,j‖ (102)

where dhij,1, dhij,2, dgij,1 and dgij,2 are positive constants.

4.2. Design of local filters

A local filter using only local input and output is designed as
follows:

λ̇i = Ai,0λi + eni,niσi(yi)ui (103)

Ξ̇i = Ai,0Ξi + Φi(yi) (104)

vi,k = (Ai,0)kλi, k = 0, . . . ,mi (105)

ξ̇i,0 = Ai,0ξi,0 + kiyi (106)

where Ai,0, ei,k and ki are defined in the same way as filters
(9)–(12). With these designed filters our state estimate is given by

x̂i = ξi,0 +ΩTi θi (107)

where

θTi = [b
T
i , a

T
i ] (108)

ΩTi = [vi,mi , . . . , vi,1, vi,0,Ξi]. (109)

The state estimation εi = xi − x̂i satisfies

ε̇i = Ai,0εi − ki

(
N∑
j=1

νijeT1hi,j(xj,1)+
N∑
j=1

µijeT1gi,j(yj)

)
. (110)

Thus, system (93) can be expressed in the following form

ẏi = bi,mivi,(mi,2) + ξi,(0,2) + δ̄
T
i θi + εi,2

+

N∑
j=1

νijeT1fhi,j(hi,j, xj,1)+
N∑
j=1

µijeT1fgi,j(gi,j, yj) (111)

v̇i,(mi,q) = vi,(mi,q+1) − ki,qvi,(mi,1) (112)

v̇i,(mi,ρi) = vi,(mi,ρi+1) − ki,ρivi,(mi,1) + σi(yi)ui (113)

where

δTi = [vi,(mi,2), . . . , vi,(0,2),Ξi,2 + e
T
ni,1Φi(yi)] (114)

δ̄Ti = [0, vi,(mi−1,2), . . . , vi,(0,2),Ξi,2 + e
T
ni,1Φi(yi)] (115)

and vi,(mi,2), εi,2, ξi,(0,2),Ξi,2 denote the second entries of vi,mi , εi,
ξi,0,Ξi respectively. All states of the local filters in (103)–(106) are
available for feedback.

4.3. Design of decentralized adaptive controllers

Performing similar backstepping procedures to linear sys-
tems, we can obtain local adaptive controllers summarized in
(116)–(127) below.
Coordinate transformation:

zi,1 = yi (116)

zi,q = vi,(mi,q) − αi,(q−1), q = 2, 3, . . . , ρi (117)

Control laws:

ui =
1

σi(yi)

(
αi,ρi − vi,(mi,ρi+1)

)
(118)
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Azi =



−ci1 − li1 b̂i,mi 0 . . . 0

−b̂i,mi −ci2 − li2

(
∂αi,1

∂yi

)2
1+ σi,(2,3) . . . σi,(2,ρi)

0 −1− σi,(2,3) −ci3 − li3

(
∂αi,2

∂yi

)2
. . . σi,(3,ρi)

...
...

...
...

...

0 −σi,(2,ρi) −σi,(3,ρi) . . . −ciρi − liρi

(
∂αi,(ρi−1)

∂yi

)2


Box II.

µ∗ = min
1≤i≤N

√√
((1+ ki0)ki6 + (ki3 + ki4)ki5)2 + 4ki4ki5β + ((1+ ki0)ki6 + (ki3 + ki4)ki5)

2ki4ki5

Box III.

with

αi,1 = p̂iᾱi,1 (119)

ᾱi,1 = −ci1zi,1 − li1zi,1 − ξi,(0,2) − δ̄Ti θ̂i (120)

αi,2 = −b̂i,mizi,1 −

[
ci2 + li2

(
∂αi,1

∂yi

)2]
zi,2 + B̄i,2

+
∂αi,1

∂ p̂i
˙̂pi +

∂αi,1

∂θ̂i
Γiτi,2 (121)

αi,q = −zi,(q−1) −

[
ciq + liq

(
∂αi,(q−1)

∂yi

)2]
zi,q + B̄i,q

+
∂αi,(q−1)

∂ p̂i
˙̂pi +

∂αi,(q−1)

∂θ̂i
Γiτi,q

−

(
q−1∑
k=2

zi,k
∂αi,(k−1)

∂θ̂i

)
Γi
∂αi,(q−1)

∂yi
δi

q = 3, . . . , ρi (122)

B̄i,q =
∂αi,(q−1)

∂yi
(ξi,(0,2) + δ

T
i θ̂i)+

∂αi,(q−1)

∂Ξi
(Ai,0Ξi

+Φi(yi))+
∂αi,(q−1)

∂ξi,0
(Ai,0ξi,0 + kiyi)+ ki,q

× vi,(mi,1) +

mi+q−1∑
j=1

∂αi,(q−1)

∂λi,j
(−ki,jλi,1 + λi,(j+1)) (123)

τi,q = τi,(q−1) −
∂αi,(q−1)

∂yi
δizi,q (124)

τi,1 = (δi − p̂iᾱi,1e(ni+mi+1),1)zi,1
q = 2, . . . , ρi, i = 1, . . . ,N. (125)

Parameter update laws:

˙̂pi = −γ
′

i sgn(bi,mi)ᾱi,1zi,1 (126)

˙̂
θ i = Γiτi,ρi (127)

where θ̂i, p̂i, Γi and ciq, liq, γ ′i , q = 1, . . . , ρi, i = 1, . . . ,N are
defined as in Section 3.2.

4.4. Stability analysis

The ith subsystem (93) and (94) subject to local controller (118)
is characterized by

żi = Azizi +Wεiεi,2 +W Tθ iθ̃i − bi,mi ᾱi,1p̃ieρi,1

+Wεi

[
N∑
j=1

νijeT1fhi,j(hi,j, xj,1)+
N∑
j=1

µijeT1fgi,j(gi,j, yj)

]
(128)

where zi(t) = [zi,1, zi,2, . . . , zi,ρi ]
T, Azi,Wεi,Wθ i are defined as in

Box II, (47) and (48).
To study (128), we consider a function Vρi defined as:

Vρi =
ρi∑
q=1

(
1
2
(zi,q)2 +

1
liq
εi
TPiεi

)
+
1
2
θ̃Ti Γ

−1
i θ̃i +

|bi,mi |
2γ ′i

p̃2i . (129)

Following similar procedures to (50), using (110) and (111) and
the designed controllers (118)–(127), it can be shown that the
derivative of Vρi satisfies

V̇ρi =
ρi∑
q=1

zi,qżi,q − θ̃Ti Γ
−1 ˙̂θ i −

|bi,mi |
γ ′i
p̃i ˙̂pi −

ρi∑
q=1

1
liq
‖εi‖

2

− 2
ρi∑
q=1

1
liq
kTi Piεi

(
N∑
j=1

νijeT1hi,j(xj,1)+
N∑
j=1

µijeT1gi,j(yj)

)

≤ −

ρi∑
q=1

ciq(zi,q)2 −
ρi∑
q=1

1
4liq
‖εi‖

2

+

ρi∑
q=1

8
liq
‖kTi Pi‖

2L1,i +
ρi∑
q=1

1
liq
L2,i (130)

where we used Young’s Inequality and

L1,i =

(
N∑
j=1

νijeT1hi,j

)2
+

(
N∑
j=1

µijeT1gi,j

)2
(131)

L2,i =

(
N∑
j=1

νijeT1fhi,j(hi,j, xj,1)

)2

+

(
N∑
j=1

µijeT1fgi,j(gi,j, yj)

)2
. (132)

Similar to Lemma 1, we have the following useful lemma.

Lemma 2. The effects of the interactions and unmodeled dynamics
are bounded as follows

L1,i ≤
(
max
1≤,i,j≤N

{ν2ij } + max
1≤,i,j≤N

{µ2ij}

)
‖χ‖2 (133)
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N∑
j=1

eT1fgi,j(gi,j, yj)

)2
≤ ki1‖χ‖2 (134)

(
N∑
j=1

eT1fhi,j(hi,j, xj,1)

)2

≤

(
ki2 + ki3( max

1≤,i,j≤N
{ν2ij } + max

1≤,i,j≤N
{µ2ij})

)
‖χ‖2 (135)

where χ = [χT1 , . . . , χ
T
N ]
T and χi = [zTi , ε

T
i , hi,1

T, . . . , hi,N T, gi,1T,
. . . , gi,N T]T, ki2, ki2, ki3 are positive constants.

Proof. By following similar analysis to Lemma 1, using
Assumption 4.2 and (94), the result can be proved. M

Based on Lemma 2, it follows from (130) that

V̇ρi ≤ −
ρi∑
q=1

ciq(zi,q)2 −
ρi∑
q=1

1
4liq
‖εi‖

2

+

ρi∑
q=1

16
liq
‖kTi Pi‖

2µ2‖χ‖2

+

ρi∑
q=1

1
liq
((ki1 + ki2)µ2 + 2ki3µ4)‖χ‖2 (136)

where

µ = max
1≤i,j≤N

{µij, νij} (137)

As fhi,j is globally Lipschitz in xj,1 according to Assumption 4.2, the
derivative of Vhi,j with respect to fhi,j(hi,j, xj,1) in Assumption 4.3
satisfies
∂Vhi,j
∂hi,j

fhi,j(hi,j, xj,1)

=
∂Vhi,j
∂hi,j

fhi,j(hi,j, 0)+
∂Vhi,j
∂hi,j
[ fhi,j(hi,j, xj,1)

− fhi,j(hi,j, 0)]

≤ −dhij,1‖hi,j‖2 + dhij,2‖hi,j‖Lhij‖xj,1‖ (138)

where Lhij is a positive constant. Similarly, there exists a positive
constant Lgij such that

∂Vgi,j
∂gi,j

fgi,j(gi,j, yj) ≤ −dgij,1‖gi,j‖2 + dgij,2‖gi,j‖Lgij‖yj‖. (139)

We are now at the position to establish the following theorem on
the stability of nonlinear systems.

Theorem 3. Consider the closed-loop adaptive system consisting of
the plant (93) under Assumptions 4.1–4.3, the controller (118), the
estimators (126), (127) and the filters (103)–(106). There exists a
constant µ∗ such that for all νij < µ∗ and µij < µ∗, i, j =
1, 2, . . . ,N, all the signals in the system are globally uniformly
bounded and limt→∞ yi(t) = 0.

Proof. We define a Lyapunov function for the ith local system

Vi = Vρi +
N∑
j=1

lhijVhi,j +
N∑
j=1

lgijVgi,j (140)

where lhij and lgij are positive constants. Computing the time
derivative of Vi and using (94), (136)–(139), we have

V̇i = V̇ρi −
N∑
j=1

lhijdhij,1‖hi,j‖2 −
N∑
j=1

lgijdgij,1‖gi,j‖2

+

N∑
j=1

lhijdhij,2‖hi,j‖Lhij‖xj,1‖ +
N∑
j=1

lgijdgij,2‖gi,j‖Lgij‖yj‖

≤ −
1
2
ci1z2i,1 −

ρi∑
q=2

ciq(zi,q)2 −
ρi∑
q=1

1
4liq
‖εi‖

2

+

ρi∑
q=1

16
liq
‖kTi Pi‖

2µ2‖χ‖2

+

ρi∑
q=1

1
liq

(
(ki1 + ki2)µ2 + 2ki3µ4

)
‖χ‖2

−

N∑
j=1

(
1
2
lhijdhij,1‖hi,j‖2 +

1
2
lgijdgij,1‖gi,j‖2

)

−

N∑
j=1

1
4
lhijdhij,1‖hi,j‖2 −

1
4
ci1z2i,1 +

N∑
j=1

lhijdhij,2‖hi,j‖Lhij‖zj,1‖

−

N∑
j=1

[
1
4
lhijdhij,1‖hi,j‖2 + lhijdhij,2‖hi,j‖

× Lhij

∥∥∥∥∥ N∑
j=1

νijeT1hi,j +
N∑
j=1

µijeT1gi,j

∥∥∥∥∥
]

−
1
4
ci1z2i,1 −

N∑
j=1

1
2
lgijdgij,1‖gi,j‖2

+

N∑
j=1

lgijdgij,2‖gi,j‖Lgij‖zj,1‖. (141)

Taking

lhij ≤
dhij,1cj1
4Nd2hij,2L

2
hij
,

lgij ≤
dgij,1cj1
2Nd2gij,2L

2
gij

(142)

and using Young’s inequality, we have

V̇i ≤ −βi‖χi‖2 −
1
4
ci1(zi,1)2

+
(
(ki4(ki1 + ki2)+ ki5)µ2 + 2ki3ki4µ4

)
‖χ‖2

−

(
1
4
ci1(zi,1)2 −

N∑
j=1

1
4N
cj1(zj,1)2

)
(143)

where

βi = min

{
ci1
4
, ci2, . . . , ciρi ,

ρi∑
q=1

1
4liq

, min
1≤j≤N

{
1
2
lhijdhij,1,

1
2
lgijdgij,1

}}
(144)

ki4 =
ρi∑
q=1

1
liq

(145)

ki5 = ‖kTi Pi‖
2

ρi∑
q=1

16
liq
+

N∑
j=1

4lhijd2hij,2L
2
hij

dhij,1
. (146)

Now we consider the Lyapunov function for the overall decentral-
ized adaptive control system defined as
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µ∗ = min
1≤i≤N

√√
(ki4(ki1 + ki2)+ ki5)2 + 8ki3ki4β + ki4(ki1 + ki2)+ ki5

4ki3ki4

Box IV.

V =
N∑
i=1

Vi. (147)

From (143) and Lemma 2, the derivative of V is given by

V̇ ≤ −
N∑
i=1

[
β − (ki4(ki1 + ki2)+ ki5) µ2

− 2ki3ki4µ4
]
‖χ‖2 −

1
4

N∑
i=1

ci1(zi,1)2 (148)

where

β =

min
1≤i≤N

βi

N
. (149)

By taking µ∗ in Box IV, we have V̇ ≤ − 14
∑N
i=1 ci1(zi,1)

2 for all
νij < µ∗ and µij < µ∗. This implies that zi, p̂i, θ̂i, ε̂i are bounded.
Because of the boundedness of yi, variables vi,k, ξi,0 and Ξi are
bounded as Ai,0 is Hurwitz. Following similar analysis to Section 3,
states ζi associatedwith the zero dynamics of the ith subsystemare
bounded. This concludes the proof of Theorem 3 that all the signals
in the system are globally uniformly bounded. By applying the
LaSalle–Yoshizawa theorem, it further follows that limt→∞ yi(t) =
0 for arbitrary initial xi(0). M

Remark 5. The transient performance for system output yi(t)
in terms of both L2 and L∞ norms can also be obtained as in
Theorem 2.

5. Illustrative examples

5.1. Linear systems

To verify our results by simulation, we consider interconnected
systemwith two subsystems as described in Box I (i.e. N = 2). The
transfer function of each local subsystem isGi(s) = 1

s(s+ai)
, i = 1, 2.

In the simulation, a1 = −1 and a2 = 2 which are considered to be
unknown in controller design and hence require identification. The
dynamic interactions are Hij = 1

(s+1)3
, ∆ij = 1

(s+1) for i = 1, 2 and
j = 1, 2, respectively. The initials of subsystem outputs are set as
y1(0) = 1, y2(0) = 0.4.

5.1.1. Verification of Theorem 1
The design parameters are chosen as ki = [4, 4]T, i = 1, 2,

c11 = c12 = c21 = c22 = 1, l11 = l12 = 121 = l22 =
0.001. Simulation reveals that in the decoupling case, i.e. νij =
µij = 0 for i = 1, 2 and j = 1, 2, the fixed controllers
without adaption, i.e. Γ1 = Γ2 = 0, give stable systems. But
when νij = µij = 0.7 for i = 1, 2 and j = 1, 2, these fixed
local controllers cannot stabilize the interconnected system, due
to the presence of interactions and unmodeled dynamics. With the
presented adaptation mechanism on by choosing Γ1 = Γ2 = 0.1,
the results are given in Figs. 4 and 5. Clearly, the system is now
stabilized and the outputs of both subsystems converge to zero.
This verifies that the proposed scheme is effective in handling
interactions and unmodeled dynamics as stated in Theorem 1.

Fig. 4. Linear subsystem output y1 .

Fig. 5. Linear subsystem output y2 .

5.1.2. Verification of Theorem 2
We still consider the interconnected system with parameters

given above. The initial values zi,q(0) for i = 1, 2 and q = 2 are
set to 0 by properly initializing filters according to Eq. (89). In our
case, vi,(0,2)(0) = αi,(0,2)(0) for i = 1, 2. The design parameters lij
are fixed as 0.001 and c12 = c22 = 1, which are the same as the
above. We now consider the following two cases:

(1) Effects of parameters ci1
The effects of changing design parameters ci1 stated in

Theorem 2 are now verified by choosing c11 = c21 = 1
and 3 respectively. The corresponding initials vi,(0,2)(0) are
selected as v1,(0,2)(0) = −1.001, v2,(0,2)(0) = −0.4004, and
v1,(0,2)(0) = −3.001, v2,(0,2)(0) = −1.2004 for the two sets
of choices of ci1. In the verification, we fix Γ1 = Γ2 = 0.1. The
outputs of the two subsystem outputs y1, y2 are compared in
Figs. 6 and 7. Obviously, the L2 norms of the outputs decrease
as ci1 for i = 1, 2 increase.

(2) Effects of parameters Γi
We now fix ci1 at 1 for all i = 1, 2 and choose initials

v1,(0,2)(0) = −1.001 and v2,(0,2)(0) = −0.4004. For
comparison, Γi are set as 0.1 and 1, respectively for i =
1, 2. The subsystem outputs y1, y2 are compared in Figs. 8
and 9. Clearly, the transient tracking performances are found
significantly improved by increasing Γi.

5.2. Nonlinear systems

To further verify the effectiveness of our proposed scheme
applied to nonlinear interconnected systems, we consider two
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Fig. 6. Output y1 with different ci1 .

Fig. 7. Output y2 with different ci1 .

Fig. 8. Output y1 with different Γi .

Fig. 9. Output y2 with different Γi .

nonlinear interconnected subsystems with ni = 2, for i = 1, 2
as described in (93) and (94), where Φ1 = [0, (y1)2]T,Φ2 =
[0, (y2)2 + y2]T, σi(yi) = 1. In simulation, a1 = −1, a2 = 2, b1 =
1, b2 = 2, hi,j and gi,j given in (150) and (151) below are all
considered to be unknown in controller design. All the initials are
set as 0 except that subsystem outputs y1(0) = 1, y2(0) = 0.4.

Fig. 10. Nonlinear subsystem output y1 .

Fig. 11. Nonlinear subsystem output y2 .

ḣi,j =
[
−3 1
−2.25 0

]
hi,j +


1− e−hi,j(1)

1+ e−hi,j(1)
1− e−hi,j(2)

1+ e−hi,j(2)


+

[
sin(hi,j(1))
sin(hi,j(2))

]
xj,1 (150)

ġi,j =
[
−4 1
−4 0

]
gi,j +


1− e−gi,j(1)

1+ e−gi,j(1)
1− e−gi,j(2)

1+ e−gi,j(2)

+
[ yj
| ln yj| + 2
yj

]
. (151)

5.2.1. Verification of Theorem 3
When νij = µij = 0.01 for i = 1, 2 and j = 1, 2, the design

parameters are chosen as ki = [4, 4]T, i = 1, 2, c11 = c12 = c21 =
c22 = 0.5, l11 = l12 = 121 = l22 = 0.001. With the adaptation
mechanism on by choosing γ1 = γ2 = 1; Γ1 = Γ2 = 1 × I2,
the system outputs y1, y2 are illustrated in Figs. 10 and 11. These
results verify that the system can be stabilized and the outputs
of both nonlinear subsystems converge to zero in the presence of
interactions and unmodeled dynamics.

6. Conclusion

In this paper, decentralized adaptive output feedback stabiliza-
tion of interconnected systemswith dynamic interactions depend-
ing on both subsystem inputs and outputs is considered. Especially,
this paper presents a solution to decentrally stabilize systemswith
interactions directly depending on subsystem inputs for the first
time, when the backstepping technique is used. By using the stan-
dard backstepping technique, totally decentralized adaptive con-
trollers are designed. In our design, there is no a priori information
on parameters of subsystems and thus they can be allowed totally
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uncertain. It is established that the proposed decentralized con-
trollers can ensure the overall system globally asymptotically sta-
ble. Furthermore, the L2 and L∞ norms of the system outputs are
also shown to be bounded by functions of design parameters. This
implies that the transient system performance can be adjusted by
choosing suitable design parameters. Simulation results illustrate
the effectiveness of our proposed scheme.
Note that some robust control schemes based on backstepping

approaches are available for systemswith certain input unmodeled
dynamics, see for example Krstic, Sun, and Kokotovic (1996). Such
a class of unmodeled dynamics is different from what considered
in this paper. We feel that it is worthy to explore such types
of input unmodeled dynamics and interactions in the context of
decentralized adaptive control.
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