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Abstract

In this paper, a robust adaptive controller for a class of nonlinear uncertain discrete-time systems is developed by combining
the backstepping procedures with a simple parameter estimator subject to parameter projection. It is shown that the proposed
controller can ensure boundedness of all signals in the overall adaptive systems in the presence of unmodelled dynamics and
disturbances. It can also guarantee that the tracking error is bounded by a function of the size of the unmodelled dynamics. In the
ideal case when there are no unmodelled dynamics and disturbances, perfect tracking is ensured. ( 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In the last few years, adaptive control of nonlinear
continuous-time systems have drawn extensive attention
and many significant progresses have been made (Kanel-
lakopoulos, 1995a; Kokotovic, 1992; Kanellakopoulos
et al., 1992; Pomet and Praly, 1992; Krstic et al., 1995;
Krstic and Kokotovic, 1995). To overcome some restric-
tions such as matching conditions and overparameterisa-
tion that the earlier established adaptive control methods
suffer from, a promising backstepping technique was
developed methodologically in Kanellakopoulos et al.
(1992), Krstic et al. (1995) and Kanellakopoulos (1995a)
where an adaptive controller for a large class of nonlinear
systems can be designed in a systematic framework.
In contrast with the conventional approaches based on
certainty equivalence principle, the design of the control
law and the parameter update law are carried out at
the same time in the backstepping design method. This
can provide better transient performance. However, the
results obtained on continuous-time systems are not
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applicable to the discrete-time systems where the in-
crement of Lyapunov function is no longer a linear
function with respect to the increments of parameter
estimates.

With the increasing applications of advanced com-
puter technologies in industries, it is much more mean-
ingful to implement adaptive control for nonlinear dis-
crete-time systems. So far, however, only a few results
have been reported on this topic (Kung and Womach,
1983; Agarwal and Sebory, 1987; Zhang and Lang, 1989;
Lin and Yong, 1992; Song and Grizzle, 1993; Kanel-
lakopoulos, 1995b; Yeh and Kokotovic, 1995). However,
only in Yeh and Kokotovic (1995) an adaptive controller
was designed by using the backstepping technique to
achieve tracking of a reference signal for a class of non-
linear discrete-time systems. It was shown that under
certain geometric conditions a large class of discrete-
time nonlinear systems could be transformed into the
parametric-strict-feedback form and the parametric-pure-
feedback form for which the backstepping design ap-
proach could be applied. By using various update
laws available in Goodwin and Sin (1984) and ultilizing
their properties, the global boundedness and conver-
gence were shown to be achieved without employing
Lyapunov functions in the design. But the results of
Yeh and Kokotovic (1995) were obtained only in the
ideal case without considering nonparametric uncer-
tainties such as unmodelled dynamics and external
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disturbances which are usually inevitable in practical
situations. The design of robust adaptive controllers for
nonlinear discrete-time systems with uncertainties re-
mains an unresolved problem. In this paper we will
address this issue.

This paper presents a design approach of robust adap-
tive control for a class of nonlinear discrete-time systems
with both parametric and nonparametric uncertainties.
In our design, the backstepping procedure incorporating
a simple parameter projection update law is employed
to obtain the desired controller. An intermediate con-
stant, which can be chosen without a priori knowledge of
the unmodelled dynamics, is introduced in the normalis-
ing term of the parameter estimator to allow for the
nonparametric uncertainties in the estimators properties.
Using a similar stability analysis method developed in
Wen (1989) and Wen and Hill (1992), it is shown that the
proposed adaptive controller can ensure boundedness of
all the signals in the closed-loop system even in the
presence of unmodelled dynamics and disturbances. It
can also ensure e-small in the mean tracking error. When
the disturbances and the unmodelled dynamics are re-
moved, the ideal results obtained in Yeh and Kokotovic
(1995) are still preserved. In particular, a perfect tracking
is achieved.

The rest of the paper is organised as follows. Section 2
describes the class of nonlinear uncertain discrete-
time systems to be controlled and Section 3 presents the
design of the adaptive controllers in the presence of
uncertainties. The stability of the adaptive system is ana-
lysed in Section 4. Finally, the paper is concluded in
Section 5.

2. Problem formulation

The nonlinear discrete-time system under considera-
tion is described by
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in the remaining parts of this paper.

The discrete-time system described by Eq. (1) has two
types of uncertainties. One is the parametric uncertainty
denoted by the unknown parameter vector h. Usually,
the range of h can be considered to be known a priori,
which leads to the following assumption.

Assumption A.1. h lies in a known compact set #, i.e.
h3#"Mh : EhE4kh;Eh!h@E4kh, ∀h@3#N, where kh is
a known constant.

Another kind of uncertainty appearing in system (1) is
nonparametric. It is described by the unknown functions
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disturbances and time variations. As shown in Wen and
Hill (1992), they are usually characterised by
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It will be shown later that knowledge of e and d is not
required to implement the adaptive controller.

The adaptive control problem is to obtain a control
law for plant (1) such that all the signals in the resulting
closed-loop system are bounded for arbitrary bounded
reference set-point y

m
(t) and initial conditions. It is also

desirable that for a certain known gain K, the tracking
error Dy(t)!Ky
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(t)D is small in some sense. To solve the

problem, an additional assumption on the nonlinear
functions a
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Assumption A.3. All the known nonlinear functions a
i
(t)
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3. Adaptive control design using backstepping technique

Suppose that M
0

is an intermediate positive constant
such that Ex(0)E4M
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, Ey

m
(t)E

=
4M

0
, and d/M
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a sufficiently small d, where x(0) denotes the initial condi-
tions of the system. It is noted that for a given system,
such an intermediate constant can always be found for
any bounded initial conditions, set-point and distur-
bances. Then the desired adaptive controller can be ob-
tained by performing the backstepping procedures as in
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Table 1
Robust backstepping adaptive controller
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Yeh and Kokotovic (1995). For clearance, the obtained
controller are summarised in Table 1.

Summarising the above steps, the resulting closed-loop
system is expressed by
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The properties of estimator (18) and (19) are summarised
in the following lemma, which will be used in the next
section to set up the robust stability of the closed-loop
system.
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Substituting Eq. (46) into Eq. (48) and using the defini-

tion of e
k
(t#1) gives

DhK
2
(t#1)TaN

2,k
(t#1)!hK

2
(t)TaN

2,k`1
(t)D

4c
1,2KKC

e
k~1

(t#1)

e
k
(t#1) DKK#c

2,2KKC
s
k~1

(t#1)

s
k
(t#1) DKK

#c
3,2KKC

zt
k

zt
k`1
DKK KKC

eJ
1
(t#1)

eJ
2
(t#1)DKK , (49)

where c
1,2

, c
2,2

, c
3,2

are constants combining kh and ka.
Thus Eq. (45) holds for i"2.
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Now assume Eq. (45) holds for all 14p4i!1, i.e.

DhK
p
(t#1)TaN

p,k
(t#1)!hK

p
(t)TaN

p,k`1
(t)D

4c
1,p KK C

e
k~p`1

(t#1)

e
k~p`2

(t#1)

F

e
k
(t#1) D KK#c

2,p KK C
s
k~p`1

(t#1)

s
k~p`2

(t#1)

F

s
k
(t#1) D KK

#c
3,p KK C

zt
k~p`2

zt
k~p`3

F

zt
k`1

D KK KKC
eJ
1
(t#1)

eJ
2
(t#1)

F

eJ
p
(t#1)D KK , (50)

where c
1,p

, c
2,p

and c
3,p

are constants depending upon
ka and kh. Then we show that Eq. (45) also holds for p"i.

From the definitions of aN
i,k

(t), it follows that

DhK
i
(t#1)TaN

i,k
(t#1)!hK

i
(t)TaN

i,k`1
(t)D

4DhK
i
(t#1)TaN

i,k
(t#1)!hK

i
(t#1)TaN

i,k`1
(t)D

#DhK
i
(t#1)TaN

i,k`1
(t)!hK

i
(t)TaN

i,k`1
(t)D

4khKaiAzt`1
k~i`1

, zt`1
k~i`2

!hK T
1
a
1,k~i`1

(t#1),2, zt`1
k

!

i~1
+
l/1

hK
l
(t#1)TaN

l,k~1
(t#1)B

!a
iAztk~i`2

, zt
k~i`3

!hK T
1
a
1,k~i`2

(t),2, zt
k`1

!

i~1
+
l/1

hK
l
(t#1)TaN

l,k
(t#1)BK

#EaN
i,k`1

(t)EEhK
i
(t#1)!hK

i
(t)E. (51)

Using Assumption A.3 and Eq. (29), and noting that
aN
i,k`1

(t) is a function of zt
k`1

, zt
k
,2, zt

k~i`2
, we have

DhK
i
(t#1)TaN

i,k
(t#1)!hK

i
(t)TaN

i,k`1
(t)D

4khkaKK C
zt`1
k~i`1

!zt
k~i`2

zt`1
k~i`2

!zt
k~i`3

F

zt`1
k

!zt
k`1

D KK
#K@

i~1
+
l/1

DhK
l
(t#1)TaN

l,k~1
(t#1)!hK

l
(t)TaN

l,k
(t)D

#KAKK C
zt
k~i`2

zt
k~i`3

F

zt
k`1

D KK DeJ i(t#1)D, (52)

where K@ and KA are constants depending on kh and
ka only.

Substituting Eqs. (14) and (50) into Eq. (52) gives

DhK
i
(t#1)TaN

i,k
(t#1)!hK

i
(t)TaN

i,k`1
(t)D

4c
1,i KK C

e
k~i`1

(t#1)

e
k~i`2

(t#1)

F

e
k
(t#1) D KK#c

2,i KK C
s
k~i`1

(t#1)

s
k~i`2

(t#1)

F

s
k
(t#1) D KK

#c
3,i KK C

zt
k~i`2

zt
k~i`3

F

zt
k`1

D KK KK C
eJ
1
(t#1)

eJ
2
(t#1)

F

eJ
i
(t#1)D KK , (53)

where c
m,i

,(m"1,2,3) are constants combining c
m,p

,
(m"1,2,3; 14p4i!1), ka and kh. Thus, c

m,i
,

(m"1,2,3) depend on kh and ka only. So far we have
proved inequality (45).

Using Eq. (45), it follows immediately from the defini-
tion of s

i
(t#1) that:

Ds
i
(t#1)D

4c@
1,i KKC

e
1
(t#1)

e
2
(t#1)

F

e
i~1

(t#1)DKK#c@
2,i KK C

s
1
(t#1)

s
2
(t#1)

F

s
i~1

(t#1)D KK
#c@

3,i KK C
zt
1

zt
2
F

zt
i
DKK KK C

eJ
1
(t#1)

eJ
2
(t#1)

F

eJ
i~1

(t#1)D KK , (54)

where c@
m,i

, (m"1, 2, 3) are constants.
Since s

1
(t#1)"0 and s

2
(t#1)4khkaDe1(t#1)D#

kaDzt2EeJ
1
(t#1)D, it can be shown from Eq. (54) that

Ds
i
(t#1)D4cA

1,i KK C
e
1
(t#1)

e
2
(t#1)

F

e
i~1

(t#1)D KK
#cA

2,i KK C
zt
1

zt
2
F

zt
i
D KK KK C

eJ
1
(t#1)

eJ
2
(t#1)

F

eJ
i~1

(t#1)DKK , (55)

where cA
1,i

, cA
2,i

are constants combining kh and ka.
Taking c

1
"max

1yiyn
McA

1,i
N and c

2
"max

1yiyn
McA

2,i
N,

Eq. (32) follows.
Using Eq. (25) and inequality

De
i
(t
0
)D4(1#M

0
#Ea

i
(t
0
!1)E)DeJ

i
(t
0
)D

4(1#M
0
#kaEx(t

0
!1)E)DeJ

i
(t
0
)D,

we get (33). h
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It is noted that the presented update law has the same
properties as those given in Yeh and Kokotovic (1995) if
the nonparametric uncertainty is removed, i.e. e and d are
identically zeros. Moreover, the constants a

1
and a

2
in

Lemma 2 are functions of e and can be made sufficiently
small by reducing e.

4. Stability analysis

In this section we show that there exists a small con-
stant e* such that for each e3[0, e*], all the signals in
closed-loop system (17) are bounded for any bounded
initial conditions, bounded tracking reference signal and
external disturbances. The stability analysis method used
in Wen (1989) is adapted to derive the conclusion.

The stability of the closed-loop system can be estab-
lished by the following theorem.

Theorem 1. Consider the adaptive system consisting of
plant (1), update law (11) and controller (16). ºnder
Assumptions A.1—A.3, there exists constant e* such that for
each e3[0, e*], Ez(t)E is bounded for all bounded initial
conditions, setpoints and disturbances. In addition, the
tracking error satisfies that

t
+

q/t0`1

Dy(q)!y
m
(q)D4b

1
#b

2
0(e, d)(t!t

0
), (56)

where b
1

and b
2

are constants, and 0(e) is a function such
that lime?0d?0

0(e, d)"0.

Proof. By the same idea as in Wen and Hill (1992), the
time interval is divided into two subsequences

N
1 ¢ Mt3Z

`
D Ex(t)E'M

0
N, (57)

N
2 ¢ Mt3Z

`
D Ex(t)E4M

0
N, (58)

where Z
`

denotes all positive integers.
Clearly, it is sufficient to show that Ez(t)E is bounded

for t3N
1

to obtain the boundedness of z(t) in the whole
time interval [0,R). To this end, we choose time
instant t

0
such that t

0
!13N

2
and [t

0
, t!1]3N

1
. The

inductive strategy is used to prove the result. Suppose
that M is a positive constant such that M

1
(M/b

u
. It is

known from Lemma 1 that Ez(t
0
!1)E4b

u
Ex(t

0
!1)E4

b
u
M

1
4M. Now assume that Ez(q)E(M for

q"t
0
, t

0
#1,2, t!1. Then we show that Ez(t)E(M.

The solution of system (23) is

z(t)"'(t, t
0
)z(t

0
)#

t~1
+
q/t0

'(t, q#1)

][by
m
(q#n)#((q#1)#e(q#1)] (59)

"'(t, t
0
)[Fz(t

0
!1)#by

m
(t
0
#n!1)#((t

0
)#e(t

0
)]

#

t~1
+
q/t0

'(t, q#1)[by
m
(q#n)#((q#1)#e(q#1)],

(60)

where '(t, q) is the transition function of the system
z(t#1)"Fz(t), i.e.

'(t, q)"G
Ft~q, 04t!q(n,

0, t!q5n.

Since F is a strictly stable matrix, the transition matrix
'(t, q) satisfies

E'(t, q)E4Cpt~q,

where C and p are constants, and p(1.
Using Eqs. (25), (26), (32), (33) and (59) gives

Ez(t)E4Cp t~t0[(C
1
#C

2
a
1
)M

0
#C

3
a
1
#C

0
]

#

t~1
+
q/t0

Cp t~q~1[C
4
Ez(q)EEeJ (q#1)E

#C
5
EeJ (q#1)E#C

6
M

0
], (61)

where e8 (t#1)"[eJ
1
(t#1), eJ

2
(t#1),2, eJ

n
(t#1)]T, and

C
i
, (i"0, 1,2, 6) are constants depending only upon

kh and ka.
Performing the same procedures as in Wen and Hill

(1992), which involves squaring both sides of Eq. (61),
applying Schwarz inequality and Grown-wall lemma as
well as using the theorem about the arithmetic and geo-
metric mean of a sequence, we have

Ez(t)E24[C
7
#C

8
c2ge2(k1#k

2
)]M2

0
#C

9
, (62)

where C
9

is a constant combining ka and kh.
Let

k
2
"C

9
/b2

u
, (63)

k
1
"

1

b2
u

maxG1,
C

7
#C

8
c2g (e7 *)2C9

1!C
8
c2g (e7 *)2 H, (64)

where e7 * is a constant satisfying C
8
c2g (e7 *)241.

Then it follows from Eq. (62) that

Ez(t)E24b2
u
(k

1
M2

0
#k

2
)"b2

u
M2

1
4M2. (65)

Therefore, taking e*"maxMeN *, eP *N confirms the first
part of theorem.

Since the boundedness of all the states in the closed-
loop system has been established, it follows immediately
from the definitions of eJ

i
(t#1) and Eq. (30) that

t
+

q/t0`1

Ee(t)E4b
3
#b

4
0(e, d)(t!t

0
), (66)

where b
3
, b

4
are constants.

Using Eq. (32), we have

t
+
q/t0

E((q#1)E4b
5
#b

6
0(e, d)(t!t

0
), (67)

where b
5

and b
6

are constants. Applying Eqs. (66) and
(67) to system (17), (56) follows. h
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Remark 3.1. It is noted that if there is no nonparametric
uncertainty, i.e. e"0 and d"0, the stability of the
adaptive system can also be ensured by Theorem 1. In
such case, EhK

i
(t#1)!hK

i
(t)EP0, De

i
(t#1)DP0, and

Dy(t)!y
m
(t)DP0, which means perfect tracking is

achieved.

Remark 3.2. The adaptive controller in Table 1 was
obtained by employing an updating law in each back-
stepping step. This gives rise to overparameterisation. To
avoid this problem, an identifier-based indirect adaptive
controller can be designed by following the same steps as
in Table 1 but postponing the determination of the up-
date law. Replacing all hK

i
in Table 1 with a common hK , the

adaptive controller without overparameterisation is thus
obtained by

u(t)"y
m
(t#n)!hK (t)Ta

n
(t)!

n~1
+
k/1

hK (t)TaN
k,n

(t), (68)

hK (t#1)")GhK (t)#
'(t)Tf(t#1)

1#M
0
#trace('(k)'(k)T)H, (69)

where

f(t#1)¢ z(t#1)!Fz(t)!by
m
(t#n)!((t#1), (70)

'(t)"[a
1
(t), a

2
(t),2, a

n
(t)]T, (71)

g(t#1)"[g
1
(t), g

2
(t),2, g

n
(t)]T. (72)

For this adaptive controller, we can also obtain the
same robust stability results as stated in Lemma 1 and
Theorem 1.

5. Conclusion

This paper studies the problem of adaptive control for
a class of nonlinear discrete-time systems with unmodel-
led dynamics and external disturbances. Since the model-
ling errors are considered, the class of the nonlinear
discrete-time systems for which the adaptive control can
be applied has been enlarged. By combining the back-
stepping technique with parameter projection, a design
scheme of robust adaptive controller is obtained. With
this scheme, the boundedness of the whole adaptive
closed-loop system is guaranteed for any bounded initial
conditions, set-point signals and external disturbances.
A small mean tracking error is also achieved. It is also
clear that the stability and convergence results obtained
in the ideal case are still preserved if there are no un-
modelled dynamics and disturbances. Particularly in this

ideal case, perfect tracking of a reference trajectory is
ensured.
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Krstic, M., & Kokotović, P. V. (1995). Adaptive control of non-
linear systems: a tutorial. In G. C. Goodwin, & P. R. Kumar
(Eds.), Adaptive control, filtering, and signal processing (pp.
165—198).

Krstic, M., Kanellakopoulos, I., & Kokotović, P. V. (1995). Nonlinear
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