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Abstract

In this paper, we present a “deep pole assignment method” to study the observer-based stabilization of switching linear systems where
the dynamics of each mode are known a priori but the switching times of modes are arbitrary. The design can be used for both 8nite and
in8nite switched linear systems. We emphasize our paper on the case where the switchings of the observer and controller do not coincide
with those of the system.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A switching linear system is one where the system dy-
namics is linear, but time varying, and switches among a
8nite number of modes (Fu & Barmish, 1986; Hilhorst,
Amerongen, Lohnberg, & Tulleken, 1994; Ezzine &
Haddad, 1989). In order to obtain fast and accurate re-
sponses of these processes, appropriate controllers and
observers should be designed and stored for the di?erent
modes. At any moment, the controller and the observer cor-
responding to the right mode should be used. These kinds
of systems is called switching linear systems and it can
be used to model synchronously switching linear systems,
networks with periodically varying switches and systems
subject to failures (Ezzine & Haddad, 1989).
The stability analysis and stabilization of switching sys-

tems have been studied by a number of researchers. Michel
and Hu (1998) have considered the stability of switched
systems via a comparison theory, which is also very useful
for the stability analysis of other discontinuous systems.
Ezzine and Haddad (1989) studied the problems of con-
trollability, observability and stability of periodic switched
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linear systems. Wicks, Peleties, and De-carlo (1998) de-
signed a switching law for the stabilization of a class of
switched systems, which is an NP-hard problem (Blondel
& Tsitsiklis, 1997). Fu and Barmish (1986) have studied
the stabilization of the 8nite switching linear systems suc-
cessfully. However, the method in Fu and Barmish (1986)
cannot be used to consider the stabilization of in8nite switch-
ing linear systems. It should also be noted that some basic
problems have been outlined in Liberzon and Morse (1999).
However, the observer-based stabilization of switching lin-
ear systems with in8nite switching times has not been con-
sidered yet, especially in the case where the switchings of the
observer and controller do not coincide exactly with those
of the system.
In this paper, we overcome the potential problem by intro-

ducing a deep pole assignment method. The pole assignment
method is used to develop an observer and a controller for
each “frozen” system. These observers and controllers form
a switching observer and a switching controller for the whole
switching control systems where the number of switchings
involved can be in8nite or 8nite, and these observers and
controllers are stored. Because the “frozen” system cannot
be known at any moment, we need to identify the switching
instances of the system and the next “frozen” system. This
can be done by checking the observer error. Once the next
“frozen” system is known, the controller and the observer
should be switched to the ones corresponding to the next
“frozen” system. It is well known that the poles of a control-
lable (or observable) “frozen” system can be assigned to any
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given values (Chen, 1984). If the real parts of poles are nega-
tive enough, then the Lyapunov function V (X (t))=‖X (t)‖2
will decrease along each “frozen” system with any given
decay rate even in the case where there are overlaps be-
tween the switchings of the system and the switchings of
the controllers and the observers. This ensures that V (X (t))
decreases along the whole system Ẋ (t)=A(m(t))X (t) with
any given decay rate. Thus the system Ẋ (t) = A(m(t))X (t)
is stable in the sense of Lyapunov. We require that the in-
terval between any two successive switchings has a lower
bound MT as in Narendra and Balakrishnan (1993). How-
ever, our MT is only required to be known and it can be ar-
bitrarily small. The controller uses the estimate of the state
by the observer for feedback rather than the state of the
system. The controller stabilizes the system in the sense of
Lyapunov. This is very important because with Lyapunov
stability, we can get a handle on the types of “overshoot”
behavior. Further, the switchings of the controller and the
observer do not need to coincide exactly with the switch-
ings of the system. The result of this paper shows that
for any desired decay rate, the closed-loop switching sys-
tem would yield a stable system with the required decay
rate.
The rest of the paper is organized as follows. In the

following section, problem formulation is given. The main
result is derived in Section 3. In Section 4, a numerical
example is given to illustrate the application of the main
results. Concluding remarks are given in Section 5.

2. Problem formulation

In this paper, we shall design an observer-based controller
for the stabilization of the following switching single input
single output linear system:

Ẋ (t) = A(m(t))X (t) + b(m(t))u(t);

y(t) = c(m(t))X (t);
(1)

where Ẋ (t) is the system state vector of dimension r, u(t) is
the control input, y(t) is the output, and m(t) is the ‘mode
index’ which is a piecewise constant taking values in the
8nite index set PM = {1; 2; : : : ; n}. We shall refer the ith
mode of the system as continuous variable dynamic system
i (CVDS i). The switching laws are de8ned by one of the
following two methods:

(I) The mode will automatically switch from mode i to
mode j, if the duration time of mode i is M�i (Ezzine
& Haddad, 1989).

(II) The mode will switch from mode i to mode j, if the
state of mode i is in a given switching conditional set
Sij(X (t)), which is of the following form (Pettersson
& Lennartson, 1996):

Sij(X (t)) = {X (t)|hij(X (t)) = 0}: (2)

We let tsk denote the kth switching instance of the system.
Further, we make the following assumption about (1).

Assumption 1.

(A(i); c(i)) is observable; (3)

(A(i); b(i)) is controllable; (4)

MT = inf
k
{tsk+1 − tsk}¿ 0; (5)

where MT is known but can be arbitrarily small.

We propose the following r-dimensional observer for
mode i:

Ẋ ∗(t) = A(i)X ∗(t) + b(i)u(t) + PL(i)(y(t)− y∗(t));

X ∗(t0) = X ∗
0 ;

y∗(t) = c(i)X ∗(t):

(6)

Based on the estimate X ∗(t), we develop a controller of the
form

u(t) =−K(i)X ∗(t): (7)

The requirement of the design is that the closed-loop
switching linear system (1) satis8es a prescribed decay rate.
Thus, the observer-based stabilization problem can be for-
mulated as follows:
Consider the switching system (1) with switching law (I)

or (II), and satis8es Assumption 1. Given any decay rate
�¡ 0, design an r-dimensional observer of the form (6), a
feedback controller of the form (7) and the switching laws
of the controller and the observer, such that the closed-loop
system satis8es

lim
t→∞e

−�t‖X (t)‖= 0:

The solution to this problem is composed of two steps:
Step 1: Design an observer and a controller for each sub-

system.
Step 2: De8ne a switching law for these observers and

controllers. Generally, the controller corresponding to the
active subsystem should be used. However, we cannot know
the initial subsystem and the subsequent subsystems in ad-
vance. Thus, we need to impose some small delay on the
switchings of the controllers so that we can identify the
initial subsystems and the subsequent active subsystems.
Then, the controller corresponding to the active subsystem
is switched into action.
Note that there will be overshoot in the interval before

the right observer and controller are activated. Thus, we
need to present a method to constrain the overshoot and to
ensure suRcient decay of the overshoot during the interval
when the observer and controller corresponding to the active
subsystem are used. This is possible because the poles of
each observable and controllable subsystem can be assigned
arbitrarily. The whole process will be shown in detail in the
next section.
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3. Main results

In this section, we shall 8rst present some preliminaries
to illustrate the process of pole assignment for the observer
and the controller for each subsystem.

Lemma 1 (Wilkinson, 1965). For any given degenerate
rate � and �1; : : : ; �r with �i �= �j when i �= j, let

Q(�; �1; : : : ; �r) =




1 · · · 1

�+ �1 · · · �+ �r

(�+ �1)2 · · · (�+ �r)2

...
. . .

...

(�+ �1)r−1 · · · (�+ �r)r−1



;

f(s; r) = (s− �− �1) · · · (s− �− �r)

= sr + dr−1sr−1 + · · ·+ d1s+ d0;

E(�; �1; : : : ; �r) =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

−d0 −d1 −d2 · · · −dr−1



;

D(�; �1; : : : ; �r) =




�+ �1 0 0 · · · 0

0 �+ �2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · �+ �r



:

Then

Q−1(�; �1; : : : ; �r)E(�; �1; : : : ; �r)Q(�; �1; : : : ; �r)

=D(�; �1; : : : ; �r): (8)

Lemma 2. Let

gi(s)= |sI−A(i)|=sr+ar−1(i)sr−1+ · · · +a1(i)s+a0(i)

P(i) =




Ar−1(i)b(i)

...

A(i)b(i)

b(i)




T




1 0 0 · · · 0 0

ar−1(i) 1 0 · · · 0 0

...
...

...
. . .

...

a1(i) a2(i) a3(i) · · · ar−1(i) 1



;

&(i) =




1 0 0 · · · 0 0

ar−1(i) 1 0 · · · 0 0

...
...

...
. . .

...

a1(i) a2(i) a3(i) · · · ar−1(i) 1




T




c(i)Ar−1(i)

...

c(i)A(i)

c(i)



:

If (A(i); b(i)) is controllable and (A(i); c(i)) is observable,
then there exists K(i) and PL(i) given by

K(i) = [dc0 − a0(i); : : : ; dcr−1 − ar−1(i)]P−1(i); (9)

PL(i) = &−1(i)[do0 − a0(i); : : : ; dor−1 − ar−1(i)] (10)

such that

Ã(i) = P(i)Q(�; �c1; : : : ; �
c
r)D(�; �

c
1; : : : ; �

c
r)

Q−1(�; �c1; : : : ; �
c
r)P

−1(i); (11)

Â(i) = &−1(i)(QT)−1(�; �o1; : : : ; �
o
r )D(�; �

o
1; : : : ; �

o
r )

QT(�; �o1; : : : ; �
o
r )&(i) (12)

where

Ã(i) = A(i)− b(i)K(i); Â(i) = A(i)− PL(i)c(i):

Proof. It is straightforward by using Lemma 1 and the pole
assignment method (Chen, 1984).

Lemma 3. Suppose that (c(i); A(i)) is observable, then for
any L∈Rr , (c(i); A(i)− Lc(i)) is observable.

For any desired decay rate � and observer state X ∗(t), we
denote

e(t) = X (t)− X ∗(t);

((�1; : : : ; �r ; t) =




e�1t 0 · · · 0

0 e�2t · · · 0

...
...

. . .
...

0 0 · · · e�rt



;

)1(i; �; �c1; : : : ; �
c
r ; t);

= eÃ(i)t = P(i)Q(i�; �c1; : : : ; �
c
r t)((i; �; �

c
1; : : : ; �

c
r ; t); (13)

Q−1(i�; �c1; : : : ; �
c
r)P

−1(i)

)2(i; �; �o1; : : : ; �
o
r ; t) = eÂ(i)t

= &−1(i)(QT)−1(i�; �o1; : : : ; �
o
r t)((i; �; �

o
1; : : : ; �

o
r ; t)

QT(i; �; �o1; : : : ; �
o
r t)&(i) (14)
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)3(i; �; �c1; : : : ; �
c
r ; �

o
1; : : : ; �

o
r ; t2 − t1)

=
∫ t2

t1
eÃ(i)(t2−t)b(i)

[do0 − a0(i); : : : ; dor−1 − ar−1(i)]P−1(i)eÂ(i)(t−t1) dt: (15)

Then, we have[
Ẋ (t)

ė(t)

]
=

[
A(i)− b(i)K(i) −b(i)K(i)

0 A(i)− PL(i)c(i)

][
X (t)

e(t)

]
;

ỹ(t) = y(t)− y∗(t) = [0 c(i)]

[
X (t)

e(t)

]
: (16)

Suppose that the mode of the system is iwithin the interval
[tsj ; t

s
j+1], using Lemmas 1 and 2, we have

e(tsj+1) = )2(i; �; �o1; : : : ; �
o
r ; t

s
j+1 − tsj)e

(tsj+1−tsj )�e(tsj)

X (tsj+1) =)1(i; �; �c1; : : : ; �
c
r ; t

s
j+1 − tsj)e

(tsj+1−tsj )�X (tsj)

+)3(i; �; �c1; : : : ; �
c
r ; �

o
1; : : : ; �

o
r ; t

s
j+1 − tsj)

e(t
s
j+1−tsj )�e(tsj):

Thus, we have

‖e(tsj+1)‖6 �1=2max()
T
2)2)e�(t

s
j+1−tsj )‖e(tsj)‖; (17)

‖X (tsj+1)‖6 �1=2max()
T
1)1)e�(t

s
j+1−tsj )‖X (tsj)‖

+ �1=2max()
T
3)3)e�(t

s
j+1−tsj )‖e(tsj)‖: (18)

From the above derivations, we know that the key problem
is how to choose �cj (j = 1; 2; : : : ; r) and �oj (j = 1; 2; : : : ; r)
such that for any given decay rate �¡ 0, all t¿MT and all
i = 1; 2; : : : ; n, we have

�max()T
1 (i; �; �

c
1; : : : ; �

c
r ; t))1(i; �; �c1; : : : ; �

c
r ; t))¡

1
4+4

�max()T
2 (i; �; �

o
1; : : : ; �

o
r ; t))2(i; �; �o1; : : : ; �

o
r ; t))¡

1
4+4

�max()T
3 (i; �; �

c
1; : : : ; �

c
r ; �

o
1; : : : ; �

o
r ; t)

)3(i; �; �c1; : : : ; �
c
r ; �

o
1; : : : ; �

o
r ; t))¡

1
4+4

;

where �max(A) denotes the maximum eigenvalue of matrix
A, and +4¿ 1 can be chosen to give some Wexibility in
determining the switching time of the observer and the
controller.
This problem will be solved by using a “deep pole as-

signment method” through the following three lemmas. The
proofs are omitted due to the space limitation.

Lemma 4. Given any desired decay rate �¡ 0 and
t ¿ 0, there exist �̃cj(i; �; t)¡ 0 (j = 1; 2; : : : ; r) and
�̃oj (i; �; t)¡ 0 (j = 1; 2; : : : ; r), such that

�max()T
1 (i; �; �̃

c
1; : : : ; �̃

c
r ; t)

)1(i; �; �̃c1; : : : ; �̃
c
r ; t))¡

1
4+4

�max()T
2 (i; �; �̃

o
1; : : : ; �̃

o
r ; t))2(i; �; �̃o1; : : : ; �̃

o
r ; t))¡

1
4+4

�max()T
3 (i; �; �̃

c
1; : : : ; �̃

c
r ; �̃

o
1; : : : ; �̃

o
r ; t)

)3(i; �; �̃c1; : : : ; �̃
c
r ; �̃

o
1; : : : ; �̃

o
r ; t))¡

1
4+4

:

Lemma 5. Given any �¡ 0, there exist �̂cj(i; �)¡ 0

(j = 1; 2; : : : ; r) and �̂oj (i; �) (j = 1; 2; : : : ; r), such that

�max()T
1 (i; �; �̂

c
1; : : : ; �̂

c
r ; t))1(i; �; �̂c1; : : : ; �̂

c
r ; t))¡

1
4+4

�max()T
2 (i; �; �̂

o
1; : : : ; �̂

o
r ; t))2(i; �; �̂o1; : : : ; �̂

o
r ; t))¡

1
4+4

�max()T
3 (i; �; �̂

c
1; : : : ; �̂

c
r ; �̂

o
1; : : : ; �̂

o
r ; t)

)3(i; �; �̂c1; : : : ; �̂
c
r ; �̂

o
1; : : : ; �̂

o
r ; t))¡

1
4+4

for t ∈ [MT;M,i]; i∈{1; 2; : : : ; n}, where M,i is a 8nite
positive number that bounds the switching interval of
CVDS i.

Lemma 6. Given any desired decay rate �¡ 0, there
exist �̃cj ¡ 0 (j = 1; 2; : : : ; r) and �̃oj ¡ 0 (j = 1; 2; : : : ; r),
such that

�max()T
1 (i; �; �̃

c
1; : : : ; �̃

c
r ; t))1(i; �; �̃c1; : : : ; �̃

c
r ; t))¡

1
4+4

�max()T
2 (i; �; �̃

o
1; : : : ; �̃

o
r ; t))2(i; �; �̃o1; : : : ; �̃

o
r ; t))¡

1
4+4

�max()T
3 (i; �; �̃

c
1; : : : ; �̃

c
r ; �̃

o
1; : : : ; �̃

o
r ; t)

)3(i; �; �̃c1; : : : ; �̃
c
r ; �̃

o
1; : : : ; �̃

o
r ; t))¡

1
4+4

for t¿MT; i∈{1; 2; : : : ; n}.

Based on the above 8ve lemmas, we can design the sub-
controller and subobserver for each subsystem. The initial
states for the 8rst subobserver are arbitrary while the ini-
tial states for the subsequent subobserver are the same as
the end states of the previous subobserver. Meanwhile, we
also need to identify the active subsystems, the switching
instances of the system such that the appropriate switchings
of the controller and the observer can be well de8ned.
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To identify the mode of the system, we note that for
any given A(î); PL(i); K(i); b(i); c(î), there exists a constant
t∗i 6 +1MT=3 where +1¡ 1, such that

‖e(A(î)− PL(i)c(î))t∗i ‖2
e2�t∗i

6 2; 16 i �= î6 n; (19)

‖e(A(î)−b(î)K(i))t∗i ‖2
e2�t∗i

6 2; 16 i �= î6 n; (20)

‖ ∫ t∗i
0 e(A(î)−b(î)K(i))(t∗i −t)b(î)K(i)e(A(î)− PL(i)c(î))t dt‖2

e2�t∗i
6 2;

16 i �= î6 n: (21)

Remark 1. Note that (19)–(21) hold when t∗i =0, the right
sides of (19)–(21) are continuous functions of t∗i . It follows
that there exists a t∗i 6 +1MT=3 such that (19)–(21) hold.

Suppose that the mode of the system is lj within [tsj−1; t
s
j ].

Since [c(lj); A(lj)− PL(k)c(lj)] is observable for any mode
k ∈ PM , e(t) and X (t) can be obtained by using the value of
ỹ(�) in (16) when � is in the interval [tsj ; t

s
j + t∗lj ], and it is

of the following form:

e(t) =

[∫ t+t∗lj

t
e(A(lj)−

PL(k)c(lj))T(t∗lj+t−�)cT(lj)

× c(lj)e
(A(lj)− PL(k)c(lj))(t∗lj+t−�) d�

]−1

×
∫ t+t∗lj

t
e(A(lj)−

PL(k)c(lj))T(t+t∗lj−�)cT(lj)ỹ(�) d�

X (t) = e(t) + X ∗(t):

Then, we can compute ŷ(�)=C(k)X (�); �∈ [tsj ; t
s
j + t∗

î
] for

a certain k �= lj. If ŷ(�) = y(�) holds for all �∈ [tsj ; t
s
j + t∗lj ],

then the mode of the system is k. Otherwise, we need to
check other mode. In this way, we can identify the active
mode of the system.
Next, we need to identify the switching instance of the

system as follows:

ts0 = t0;

tsj = sup
t
{t ¿ tcj−1‖|X ∗(t − t∗lj)‖2

6
1
2j
e2�(t−t∗lj−t0)‖X ∗(t0)‖2}:

Finally, we need to de8ne the switching instances of the
observers and the controllers. Suppose that toj and tcj are
respectively the jth switching instance of the observer and
the controller, we choose tcj = toj and it is de8ned according
to the following 8ve cases:
Case 1: /1(j) �= ∅, /2(j) �= ∅ and /1(j) ∩ /2(j) �= ∅.

toj ∈/1(j) ∩ /2(j): (22)

Case 2: /1(j) �= ∅, /2(j) �= ∅ and /1(j) ∩ /2(j) = ∅.
toj = inf

t∈/1( j)∪/2( j)
{t}: (23)

Case 3: /1(j) �= ∅ and /2(j) = ∅.
toj ∈/1(j): (24)

Case 4: /1(j) = ∅ and /2 �= ∅.
toj ∈/2(j): (25)

Case 5: /1(j) = ∅ and /2(j) = ∅.
toj = tsj +

2+1MT
3

; (26)

where

/1(j) =
{
t | t¿ toj−1 +

(
1− 2+1

3

)
MT; |t − tsj |6

2+1MT
3

;

1
2j
e2�(t−t∗lj−t0)‖e(t0)‖26 ‖e(t − t∗lj)‖2

6
+4
2j
e2�(t−t∗j −t0)‖e(t0)‖2

}
; (27)

/2(j) =
{
t | t¿ toj−1 +

(
1− 2+1

3

)
MT; |t − tsj |6

2+1MT
3

;

1
2j
e2�(t−t∗lj−t0)(‖X (t0)‖2 + (2j − 1)‖e(t0)‖2)

6 ‖X (t − t∗j )‖2

6
+4
2j
e2�(t−t∗lj−t0)((2j − 1)‖e(t0)‖2

+ ‖X (t0)‖2)
}

(28)

with to0 = tc0 = t0 ++1MT=3, and e(t0) and X (t0) are obtained
by the following equations:

e(t0) =

[∫ t0+(+1MT=3)

t0
e(A(l1)− PL(l1)c(l1))T(t0+(+1MT=3)−t)cT(l1)

× c(l1)e(A(l1)−
PL(l1)c(l1))(t0+(+1MT=3)−t) dt

]−1

×
∫ t0+(+1MT=3)

t0
e(A(l1)− PL(l1)c(l1))T(t0+(+1MT=3)−t)cT(l1)y(t) dt

X (t0) = e(t0) + X ∗(t0);

where l1 is the initial mode of the system.

Remark 2. In the sets (27) and (28), the key idea is to re-
strict ‖X (toj−t∗lj)‖26 (+4=2j)e

2�(toj−t∗lj−t0)((2j−1)‖e(t0)‖2+
‖X (t0)‖2) and ‖e(toj − t∗j )‖26 (+4=2j)e2�(t

o
j−t∗j −t0)‖e(t0)‖2}

when toj − t∗j ¿ tsj .

With the above switchings for the controller and observer,
we have the following result.
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Theorem 1 (Observer-based switching control theorem).
Consider the switching system (1) with switching laws (I)
or (II). Suppose that the system satis8es Assumption 1,
then for any given decay rate �¡ 0, there exist an r dimen-
sional observer of the form (6) and a feedback controller
of the form (7) for mode i with the switching instances of
the controller and the observer de8ned in (22), such that

lim
t→∞e

−�t‖X (t)‖= 0:

Proof. For each subsystem i and any given decay rate �. Us-
ing Lemmas 4–6, we can select �c1; : : : ; �

c
r , �

o
1; : : : ; �

o
r . Based

on these eigenvalues, an r dimensional observer of the form
(6) and a feedback controller of the form (7) can be de-
signed by using Lemmas 1–2. The design of the switchings
of the controller and the observer is given in (22).
Suppose that the switching instances of the system are

ts1; t
s
2; : : : ; t

s
g and the switching instances of the controller are

tc1; t
c
2; : : : ; t

c
g, and t ¿ tcg. Note that for 8nite switching sys-

tems, g is 8nite and g → ∞ for in8nite switching systems.
Further, we suppose that the mode of the system is li within
the interval [tsj−1; t

s
j ].

It can be easily proved by the induction method that

(a) For any j, we have

tcj − t∗j = toj − t∗j ¿ tsj : (29)

(b) For any j,

‖e(toj − t∗j )‖26
+4
2j
e2�(t

o
j−t∗j −t0)‖e(t0)‖2 (30)

holds for both /1(j) = ∅ and /1(j) �= ∅.
(c) For any j,

‖X (toj − t∗j )‖26
+4
2j
e2�(t

o
j−t∗j −t0)((2j − 1)‖e(t0)‖2

+ ‖X (t0)‖2) (31)

holds for both /2(j) = ∅ and /2(j) �= ∅.

We shall now prove that for any tsg+1¿t¿ tog , we have

‖e(t)‖26M1e2�(t−tog)‖e(tog)‖2;

‖X (t)‖26M1e2�(t−tog)(‖e(tog)‖2 + ‖X (tog)‖2):
Using Lemmas 4–6, we have

‖e(t)‖2 = eT(tog)e
ÂT(lg)(t−tog)eÂ(lg)(t−tog)e(tog)

= e2�(t−tog)eT(tog))
T
2 (lg; �; �

o
1; : : : ; �

o
r ; t − tog)

×)2(lg; �; �o1; : : : ; �
o
r ; t − tog)e(t

o
g)

6 �max()T
2 (lg; �; �

o
1; : : : ; �

o
r ; t − tog)

×)2(lg; �; �o1; : : : ; �
o
r ; t − tog))e

2�(t−tog)‖e(tog)‖2

6M1e2�(t−tog)‖e(tog)‖2: (32)

Similarly,

‖X (t)‖26M1e2�(t−tog)(‖X (tog)‖2 + ‖e(tog)‖2);
where if the bound of the interval is known, then

M1 = max
16j63

max
16i6n

max
06t6Mti

{0j(i; t)};

else

M1 = max
16j63

max
16i6n

max
06t6∞

{0j(i; t)};

where

01(i; t) = �max()T
1 (i; �

c
1; : : : ; �

c
r ; t))1(i; �c1; : : : ; �

c
r ; t));

02(i; t) = �max()T
2 (i; �

o
1; : : : ; �

o
r ; t))2(i; �o1; : : : ; �

o
r ; t));

03(i; t) = �max()T
3 (i; �

c
1; : : : ; �

c
r ; �

o
1; : : : ; �

o
r ; t)

)3(i; �c1; : : : ; �
c
r ; �

o
1; : : : ; �

o
r ; t)):

Finally, we shall prove that the required result holds. Let

M2 = max
06t6+1MT

max
i �=j

max
{‖e(A(i)+b(i)K( j))t‖2e−2�+1MT ;

‖e(A(i)+L̃( j)c(i))t‖2e−2�+1MT

×
∥∥∥∥
∫ t

0
e(A(i)+b(i)K( j))(t−�)b(i)K(j)e(A(i)+L̃( j)c(i))� d�

∥∥∥∥
2

e−2�+1MT
}
:

It follows that when tog+1¿t¿ tsg+1, we have

‖e(t)‖26M2e2�(t
s
g+1)‖e(tsg+1)‖2; (33)

‖X (t)‖26M2e2�(t
s
g+1)(‖e(tsg+1)‖2 + ‖X (tsg+1)‖2): (34)

Using inequalities (30) and (32), and when tsg+1¿ t ¿ tog ,
we have

‖e(t)‖26M1e2�(t−tog)‖e(tog)‖2

6 2M1e2�(t−tsg+t
∗
g )‖e(tsg − t∗g )‖2

¡
+4M1

2g−1 e
2�(t−t0)‖e(t0)‖2:

Using inequality (33), and when tog+1¿t¿ tsg+1, we have

‖e(t)‖26M2e2�(t−tsg+1)‖e(tsg+1)‖2

¡
M2

2g+1 e
2�(t−t0)‖e(t0)‖2:

Thus

‖e(t)‖26max
{
+4M1;

M2

4

}
1

2g−1 e
2�(t−t0)‖e(t0)‖2:

Similarly, we have

‖X (t)‖2 ¡max
{
+4M1;

M2

4

}
1

2g−1

e2�(t−t0)((2g+ 1)‖e(t0)‖2 + ‖X (t0)‖2):
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Note that g → ∞=t → ∞ and

lim
g→∞max

{
+4M1;

M2

4

}
1

2g−1 ((2g+ 1)‖e(t0)‖2

+ ‖X (t0)‖2) = 0:

It follows that

lim
t→∞ e−�t‖X (t)‖= 0:

4. Numerical example

Example 1. Consider a switching linear system which is
composed of two modes:
Mode 1:

A(1) =

[
1 1

0 1

]
; b(1) =

[
0

1

]
; c(1) = [1 0]:

Mode 2:

A(2) =

[
1 0

1 1

]
; b(2) =

[
1

0

]
; c(2) = [0 1]:

Due to space limitation, we only consider switching law I.
The durations for modes 1 and 2 are 3 and 4 s, respectively.
The initial state of the system is X (0) = [100 200]T, the
initial state of the observer is X ∗(0)=[50 50]T and the initial
mode for the system is mode 1. We choose the desired decay
rate as �= 1.
Let the controllers be

K(1) = [25 10] and K(2) = [10 25]

and the observers be

PL(1) =

[
10

25

]
and PL(2) =

[
25

10

]
:

The time responses of et × X (t) and control input of the
switching control system are given in Figs. 1–3. Clearly, the
states converge exponentially to zero.
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Fig. 1. The responses et × X1(t) of the system.
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Fig. 2. The responses et × X2(t) of the system.
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Fig. 3. The control input u(t) of the system.

5. Conclusion

In this paper, we have used the pole assignment method
to design an observer-based controller for both the 8nite
and in8nite switching linear systems. The switching of the
controller and the observer do not need to coincide exactly
with the switchings of the system. We have reconstructed
the state of the system and the error between the state and
the estimate of the system by the output of the system in
some interval. The state and the error have been used to
determine the switching instances of the controller and the
observer. It has been shown that the proposed method can
achieve any prescribed decay rate.
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