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Abstract

This paper presents a robust backstepping adaptive controller to overcome the overparameterization problem in adaptive control
of nonlinear discrete-time systems. It is shown that the proposed controller can guarantee the global boundedness of the states of the
whole adaptive system in the presence of time-varying parametric and nonparametric uncertainties. It can also ensure that the
tracking error falls within a compact set whose size is proportional to the magnitude of the uncertainties and disturbances. ( 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Through the use of appropriate Lyapunov functions,
much progress has been achieved in adaptive control
of nonlinear continuous-time systems in the last few
years (KokotovicH , 1991; Kanellakopoulos, KokotovicH ,
& Morse, 1991; Marino, Praly, & Kanellakopoulos,
1992; Pomet, & Praly, 1992; Krstic, Kanellakopoulos,
& KokotovicH , 1995; Kanellakopoulos, 1995). In contrast,
very few results have been reported on nonlinear dis-
crete-time systems (see Zhang, Wen, & Soh, 2000, and the
references therein). This may be attributed to the di$-
culty to construct a discrete-time Lyapunov function
whose increment is linear in the variations of its
variables. As a preliminary study, the backstepping
technique was employed in Yeh and KokotovicH (1995)
to design an adaptive controller for nonlinear discrete-
time systems without using Lyapunov functions. In
Zhao and Kanellakopoulos (1997a) and Zhao and
Kanellakopoulos (1997b), another new recursive design
scheme which is di!erent from the standard backstepping

qThis paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor
J.W. Polderman under the direction of Editor Frank Lewis.

*Corresponding author: Tel.: #65-7994947; fax: #65-7912687.
E-mail address: ecywen@ntu.edu.sg (C. Wen).

approach was proposed for the adaptive control of non-
linear discrete-time systems. However, all these results in
Yeh and KokotovicH (1995); Zhao and Kanellakopoulos
(1997a) and Zhao and Kanellakopoulos (1997b) were
obtained in ideal cases where the systems are assumed to
be modelled exactly. The design of an adaptive controller
for uncertain nonlinear discrete-time systems remains
unsolved. Again, the lack of suitable Lyapunov functions
makes it a tough task to establish robust stability in the
presence of model uncertainties.

Recently, the problem was addressed in Zhang et al.
(1999) where local stability is guaranteed without using
Lyapunov functions. Later, a similar backstepping adap-
tive controller was designed in Zhang, Wen, and Soh
(2000) to achieve a global robust stability for a class of
nonlinear discrete-time systems with uncertainties. How-
ever, the parameter estimation has to be performed in
each backstepping step in Zhang et al. (2000) in order to
obtain certain properties that are crucial to the robust
stability analysis. This gives rise to the overparameteriz-
ation problem as mentioned in Krstic et al. (1995). In the
presence of unmodelled dynamics, this problem cannot
be avoided in the same way as in Yeh and KokotovicH
(1995), where the parameter estimation is only carried
out in the "rst step of backstepping design. Otherwise,
only the unmodelled dynamics entering the system in
the "rst system state equation can be considered in the
properties of the parameter estimator. Also this problem
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cannot be easily solved by simply postponing the para-
meter estimation in Zhang et al. (2000) to the last back-
stepping step. This is because it is di$cult to obtain those
estimator properties in Zhang et al. (2000) which are
crucial to the robust stability analysis as in Zhang et al.
(2000).

In this paper, the overparameterization problem is
addressed and an adaptive controller with only one para-
meter estimator is presented. As observed in Zhang et al.
(1999, 2000), the parameter estimator needs to have sim-
ilar properties as in Zhang et al. (2000) in order to
establish robust stability in the same way as in Zhang
et al. (2000). To this end, the parameter estimator in the
proposed adaptive controller is not only postponed to
the last step of the backstepping design but also construc-
ted by using all the errors between the actual states and
the virtual control variables in each backstepping step. In
addition, all nonlinear system functions are employed in
the normalization term of the parameter estimation.
These make it possible to obtain those required proper-
ties by accounting for all the unmodelled dynamics no
matter where they enter the system. It is shown that the
proposed adaptive controller can guarantee the global
stability of the adaptive system and a small-in-the-mean
tracking error. Moreover, since only the lumped e!ect of
the system nonlinearities are required in a sector, the
restriction su!ered by Zhang et al. (2000) are greatly
relaxed, which greatly enlarges the class of systems
considered in Zhang et al. (2000).

2. Problem formulation

Consider a class of uncertain nonlinear time-varying
discrete-time systems described by
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where u(t) and y(t) represent the system input and output,
respectively, and h(t) is the unknown time-varying para-
meter vector in Rp. For each 14i4n, a
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1, 2,2, n in the remaining parts of the paper.
In the discrete-time system described by (1), two kinds

of uncertainties are considered. One is parametric uncer-
tainty denoted by the unknown time-varying parameter
vector h(t). The other is the nonparametric uncertainty

denoted by unknown functions g
i
(t), which may often

be due to modelling errors and external disturbances.
For these uncertainties, we usually have the following
assumptions.

Assumption A.1. The unknown parameter h(t) lies in
a known convex compact set #, i.e.,
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where kh is a positive constant.
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where ke and eh are constants.

Remark 2.1. As no smallness restriction is imposed on ke ,
this assumption not only allows for slowly time varying
parameters in a uniform way as in Wen and Hill (1992)
and Wen (1994), but also takes into account time-varying
parameters with big jumps.

Assumption A.3. There exist constants e and d such that
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where cg is a constant. It will be shown later that
knowledge of e and d is not required to implement
the proposed adaptive controller.

Remark 2.2. From (4), it is noted that the modelling
error g

i
(t) can have in"nite memory as the function

max
0yqyt~1

DD ) DD is included. However, this makes the
stability analysis more di$cult especially when the
knowledge of e and d are not available.

For nonlinear functions a
i
(t), we have the following

assumption.

Assumption A.4. All the known nonlinear functions a
i
(t)

satisfy the following two conditions:
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where k@a and ka are arbitrary positive constants. All the
norms in this paper are vector norms.

552 Y. Zhang et al. / Automatica 37 (2001) 551}558



Remark 2.3. In comparison with the similar assumption
employed in Zhang et al. (2000), (5) gives a weaker restric-
tion on the nonlinearities as only the sum of DDa

i
(t)DD is

assumed to be bounded below by the norm of the states.
This condition is easier to satisfy than that required in
Zhang et al. (2000) where each of functions DDa

i
(t)DD is

required to be bounded below with a nonzero k@a .

The adaptive control problem is to obtain a control
law for plant (1) such that all the signals in the resulting
closed-loop system are bounded for arbitrary bounded
reference set-point y

m
(t) and initial conditions, and the

tracking error Dy(t)!y
m
(t)D is small in some sense.

3. Adaptive control design using backstepping technique

The desired controller can be obtained by performing
the following backstepping procedures.
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The update law for hK (t) will be obtained in the last step of
the backstepping design.

Step j (24j4n!1): To proceed, the following
functions are needed:
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Step n: This is the last step of the backstepping design
in which the control law and the adaptive law are given.

For system (1), the control law is taken as
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The update law for hK (t) is given by
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Compared with (Zhang et al., 2000), the parameter es-
timation is only carried out once in the last step. It is also
noted that the parameter estimator given in (17) uses all
the predicted errors in the backstepping steps, which will
be found in the next section, it brings much convenience
to the robust stability analysis.

Substituting (15) into (1), we have
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The resulting closed-loop system is expressed by
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4. Stability analysis

In this section, we will show that there exist small
constants eH and eHh such that for each e3[0, eH] and
eh3[0, eHh ], all the signals in the closed-loop system (23)
are bounded for any bounded initial conditions, bounded
tracking reference signal and external disturbances. As
observed in Zhang et al. (1999, 2000) the robust stability
can be obtained using an inductive approach if the para-
meter estimator satis"es some appropriate properties as
those in Zhang et al. (1999, 2000). Thus, the properties of
the parameter estimator (24) are "rstly investigated and
summarised in the following lemma. The proof of the
lemma is given in the Appendix.
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From this lemma, it can be seen that the proposed
parameter estimator has similar properties as in Zhang et
al. (1999, 2000). It is noted from the proof of the lemma
that these properties are obtained through the use of all
prediction errors in the parameter estimator rather than
simply postponing the parameter estimation to the last
backstepping step.

Remark 4.1. Note that M
0

is not a design parameter and
it is only used for stability analysis. For any bounded x(0)
and y

m
(t), such a constant M

0
always exists.

With these properties, the stability together with
a tracking property of the closed-loop system can be
established by following a similar method as in Wen
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(1994) and Zhang et al. (1999, 2000) where an inductive
strategy is adopt. The details are omitted here due to
space limit.

Theorem 1. Consider the adaptive system consisting of
plant (1), update law (17) and controller (15). Under As-
sumptions A.1}A.4, there exist constants eH and eHh such that
for each e3[0, eH] and eh3[0, eHh ], DDz(t)DD is bounded for all
bounded initial conditions and setpoints. In addition, the
tracking error satisxes
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As a special case, it can be concluded that if there is no
nonparametric uncertainity and the system parameters
are constants, i.e., e"0, eh"0 and d"0, DDhK (t#1)!
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which implies perfect tracking is achieved.

Remark 4.2. In the above theorem, eH and eHh play a role
like the stability margin for the overall system. The exist-
ence of such constants show certain degree of robustness
of the proposed controller.

e and eh depend on the magnitude of the ignored
unmodelled dynamics and variations rate of the nominal
parameters. Clearly, small magnitude will give small
e and eh . In the ideal case, e"0 and eh"0. Similar to all
the results on robustness (adaptive or nonadaptive) with
respect to unmodelled dynamics, it is not necessary to
specify the values of e and eh as they are not design
parameters (Narendra & Annaswamy, 1989).

5. Conclusion

This paper presents a scheme of designing adaptive
controller for a class of nonlinear uncertain discrete-time
systems. The proposed adaptive controller overcomes the
overparameterization problem in adaptive control of
nonlinear discrete-time systems by backstepping design.
The success is attributed to employing all the prediction
errors of all the backstepping steps in the parameter
adaptive law. It is di!erent from the results in Yeh and
KokotovicH (1995) and Zhang et al. (1999, 2000) where the
overparameterization problem in the presence of un-
modelled dynamics is usually very di$cult to handle by
simply postponing the parameter estimation to the last
step. With the proposed controller, the global bounded-
ness of the adaptive closed-loop system is guaranteed for
any bounded initial conditions, set-point signals and
external disturbances. Moreover, a small-in-the-mean
tracking error can be achieved.

A.1 Appendix Proof of Lemma 1

In order to achieve the conclusions in Lemma 1, the
following lemma is useful.

Lemma A.1. Using the same denotations, we have the
following inequality.
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Finally, assume (A.1) holds for all 14p4i!1, i.e.,

DhI (t#1)Ta6
p,k

(t#1)!hI (t)Ta6
p,k`1

(t)D

4c
1,p

DDe
*k~p`1,k+

(t#1)DD#c
2,p

DDs
*k~p`1,k+

(t#1)DD

#c
3,p

DDz
*k~p`2,k`1+

(t)DDDe8 (t#1)D, (A.6)

where c
1,p

, c
2,p

and c
3,p

are constants depending upon
ka and kh . Then we show that (A.1) is also true for p"i.

From the de"nitions of a6
i,k

(t), it follows that
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Using (6), (33) and noting that a6
i,k`1

(t) is a function of
zt
k`1

, zt
k
,2, zt

k~i`2
, we have
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where K@ is a constant depending on kh and ka .
Substituting (19) and (A.6) into (A.8) gives
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where c
m,i

(m"1, 2, 3) are constants combining
c
m,p

(m"1, 2, 3; 14p4i!1), ka and kh . Thus
c
m,i

(m"1, 2, 3) are dependent on kh and ka only. So, we
have proved inequality (A.1).

Proof of Lemma 1. (i) From the de"nitions of e
i
(t#1),

we have

e
i
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i
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i
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Applying Assumptions A.1, A.3 and A.4 gives

De
i
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DDx(q)DD#d (A.11)
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where M2
1
"k

1
(k@aM0

)2#k
2

is used.
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0
, it follows immediately that
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From (31), (A.12) and Assumption A.4, we have
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(ii) Let hK (q) denote a parameter estimate before ap-
plying a projector ), i.e.,

hK
p
(q#1)!hK (q)"

+n
i/1

a
i
(q)+n

i/1
e
i
(q#1)

1#DD+n
i/1

a
i
(q)DD2#+n

i/1
DDa

i
(q)DD2

.

Then

DDhK (q#1)!hK (q)DD4DDh
p
(q#1)!hK (q)DD

"

DD+n
i/1

a
i
(q)DDD+n

i/1
e
i
(q#1)D

1#DD+n
i/1

a
i
(q)DD2#+n

i/1
a
i
(q)DD2

4De8 (q#1)D, ∀q.

(A.15)

(iii) Introducing v(t#1)"hI T(t#1)hI (t#1), we get

v(q#1)!v(q)4hI
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p
(q#1)!hI (q)]T[hI

p
(q#1)!hI (q)#2hI (q)] (A.16)
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From (A.10), we have
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Combining (4), (30), (31), (A.10), (A.17) and (A.8), we have
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Therefore,
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Summing both sides of (A.20) gives
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which con"rms (34) by applying Assumption A.2.
(iv) Using Lemma A.1, it follows immediately from the

de"nition of s
i
(t#1) that
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where c@
m,i

(m"1, 2, 3) are constants.
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Since s
1
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2
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ka Dzt2 DDe8 (t#1)D, it can be shown from (A.22) that
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where cA
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are constants combining kh and ka .
Taking c

1
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N and c

2
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(35) follows.
Using (29) and inequality
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Eq. (36) follows.

Remark A.1. Note that the constants a
1
, a@

1
and a

2
are

functions of e and eh which depends on the magnitude of
the unmodelled dynamics, external disturbances and
variations rate of the nominal parameters. In the ideal
case that the system has no nonparameteric uncertainties
and all the nominal system parameters are constants,
they are equal to zeros and the update law has the same
properties as those given in Yeh and KokotovicH (1995).
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