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Abstract

This Letter derives some sufficient conditions for the stabilization and synchronization of Lorenz systems via impulsive
control with varying impulsive intervals. Compared with the existing results, these conditions are less conservative in that
the Lyapunov function is only required to be nonincreasing along a subsequence of switchings, instead of the whole
sequence of switchings. Moreover, a larger upper bound of impulsive intervals for the stabilization and synchronization can
be obtained. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In practice, there exist many examples of impul-
Ž w x.sive control systems see 1,5,10 . Recently, impul-

sive control has been widely used to stabilize and
Ž w x.synchronize chaotic systems see 2–4,8,9,11–13 .

w xFor example, Schweizer and Kennedy in 9 pro-
posed an impulsive control scheme with varying
impulsive intervals for chaotic systems; Yang and

w xChua in 11 derived some sufficient conditions for
the stabilization and synchronization of Chua’s oscil-

w xlators via impulsive control; Yang et al. in 12,13
studied, respectively, the stabilization and synchro-
nization of a class of chaotic systems called Lorenz
systems. The importance of impulsive control is that
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in many cases impulsive control may give an effi-
cient method to deal with systems, which cannot
endure continuous disturbance.

In this Letter, we first consider the stabilization of
Lorenz systems via impulsive control with varying
impulsive intervals. Some conditions are derived un-
der which the impulsively controlled Lorenz system
is asymptotically stable. Then, impulsive synchro-
nization of two Lorenz systems are studied, and
some conditions are also obtained for the asymptotic
stability. Compared with the existing results obtained

w xin 12,13 , these conditions for the stabilization and
synchronization of Lorenz systems are less conserva-
tive in that the Lyapunov function is only required to
be nonincreasing along a subsequence of switchings,
instead of the whole sequence of switchings. More-
over, a greater upper bound of impulsive intervals
can be obtained.
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The rest of the Letter is organized as follows. In
Section 2, we introduce some basic definitions and
supporting results. Sections 3 and 4 discuss, respec-
tively, the stabilization and synchronization of Lorenz
systems. Finally, concluding remarks are given in
Section 5.

2. Supporting results

w xAn impulsive differential system 5 is described
by

˙Ž . Ž Ž ..X t s f t , X t , t/t ,i

D½ q yŽ . Ž . Ž . Ž .DX t s X t y X t sU X , tst , is1,2, PPP ,i i

1Ž .
where XgR n is the state variable, f :R =R n

™R n
q

is continuous, U :Rn
™Rn is the change of the statei

q Ž .qvariable at time instant t , t s lim t qe andi i e™ 0 i
y Ž . q y

qt s lim t ye . In words, t and t denotei e™ 0 i i i

respectively the instants just after t and just beforei
� 4t . t :is1,2, PPP ,` satisfyi i

0-t -t - PPP -t -t - PPP ,1 2 i iq1

t ™` as i™`.i

To derive sufficient conditions for the stability of
Ž .system 1 , we first introduce the following defini-

tions.

[ ] nDefinition 1. 1 Let V:R =R ™R , then V isq q
said to belong to Class VV if0

1. ( ] nV is continuous in t ,t =R and foriy 1 i

each XgR n, is1,2, PPP ,

lim V t ,Y sV tq, X 2Ž . Ž .Ž .iqŽ . Ž .t ,Y ™ t , Xi

exists;
2. V is locally Lipschitzian in X.

[ ] ( ) ( ] nDefinition 2. 1 For t,X g t ,t =R , weiy 1 i

define

1DqD V t , X s lim sup V tqh , Xqhf t , XŽ . Ž .Ž .
hh™0

yV t , X . 3Ž . Ž .

We also need the definition of a comparison
system, which plays an important role for the stabil-
ity analysis of impulsive differential systems.

[ ]Definition 3. 1 Let VgVV and assume that0

DqV t , X Fg t ,V t , X , t/t , 4Ž . Ž . Ž .Ž . i

V t , XqU X Fc V t , X , tst , 5Ž . Ž . Ž .Ž .Ž .i i i

where g:R =R ™R is continuous, and c :R ™q q i q
R is nondecreasing. Then the following system:q

°wsg t ,w , t/t ,Ž .˙ i

q~w t sc w t ,Ž .Ž . 6Ž . Ž .i i i

q¢w t sw G0,Ž .0 0

( )is the comparison system of system 1 .

A continuous function g :R ™R is a KK func-q q
Ž .tion if it is strictly increasing and g 0 s0. Let

� n < 5 5 4 5 5S s XgR X -r , where P denotes the Eu-r

clidean norm. To support our analysis in later sec-
tions, the following existing results are presented.

[ ] ( ) ( )Lemma 1. 1 Suppose that for system 1 , f t,0 s0
( ) ( ) ( )and U 0 s0 is1,2, PPP ,` , and for system 6 ,i

( ) ( ) ( )g t,0 s0 and c 0 s0 is1,2, PPP ,` . If the fol-i

lowing conditions are satisfied, then the stability
( )properties of the triÕial solution ws0 of system 6

imply the corresponding stability properties of the
( )triÕial solution Xs0 of system 1 .

.i V:R =S ™R ,r)0,VgVV , andq r q 0

DqV t , X Fg t ,V t , X , t/t ;Ž . Ž .Ž . i

.ii there exists a r )0 such that XgS im-0 r 0

( )plies that XqU X gS for all i andi r 0

V t , XqU X Fc V t , X ,Ž . Ž .Ž .Ž .i i

tst , XgS ;i r 0

.iii ( 5 5 ) ( ) ( 5 5 )b X FV t,X Fa X on R =S ,q r

where a ,bgKK.

The following lemma gives sufficient conditions
Ž .for the stability of system 1 .

˙[ ] ( ) ( ) ( )Lemma 2. 6 For system 6 , let g t,w sl t w,
1[ ] ( )l g C R ,R , and c w s d w, d ) 0, i sq q i i i
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( )1,2, PPP ,`. Then, the origin of system 1 is asymp-
totically stable if the following conditions hold.

� Ž Ž . Ž ..41. sup d exp l t yl t -`;i i iq1 i

2. There exists a j)1 such that

l t q ln j d d Fl t ; 7Ž . Ž . Ž . Ž .2 iq1 2 i 2 iy1 2 iy1

Ž .3. l t satisfies that

l̇ t G0. 8Ž . Ž .

Remark 1. Condition 1 implies that the state Õari-
( )able of system 1 is bounded within any impulsiÕe

interÕal, while condition 2 implies that the LyapunoÕ
( ) Tfunction V t,X sX X is only required to be nonin-

creasing along an odd subsequence of switchings.

3. Impulsive stabilization of Lorenz systems

w xThe state equations of Lorenz system 7 are given
by

xsys xqs y ,°˙
~ ysrxyyyxz , 9˙ Ž .¢ zsxyybz ,˙

Ž .where s ,r,bgR . System 9 is chaotic if ssq
8 T w x10,rs28 and bs . Letting X s x, y, z , then we3

Ž .can rewrite system 9 into the following matrix
form

ẊsAXqF X , 10Ž . Ž .
where

ys s 0 0
As , F X s .Ž .r y1 0 yxz

xy0 0 yb
11Ž .

Ž .Let I denote the identity matrix and r A denote
the spectral radius of A. We now introduce the

Ž .impulsive control for system 10 as follows:

ẊsAXqF X , t/t ,Ž . i 12Ž .½ U X sBX , tst , is1,2, PPP ,Ž .i i

Ž .where B is a symmetric matrix satisfying r IqB
� 4F1, t :is1,2, PPP ,` are varying but satisfyi

� 4D ssup t yt -`, 13Ž .1 1F j-` 2 jq1 2 j

� 4D ssup t yt -`, 14Ž .2 1F j-` 2 j 2 jy1

and for a given constant e ,

� 4t yt Fe t yt ,; jg 1,2, PPP ,` .Ž .2 jq1 2 j 2 j 2 jy1

15Ž .

( ) ( )Remark 2. Conditions 13 and 14 imply that the
( )number of switchings is infinite, while Condition 15

implies that impulsiÕe interÕals may not be equidis-
[ ]tant as required in 12,13 .

Then, the following stability result for the impul-
Ž .sively controlled Lorenz system 12 can be ob-

tained.

( )Theorem 1. The origin of system 12 is asymptoti-
cally stable if there exists a j)1 such that

ln j d2Ž .
0FqFy , 16Ž .

1qe DŽ . 2

( T)where q is the largest eigenÕalue of AqA and
2( )dsr IqB .

Ž . TProof. Let V t, X sX X. Then from the proof of
w xTheorem 3 in 12 and Lemma 1, we can get the

following comparison system

wsqw , t/t ,°˙ i

q~w t sdw t ,Ž .Ž .i i

q¢w t sw G0,Ž .0 0

We now consider the conditions in Lemma 2.
Since

sup dexp qt yqt� 4Ž .i iq1 i

� 4sdexp qmax D ,D -`,Ž .1 2

thus condition 1 in Lemma 2 is satisfied. Further-
more,

qt yqt sq t yt qt ytŽ .2 iq1 2 iy1 2 iq1 2 i 2 i 2 iy1

Fq D qDŽ .1 2

Fq 1qe DŽ . 2

Fyln j d2 ,Ž .
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Ž .where the last inequality holds from 16 . Thus,
condition 2 in Theorem 2 is also satisfied. Therefore,
it follows from Lemma 2 that the origin of system
Ž .12 is asymptotically stable.

Remark 3. For e-1 and any j)1 satisfying 0-

j d-1, if we choose that

2ln j dŽ .
D sy ,2 q 1qeŽ .

( )then condition 16 holds. That is the triÕial solution
( )of system 12 is asymptotically stable. Note that

[ ]0-j d-1 is also required by Theorem 3 in 12 .
HoweÕer, D is greater than the upper bound ob-2

( ) [ ]tained in 22 of 12 . Thus, a larger upper bound of
impulsiÕe interÕals can be obtained through our
approach.

( ) ( )Remark 4. Condition 16 implies that V t,X is only
required to be nonincreasing along an odd subse-
quence of switchings, instead of the whole sequence

[ ]of switchings needed by 12 . Thus, our result is less
conserÕatiÕe.

w xExample 1. We consider Experiment 1 of 12 . For
ease of comparison, in this example we choose the
same parameters as those in that experiment. That is

8
ss10,rs28,bs and3

k 0 0
Bs .0 y1 0

0 0 y1

Ž .2It is easy to find that ds kq1 , qs28.051, and
Ž . Ž .r IqB F1 when kg y2,0 .

For any j)1 satisfying 0-j d-1, if we choose
that es1,

ln j dŽ .
D sD sy ,1 2 q

and for all js1,2, PPP ,`, let t yt sdFD ,jq1 j 1

then the situation is the same as that of Experiment 1
w xin 12 .

However, if we choose that es0.5 and for all
js1,2, PPP ,`,

ln j dŽ .
t yt sD sy ,2 jq1 2 j 1 1.5q

2ln j dŽ .
t yt sD sy . 17Ž .2 j 2 jy1 2 1.5q

Ž .We know that the origin of system 12 with above
parameters is asymptotically stable from Theorem 1.

Ž .But, from 17 we have
t2 jq1 1qdtq ln j d sy ln j d )0.Ž . Ž .H 3

t2 j

w xThus, Theorem 3 in 12 cannot be used to deal with
this case.

4. Impulsive synchronization of Lorenz systems

In this section, we study the impulsive synchro-
nization of Lorenz systems. In an impulsive synchro-
nization configuration, the driving system is given by
Ž .10 , while the driven system is given by

˙̃ ˜ ˜XsAXqF X , 18Ž .Ž .
˜ TŽ .where Xs x, y, z is the state variable of the˜ ˜ ˜

Ž .driven system, A and F are defined in 11 .
At discrete instants, t , is1,2, PPP , the statei

variables of the driving system are transmitted to the
driven system and then the state variables of the
driven system are subjected to jumps at these in-
stants. In this sense, the driven system is modeled by
the following impulsive equations

° ˙̃ ˜ ˜XsAXqF X , t/t ,Ž . i~ 19Ž .¢ ˜ <DX syBe, is1,2, PPP ,tst i

Ž .where B is a symmetric matrix satisfying r IqB
� 4 Ž . Ž . Ž .F1, t :is1,2, PPP ,` satisfy 13 , 14 and 15 ,i

T Ž . Ž .and e s e ,e ,e s x yx, y yy, z y z is the˜ ˜ ˜x y z

synchronization error. Let

0
y xzyxz˜ ˜ Ž .˜˜C X , X sF X yF X s ,Ž .Ž . Ž .

xyyxy˜˜
20Ž .
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then the error system of the impulsive synchroniza-
tion is given by

˜esAeqC X , X , t/t ,Ž .˙ i 21Ž .½ <De sU e sBe, is1,2, PPP ,Ž .tst ii

Note that there exists a positive number M for
Ž . < Ž . < < Ž . <chaotic system 12 such that y t FM and z t

FM for all t. Then, similar to the stabilization of
Lorenz systems, we have the following result.

Theorem 2. The impulsiÕe synchronization of two
( )Lorenz systems, giÕen in 21 , is asymptotically sta-

ble if there exists a j)1 such that

ln j d2Ž .
0F qq2 M Fy , 22Ž . Ž .

1qe DŽ . 2

( T)where q is the largest eigenÕalue of AqA and
2( )dsr IqB .

Ž . TProof. Let V t,e se e. Then from the proof of
w xTheorem 3 in 13 and Lemma 1, we can get the

following comparison system

°ws qq2 M w , t/t ,Ž .˙ i

q~w t sdw t ,Ž .Ž .i i

q¢w t sw G0.Ž .0 0

Then, similar to the proof of Theorem 1, we can
Ž .show that the origin of system 21 is asymptotically

stable.

Remark 5. Based on similar reasons in Remarks 3
and 4, we can get a greater upper bound of impul-

[ ]siÕe interÕals than that obtained in 13 , and the
( )LyapunoÕ function V t,e is also only required to be

nonincreasing along an odd subsequence of switch-
ings, instead of the whole sequence of switchings

[ ]needed by 13 .

Example 2. Similarly, in this example the same
w xparameters as those in Experiment 2 of 13 are

8chosen as ss10,rs28,bs , Ms50 and3

k 0 0
Bs .0 y0.1 0

0 0 y0.1

Ž .We can find that qs28.051, and r IqB F1
Ž .when kg y2,0 . The corresponding impulsive cou-

pling is given by

ke° x

~y0.1e<De s .ytst i ¢y0.1ez

Then we can get

2 2kq1 , if kq1 )0.81Ž . Ž .ds .½ 0.81, otherwise

For any j)1 satisfying 0-j d-1, if we choose
that es1,

ln j dŽ .
D sD sy ,1 2 qq2 M

and for all js1,2, PPP ,`, let t yt sdFD ,jq1 j 1

then the situation is the same as that of Experiment 2
w xin 13 .

However, if we choose that es0.5 and for all
js1,2, PPP ,`,

ln j dŽ .
t yt sD sy ,2 jq1 2 j 1 1.5 qq2 MŽ .

2ln j dŽ .
t yt sD sy . 23Ž .2 j 2 jy1 2 1.5 qq2 MŽ .

Ž .We know that the origin of system 21 with above
parameters is asymptotically stable from Theorem 2.

Ž .But, from 23 we have

t2 jq1 1qq2 M dtq ln j d sy ln j d )0.Ž . Ž . Ž .H 3
t2 j

w xThus, Theorem 3 in 13 cannot be used to study the
stability in this case.

5. Conclusion

This Letter has studied the issue on the stabiliza-
tion and synchronization of Lorenz systems via an
impulsive control with varying impulsive intervals.
Through our approach, some less conservative condi-
tions were derived in that the Lyapunov function is
only required to be nonincreasing along a subse-
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quence of switchings, instead of the whole sequence
of switchings. Moreover, a larger upper bound of
impulsive intervals for the stabilization and synchro-
nization of Lorenz systems can be obtained.
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