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Abstract

This paper presents a scheme for designing a totally decentralized adaptive stabilizers for a class of large-scale systems with
subsystems having arbitrary relative degrees. In the control design, both strong static interactions and weak dynamic interactions are
considered. It is shown that with the proposed controller global stability of the overall system and perfect regulation can be
guaranteed in the presence of these interactions. The transient performance of the adaptive system with the proposed decentralized
controller is also evaluated by both ¸

=
and ¸

2
bounds of the tracking errors. It is shown that these bounds can be made arbitrarily

small by properly choosing the control design parameters. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the control of a large-scale system, adaptive control
strategy is an e$cient and e!ective way to treat the
parametric uncertainties in the system. In the situations
where the centralized information and centralized com-
puting capability are not available or not feasible, totally
decentralized adaptive controllers are viable solutions. In
this case it is required to design a local controller for each
subsystem using only local information while guarantee-
ing the stability of the overall system. Also, it is desired to
obtain a totally decentralized controller with improved
transient performance. This problem has received in-
creasing attention and a number of results have been
obtained. According to the form of the interactions con-
sidered in the control design, these methods can be classi-
"ed into two categories. One is to consider a kind of
static interactions where the norm of states are usually
bounded by a polynomial function (e.g., Ionannou, 1986;

Gavel & Siljak, 1989; Fu, 1992; Shi & Singh, 1992; Wen,
1994a,b; Huseyin, Sezer & Siljak, 1982). The other con-
siders the dynamic interactions (e.g., Ionannou
& Kokotovic, 1985; Hill, Wen & Goodwin, 1988; Wen
& Hill, 1992; Wen, 1994a,b; Ortega, 1996; Wen & Soh,
1997; Ortega & Herrera, 1993). Since dynamic interac-
tions have in"nite memory, it cannot be covered by static
interactions and vice versa. It was shown that strong
interactions between the subsystems can be allowed for
the "rst case while only weak interactions are allowed in
the second kind of decentralized controllers in order to
establish the stability of the whole system. Recently in
Jain and Khorrami (1997a,b), decentralized adaptive
controllers were proposed for a class of large-scale non-
linear systems with static high-order interconnections. In
these recent results, bounded disturbances with special
gains are also considered. However, it is worthy to men-
tion that so far the issue of transient performance was
only considered in the partially decentralized adaptive
control design (see Ho & Datta, 1996). For totally
decentralized adaptive control design, it is still an open
problem.

The major di$culty in the design of totally decentra-
lized adaptive controllers is to establish the stability of
the overall system. In the case of static interactions, it is
easier to employ the second Lyapunov method to obtain
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the stability results. But, it is harder for the case that the
large-scale system has dynamic interactions and subsys-
tems with relative degree greater than two. This di$culty
was lately overcome in Wen and Hill (1992) and Wen
(1994a,b) by using an inductive stability analysis method
and in Ortega and Herrera (1996) by employing a high-
order estimator, where only dynamic interactions were
considered. Recently in Wen (1994a,b), the backstepping
approach was employed to handle the decentralized con-
trol problem for large-scale systems which may have
strong static interactions. The advantage of backstepping
design technique is that the controller and the adaptive
update laws can be designed at the same time, and this
can improve the system transient performance. Also, the
relative degree of the plant to be controlled is not an issue
in the design. Although a backstepping technique was
used to design decentralized adaptive controllers for sys-
tems with dynamic interconnections in Wen and Soh
(1997), the adaptive law and controller design are separ-
ated and it is impossible to guarantee the transient per-
formance by adjusting design parameters. In this paper,
we use the backstepping technique to design totally de-
centralized adaptive controllers for large-scale systems
with both strong static interactions and weak dynamic
interactions. It is shown that decentralized adaptive sta-
bilization can be achieved by the proposed controllers.
The ¸

=
and ¸

2
bounds of the tracking errors are given to

evaluate the system transient performance, and the im-
proved transient performance of the whole system can be
achieved by choosing the control design parameters suit-
ably. It can also be shown that the obtained results are
still applicable to the case where the large-scale system is
corrupted by the same type of disturbances as in Jain and
Khorrami (1997a,b).

2. Problem formulation

Consider a large-scale system consisting of N intercon-
nected subsystems, and the ith subsystem is modelled by
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Assumption 2.3. *
ij
(s) (i"1,2, N; j"1,2, N) are

stable and strictly proper with unity high-frequency
gains.

Remark 1. In system (1), both the static and the dynamic
interactions, which are denoted by fM

ij
(t, y

j
) and *

ij
(s)y

j
,

are included. Besides, each subsystem is allowed to have
unmodeled dynamics denoted by *

ii
(s).

Remark 2. Assumptions 2.1 and 2.2 are similar to those
made in Wen (1994a,b). They are also usually used in
nonadaptive decentralized control design schemes (e.g.,
Huseyin et al., 1982). Since unmodeled dynamics in each
subsystem are considered, an additional Assumption 2.3
is made. It is evident that the unmodeled dynamics sat-
isfying such an assumption can often be found in many
practical situations such as large-scale power systems.
Thus, this assumption is reasonable in practice.

The control objective is to design a local adaptive
controller for each subsystem given by (1) using only
local information such that the overall interconnected
system is stable and all the outputs y

i
are regulated to zeros.

3. Design of decentralized controllers

In this section, the backstepping technique is employed
to design the desired controllers. To this end, system (1) is
"rstly transformed into a form for which the backstep-
ping design can be performed.

As well known, there exists a nonsingular matrix ¹
i
for

ith subsystem (1), by which the ith subsystem can be
transformed into the following form:
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For clarity of illustration, the superscript k of a vector
will be used to denote the kth element of this vector in the
remaining parts of this paper.

Let ¸
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where a
i,k~1

is the virtual control in the (k!1)th step.
Then, the ith local adaptive controller can be obtained by
applying the similar control design procedures as in
Krstic, Kanellakopoulos and KokotovicH (1995) to each
subsystem. These controllers are summarized as below.

Adaptive laws:
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So far we have designed the local adaptive controllers for
each of the subsystems. The stability of the overall
closed-loop system consisting of the interconnected
subsystems and these decentralized controllers will be
established in the next section.

4. Stability analysis

The purpose of this section is to prove that there exists
a positive number kH such that the closed-loop system
with the controller given by (15) is asymptotically stable
for all k

ij
3[0, kH). To this end, the model for each local

closed-loop system is given "rst.
By applying the similarity transformation as used in

Krstic et al. (1995), each subsystem given by (3) can be
represented by
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RmiCmi and its eigenvalues are exactly the zeros of B
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(s),

while b
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3Rmi denote the e!ects of the trans-

formed interactions.
Then the error system subject to controller (15) is
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Remark 3. Comparing with the corresponding error
system in Krstic et al. (1995), three new items appear in
the error equations on z

i
, e

i
and fI

i
, respectively, due to

the presence of unmodeled dynamics and interactions.

In order to take the unmodeled dynamics into account
in the stability analysis, we let v
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We are now in the position to present the stability
result of system (17).

Theorem 1. Consider the adaptive system consisting of
plant (3), estimators (11)}(12) and the controller law (15).
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It is clear that ZTSZ can be guaranteed to be positive by
suitably choosing the controller gains c1
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. Therefore, the

conclusion of the theorem can be con"rmed by taking
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Remark 4. This theorem only guarantees the stability of
the composite system in the presence of suzciently weak
dynamic interactions. This is understandable because the

interconnected system considered here is with a general
model description. This general system description leads
to the conservativeness on the strength of dynamic inter-
actions in the same way as in Ionannou and Kokotovic
(1985), Ionannou (1986), Wen and Hill (1992), Wen
(1994a,b), and Wen and Soh (1997). Such a conservative-
ness can be greatly relaxed by allowing for certain in-
formation exchange between subsystems in control
design as in Hill et al. (1988) and Ho and Datta (1996).
However, this apparantly sacri"es the total decentraliz-
ation. It is also noted that there is no conservativeness
imposed on the static interactions in our results. This is
similiar to the results in Gavel and Siljak (1989), Shi and
Singh (1992), Wen (1994a,b) and Jain and Khorrami
(1997a,b).

From the proof of Theorem 1, it can be readily shown
that the following corollary is valid in the presence of
unmodeled dynamics.

Corollary 1. The error system (17) has a globally uni-
formly stable equilibrium at the origin. Moreover, its
(4n

i
#m

i
#2)-dimensional state converges to the

(n
i
#m

i
#2)-dimensional manifold

M
i
"Mz

i
"0, e

i
"0, fI

i
"0, g8

i
"0N. (28)

5. Transient performance of the adaptive system

In this section, the transient performance of the overall
large-scale system under the proposed decentralized con-
trollers is characterized by giving the ¸

2
and ¸

=
bounds

of the tracking errors. To this end, the following lemmas
are useful.

Lemma 1. Let h*ij
be the impulse response of *

ij
(s). Then,

DDx1
i
DD
2
4

1

1!k
ii
DDh*ii

DD
1
ADDz1i DD2#

N
+
j/1
jEi

k
ij
DDh*ij

DD
1
DDz1

j
DD
2B,

DDx1
i
DD
=
4

1

1!k
ii
DDh*ii

DD
1
ADDz1i DD=#

N
+
j/1
jEi

k
ij
DDh*ij

DD
1
DDz1

j
DD
=B.

Proof. The conclusion follows immediately from (9), (19)
and Theorem B.2 in Krstic et al. (1995). h

Lemma 2. Consider the interactions fM
ij
(t, y

j
) satisfying As-

sumption 2. Then,

DD f 1
i
DD
p
4DD f

i
DD
p
4c

ij
DDZDD

p
, p"2,R. (29)

Proof. The conclusion follows directly from the de"ni-
tion of p-norm and Assumption A.2. h
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Lemma 3. Suppose max
1yi, jyN

Mk
ij
N4kH. The states of

the adaptive system subject to the decentralized controllers
are bounded by

DDz
i
(t)DD4DDz

i
(0)DDe~c

0
i t#

1

2Jc0
i
d0
i
ADDhI i DD= DDhui

DD
1
DDz1

i
DD
p

#iui
DDhI

i
DD
=
#k

ii
M

1
(i, j)DDz1

i
DD
p

#

N
+
j/1
jEi

k
ij
M

2
(i, j)DDz1

j
DD
p
#c

ij
M

3
(i, j)DDZDD

pB,
p"2,R, (30)

where

M
1
(i, j)"

DDhei DD1 DDh*ii
DD
1
#DDhA*ii

DD
1
#DDhI

i
DD
=

DDh@*ii
DD
1

1!k
ii
DDh*ii

DD
1

, (31)

M
2
(i, j)"

DDhei DD1 DDh*ij
DD
1
#DDhA*ii

DD
1
#DDhI

i
DD
=

DDh@*ij
DD
1

1!k
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1

DDh*ij
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1

#DDh@*ij
DD
1
(DDhI

i
DD
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#1), (32)

M
3
(i, j)"DDh@*ei

DD
1
#1 (33)

and all constants h*ij
, h@*ij

, hA*ij
, hui

, hei , h@ei and iui
are

dexned in the proof of the lemma.

Proof. De"ne <
ioi

"1
2
zT
i
z
i
. Di!erentiating <

ioi
along

(17), we have

<Q
ioi
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,

where c0
i
Omax

1yjyoi
Mcj

i
N and d0

i
O+oi

j/1
Mdj

i
N.

Applying Lemma B.5 in Krstic et al. (1995), we have
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i
(t)DD24DDz

i
(0)DD2e~2c0i t
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i
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Thus,
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ADDuT
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Next, we evaluate the four p norms on the right-hand side
of (34), respectively.

First, it is known from (5) that

e5
i
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1i
e
i
#(a

i
!l

i
)Akii

*
ii
(s)x1

i
#

N
+
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Alternatively, e2
i

can be expressed as

e2
i
"HeiAkii

*
ii
(s)x1

i
#

N
+
j/1
jEi

k
ij
*

ij
(s)y

jB#H@ei fi ,

where Hei and H@ei are the transfer functions of system
(35) considering k

ii
*
ii
(s)x1

i
#+N

j/1,jEi
k
ij
*

ij
(s)y

j
and f

i
as

the input respectively.
Since A

1i
is stable and strictly proper, then Hei is stable

and proper, and H@ei is stable and strictly proper. Thus,
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p
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where hei and h*ij
are impulse responses of Hei(s) and

*
ij
(s), respectively.
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Using Lemmas 1 and 2, we obtain
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Next, we evaluate DDuT
i
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i
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. It follows from the de"nition

of u
i
that
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e~jui t which is an exponentially decaying
term due to the initial value of u

i
. Note that iui
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depend only on the plant and "lter parameters
instead of c
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Thus,
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where hui
and h@*ij

are impulse responses of Hui
(s) and

H*ij
(s), respectively.

Again using Lemmas 1 and 3, we get
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Finally, we calculate DD(s#ani~1
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(s) are all stable and strictly proper, we have
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where hA*ij
are impulse responses of (s#ani~1

i
)*

ij
(s).

Substituting (36)}(38) and (29) into (34) gives (30),
which con"rms the lemma. h

Theorem 2. Consider the case of zero initial values,
i.e., z

i
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Proof. First, we prove (39). It follows from the de"nition
of <(t) that

DDz
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4J2<(0), (43)
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DD
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because <(t) is a nonincreasing function.
On the other hand, it is known from the de"nition of
<(t) that <(0)"(1/2c

i
)DDhI

i
(0)DD2 under the conditions of

the theorem. Substituting this <(0) and (44) into (30)
gives (39).

Next, we prove (40). It follows from (25) that
<Q 4!c0
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DDzT
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(t)DD. Thus, DDz
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DD2
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i
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Remark 5. This theorem shows that the zero-state tran-
sient performance of the adaptive system subject to the
proposed decentralized controller can be made arbitrar-
ily small by increasing the control design parameters
c0
i

and d0
i
.

Remark 6. It is shown by (30) that in the case of
the nonzero state z

i
(0), the in#uence of z

i
(0) decays

exponentially.

Remark 7. From the analysis in the previous sections,
it can be seen that the obtained results can be ex-
tended straightforwardly to allow for bounded distur-
bances with the same gains as in Jain and Khorrami
(1997a,b).

6. Conclusions

This paper studies the problem of decentralized
adaptive control of a large-scale system with both strong
static interactions and weak dynamic interactions be-
tween subsystems. By using the adaptive backstepping
technique, totally decentralized regulators are obtained
without any restrictions on subsystem relative degrees.
It has been shown that the proposed decentralized
regulators can ensure the global stability of the whole
system even in the presence of ignored interactions
and unmodeled dynamics in each subsystem. The ¸

2
and ¸

=
bounds of the tracking error are given to evalu-

ate the transient performance of the adaptive system
with the proposed controller. It is shown that the track-
ing transient performance can be improved to any pres-
peci"ed level by choosing proper controller design
parameters.
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